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1. Let f denote the polynomial t3 − 7.
(a) Write down a splitting field extension for f over Q.

Solution: Let ζ = e2πi/3 = 1
2
(−1 +

√
−3) ∈ Q be a primitive cube root

of unity, and put α = 3
√
7 ∈ Q. Then f splits as (t−α)(t− ζα)(t− ζ2α)

over Q, and a splitting field for f is L = Q(α, ζ) = Q( 3
√
7,
√
−3).

(b) Show that GalQ(f) ∼= S3.
Solution: Note that f is irreducible by Eisenstein’s criterion using the
prime 7 and Gauss’ lemma. The Galois group is thus isomorphic to
a transitive subgroup of S3, and hence either S3 or A3. Since

√
−3 ̸∈

Q(α) ⊂ R, the Tower Law yields

[L : Q] = [L : Q(α)][Q(α) : Q] = 2 · 3 = 6.

Therefore, the Galois group of f has order 6, and hence is isomorphic
to S3.

2. Use the Galois correspondence to determine all subfields of the splitting field
that you wrote down in part (a) of question 1. Draw the lattice of subfields
and corresponding lattice of subgroups of S3.
Solution: Write β1 = α, β2 = ζα, β3 = ζ2α, and consider the Galois group
G of t3−7, namely Gal(L : Q) ∼= S3. Since all possible permutations of roots
must occur as automorphisms in G, we have in particular the automorphism
σ that cyclically permutes the βi, so that

α 7→ ζα and ζ 7→ ζ,

and also the permutation τ that interchanges two of the roots, leaving the
third fixed, so that

α 7→ α and ζ 7→ ζ2.

Notice that one has

G ∼= ⟨σ, τ |σ3 = τ 2 = 1, τσ = σ2τ⟩.

The fields L, and Q, are the fixed fields of {id}, and G, respectively. As for
the intermediate fields, we have the three cubic extensions Q(α), Q(ζα) and
Q(ζ2α), corresponding to the subgroups ⟨τ⟩, ⟨σ2τ⟩ and ⟨στ⟩, respectively, of
index 3 in G. Finally, the subgroup ⟨σ⟩ of index 2 in G fixes the quadratic
extension Q(ζ) = Q(

√
−3).
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G = ⟨σ, τ⟩

⟨σ⟩

⟨τ⟩ ⟨σ2τ⟩ ⟨στ⟩

⟨1⟩

Q

Q(
√
−3)

Q(α) Q(ζα) Q(ζ2α)

Q(α, ζ)

3. Suppose that L is a finite field having pn elements, where p is a prime number.
Recall that Gal(L : Fp) = ⟨φ⟩, where φ denotes the Frobenius mapping.
(a) Show that whenever K is a subfield of L, then |K| = pd for some divisor

d of n.
Solution: Suppose that K is a subfield of L, and write Fp for the prime
subfield of L. Then, by the Fundamental Theorem of Galois Theory, we
see that Gal(K : Fp) is a subgroup of Gal(L : Fp). But the latter group
is cyclic of order n, so that by Lagrange’s theorem, any subgroup of
Gal(L : Fp) must have order dividing n. Thus we see that Gal(K : Fp)
has order d for some divisor d of n. Furthermore, we know that any
subgroup of a cyclic group is normal. Thus, again by the Fundamental
Theorem, we see that the field extension K : Fp is normal. But L is
algebraic over its prime subfield, hence K is separable, and thus Galois.
Then we deduce that [K : Fp] = |Gal(K : Fp)| = d, whence |K| = pd.

(b) Show that for each divisor d of n, there is a unique subfield K of L with
|K| = pd.
Solution: Suppose that d|n. Observe that Gal(L : Fp) is isomorphic to
Z/nZ and is generated by the Frobenius monomorphism ϕ. But there is
precisely one subgroup of Z/nZ of index d, and so Gal(L : Fp) likewise
has precisely one subgroup of index d, namely ⟨ϕd⟩. Then it follows from
the Fundamental Theorem of Galois Theory that there is precisely one
subfield K of L with [K : Fp] = d, or equivalently, having pd elements.
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4. Let L : K be a finite Galois extension with Galois group G.
(a) For any α ∈ L, define the norm of α by N(α) =

∏
σ∈G σ(α). Show that

N(α) ∈ K.
Solution: Since L : K is Galois, the fixed field of G is K. Then β ∈ K
if and only if τ(β) = β for every τ ∈ G. But whenever τ ∈ G, one has

τ(N(α)) =
∏
σ∈G

τ(σ(α)) =
∏
ρ∈G

ρ(α),

since the action of τ on G is simply to permute the elements of G. Thus
we see that τ(N(α)) = N(α) for every τ ∈ G, whence N(α) ∈ K.

(b) For any α ∈ L, define the trace of α by Tr(α) =
∑

σ∈G σ(α). Show that
Tr(α) ∈ K.
Solution: Whenever τ ∈ G, one has

τ(Tr(α)) =
∑
σ∈G

τ(σ(α)) =
∑
ρ∈G

ρ(α),

since the action of τ on G is simply to permute the elements of G. Thus
we see that τ(Tr(α)) = Tr(α) for every τ ∈ G, whence Tr(α) ∈ K.

5. Let p be a prime number, and n a natural number, and denote by Fq the
finite field of q = pn elements with prime field Fp. Let ϕ denote the Frobenius
monomorphism from Fq into Fq. Recall that Gal(Fq : Fp) = ⟨ϕ⟩.
(a) Defining the trace of α ∈ Fq as in question 4(b) above, show that there

exists an element α ∈ Fq having non-zero trace.

Solution: Since Gal(Fq : Fp) = ⟨ϕ⟩ and ϕj(α) = αpj for each α ∈ Fq,
we have

Tr(α) = α + αp + . . .+ αpn−1

= f(α),

where f(t) = t+tp+ . . .+tp
n−1

. The polynomial f has at most deg(f) =
pn−1 roots over Fq, yet Fq has p

n elements. Thus Fq has at least p
n−pn−1

elements α with Tr(α) = f(α) ̸= 0. So there exists α ∈ Fq having non-
zero trace.

(b) Defining the norm of α ∈ Fq as in question 4(a) above, show that there
exists a non-zero element α ∈ F×

q having norm different from 1.

Solution: For each α ∈ F×
q , one has N(α) = α · αp · . . . · αpn−1

=

α(pn−1)/(p−1). Recalling that F×
q = ⟨g⟩ for a suitable primitive element

g ∈ F×
q , we see that g has order pn − 1, and thus (when p ̸= 2) one has

N(g) = g(p
n−1)/(p−1) ̸= 1. So there exists α ∈ Fq having norm different

from 1, unless p = 2, in which case every non-zero element of Fq has
norm equal to 1.
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