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1. Let L : K be a finite Galois extension with Galois group G. For any α ∈ L,
define the polynomial fα(t) =

∏
σ∈G(t− σ(α)).

(a) Show that fα ∈ K[t].
Solution: Since L : K is Galois, the fixed field of G is K. Then β ∈ K
if and only if τ(β) = β for every τ ∈ G. Thus, whenever τ ∈ G, one has

τ(fα(t)) =
∏
σ∈G

(t− τ(σ(α))) =
∏
ρ∈G

(t− ρ(α)) = fα(t).

Then fα(t) has each of its coefficients in the fixed field of G, so fα ∈ K[t].
(b) Prove that if σ(α) ̸= τ(α) whenever σ, τ ∈ G satisfy σ ̸= τ , then

fα = mα(K).
Solution: Since the identity element belongs to G, one has fα(α) = 0,
whence the minimal polynomialmα(K) of α overK must divide fα. But
over L[t] one has that t−α dividesmα(K). Then sincemα(K) is fixed by
the action of G (its coefficients lie in K), we find that t− σ(α) divides
σ(mα(K)) = mα(K) for each σ ∈ G. By hypothesis, moreover, the
elements σ(α) are distinct for σ ∈ G, and thus

∏
σ∈G(t− σ(α)) = fα(t)

divides mα(K). Thus we find that mα(K) and fα divide each other, and
this implies that fα is the minimal polynomial of α.

2. Use question 1 to calculate the minimal polynomial of 2
√
−3−

√
2 over Q.

Solution: The field extension Q(
√
2,
√
−3) : Q is a splitting field extension

for the polynomial (t2 − 2)(t2 + 3), and hence is finite and Galois. One
checks easily (via the Tower Law) that [Q(

√
2,
√
−3) : Q] = 4, and thus

the conjugates of 2
√
−3−

√
2 under the action of Gal(Q(

√
2,
√
−3) : Q) are

±(2
√
−3 −

√
2) and ±(2

√
−3 +

√
2). Then applying the conclusion of part

(ii), we find that the minimal polynomial of 2
√
−3−

√
2 is

(t2 − (2
√
−3−

√
2)2)(t2 − (2

√
−3 +

√
2)2) = t4 + 20t2 + 196.

3. Let f denote the polynomial t3 + t+ 1.
(a) Write down a splitting field extension for f over F2.

Solution: If α is a root of t3 + t+ 1 lying in a splitting field extension
L for this polynomial over F2, then

f(t) = t3 + t+ 1 = (t+ α)(t2 + αt+ α2 + 1) = (t+ α)(t+ α2)(t+ α2 + α).

Then F2(α) : F2 is a splitting field extension for t3 + t+ 1 over F2.
(b) What is GalF2(f)? Justify your answer, and determine all subfields of

the splitting field that you wrote down in part (a).
Solution: Observe that f is irreducible over F2, since otherwise, as a
polynomial of degree 3, it would have a linear factor over F2, and hence
have 0 or 1 as a root, which is not the case. It follows that mα(F2) = f .
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Hence, since f is a separable polynomial, we find that F2(α) : F2 is a
Galois extension, with Galois group of order [F2(α) : F2] = 3. Then
Gal(F2) must be cyclic.
In this case it is not too difficult to write down the automorphisms. If
ϕ(x) = x2 for x ∈ F2(α), we have seen that this Frobenius monomor-
phism is an automorphism, with ϕ(α) = α2. We get another automor-
phism by squaring ϕ, so that ϕ2(x) = ϕ(ϕ(x)) = ϕ(x2) = x4, and in
particular ϕ2(α) = α4 = α2 + α. Thus, the identity, ϕ and ϕ2 are the
three automorphisms. One can also check directly that ϕ has order 3,
thus ϕ3(α) = α8 = α.
Since the cyclic group ⟨ϕ⟩ of order 3 has no proper subgroups, it follows
from the Fundamental Theorem of Galois Theory that F2(α) has no
proper subfields, and hence the only subfields are the trivial ones F2

and F2(α).

4. Let f denote the polynomial t4 + t3 + t2 + t+ 1.
(a) Write down a splitting field extension for f over Q.

Solution: If α is a root of f , then α5 = 1. Thus, we see that on putting
ζ = e2πi/5, we have f(t) = (t− ζ)(t− ζ2)(t− ζ3)(t− ζ4). Then Q(ζ) : Q
is a splitting field extension for f over Q.

(b) Show that GalQ(f) ∼= C4, where C4 is the cyclic group of order 4.
Solution: Observe that f is irreducible over Q, since 5 is prime and
the polynomial tp−1 + . . . + t + 1 is irreducible for primes p. Then
mζ(Q) = f and [Q(ζ) : Q] = deg(f) = 4. Moreover, the extension
Q(ζ) : Q is separable and normal, and hence Galois, so that Gal(f) has
order [Q(ζ) : Q] = 4. The Galois group acts transitively on the roots
of f , and so there is an automorphism σ ∈ Gal(f) having the property
that σ(ζ) = ζ2. One then sees that

σ2(ζ) = σ(ζ2) = ζ4 = −(1 + ζ + ζ2 + ζ3),

σ3(ζ) = σ(ζ4) = ζ8 = ζ3,

σ4(ζ) = σ(ζ3) = ζ6 = ζ.

Thus σ is an automorphism of order 4, and one must have Gal(f) =
⟨σ⟩ ∼= C4.

5. Use the Galois correspondence to determine all subfields of the splitting field
that you wrote down in part (a) of question 4. Draw the lattice of subfields
and corresponding lattice of subgroups of C4.
Solution: The cyclic group of order 4 given by G = ⟨σi |σ4 = 1⟩ has the
trivial subgroups {1} and G, and the additional subgroup H = {1, σ2} of
order 2, and no other subgroups. Then by the Fundamental Theorem of
Galois Theory, the field Q(ζ) has only one non-trivial subfield, and this is
FixQ(ζ)(H). In this case, we can apply brute force easily enough to determine
the fixed field. Given arbitrary rational numbers a, b, c, d, one sees that
a+ bζ + cζ2 + dζ3 = σ2(a+ bζ + cζ2 + dζ3) if and only if

a+ bζ + cζ2 + dζ3 = a− b(1 + ζ + ζ2 + ζ3) + cζ3 + dζ2.
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Thus we must have a− b = a, b = −b, c = −b+ d, d = −b+ c, whence b = 0
and c = d. We therefore conclude that the fixed field of the group generated
by σ2 is Q(ζ2 + ζ3). The lattices of subfields and corresponding subgroups:

G = ⟨σ⟩ Q

⟨σ2⟩ Q(ζ2 + ζ3)

⟨1⟩ Q(ζ)
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