
GALOIS THEORY: SOLUTIONS TO HOMEWORK 14

1. (a) Show that f = t3 − 3t+ 1 is irreducible over Q.
Solution: Reduce modulo 2 to get t3 + t+ 1, which is irreducible over
F2 since neither 0 nor 1 is a root. Thus f is irreducible over Z and hence
over Q by Gauss’ Lemma.

(b) Show that whenever α is a root of f in a splitting field extension of Q,
then β = α2 − 2 is also a root of f .
Solution: We have β2 = α4 − 4α2 + 4 = −α2 − α + 4 and

β3 = −α4 − α3 + 6α2 + 2α− 8 = 3α2 − 7,

so β3 − 3β + 1 = (3α2 − 7)− 3(α2 − 2) + 1 = 0.
(c) Let L be a splitting field for f over Q. Use your answer to part (b)

to show that [L : Q] = 3, and conclude that the Galois group of f is
isomorphic to A3

∼= C3.
Solution: Let α be a root of f in L. By part (b), we have that β = α2−2
is a root of f . Note also that (α2 − 2) − α ̸= 0 since the minimal
polynomial of α is f , and thus β ̸= α. Therefore, the polynomial f has
at least two roots in Q(α) ⊆ L. If f were to split as (t−α)(t−β)(t− δ)
in L, then by equating coefficients with t3−3t+1 we see that one would
have α+ β + δ = 0, whence Q(α) contains δ as well. Thus f splits over
Q(α), so we must have L = Q(α) and [L : Q] = [Q(α) : Q] = 3. Since
L is a splitting field for f and Q has characteristic 0, the field extension
L : Q is Galois and the Galois group Gal(L : Q) has order [L : Q] = 3.
Finally, note that there is a unique group (up to isomorphism) of order
3, isomorphic to C3

∼= A3.
(d) Show that there is no γ ∈ L such that γ ̸∈ Q and γ3 ∈ Q, and conclude

that L : Q is not a radical extension.
Solution: Suppose that γ ∈ L\Q and that γ is a root of t3−λ for some
λ ∈ Q. By the Tower Law we have 3 = [L : Q] = [L : Q(γ)][Q(γ) : Q].
Since 3 is prime and γ ̸∈ Q, we must have [Q(γ) : Q] = 3, from which
it follows that t3 − λ is irreducible over Q. Since L : Q is a normal
extension containing a root of t3 − λ, that polynomial must split over
L, so L contains another root, say γ′. Now let ω = γ′/γ ∈ L. Then
one may check that ω is a root of t3 − 1 different from 1, so it is a root
of t2 + t + 1. Since the latter polynomial is irreducible over Q, it must
be the minimal polynomial of ω. But then the Tower Law implies that
[L : Q] = 3 is divisible by [Q(ω) : Q] = 2, which is false. Thus no such
γ can exist.

(e) By Cardano’s formula, the equation f = 0 is soluble by radicals. How
do you reconcile this observation with your answer to part (d)?
Solution: This does not contradict the fact that f = 0 is soluble by
radicals, since for that to occur it is sufficient (and also necessary) for
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the splitting field L to be contained in a radical extension. In the present
example, L = Q(α) is contained in Q(α, ω), where ω is a root of t2+t+1,
and Q(α, ω) : Q is a radical extension. In fact, Cardano’s formula
shows that α may be expressed in terms of cube roots of elements of
Q(

√
−3) = Q(ω).

2. Is the polynomial t5 − 4t4 + 2 soluble by radicals over Q?
Solution: No. The polynomial f(t) = t5 − 4t4 + 2 is irreducible over Q,
as a consequence of Eisenstein’s theorem using the prime 2. Let L : Q
be a splitting field extension for f , and let α ∈ L be a root of f . Then
[Q(α) : Q] = deg(f) = 5, and from the tower law we find that 5 divides
[L : Q]. Thus G = GalQ(f) is a subgroup of S5 of order |G| = [L : Q]
divisible by 5. In particular, since 5 is a prime number, we perceive that G
has an element of order 5. Observe next that f ′(x) = x3(5x − 16), so that
f ′(x) = 0 for precisely 2 real values of x, and so since

f(−1) = −3, f(0) = 2, f(1) = −1, f(4) = 2,

then f has 3 real roots and 2 complex roots. Hence GalQ(f) contains a
transposition fixing the real roots and interchanging the 2 complex roots by
conjugation. Then since GalQ(f) is isomorphic to a subgroup of S5, and
contains an element of order 5 and a transposition, it follows that in fact
GalQ(f) is isomorphic to the whole of S5 (the group of permutations on 5
symbols). But S5 contains the insoluble subgroup A5, and hence is itself
insoluble. We therefore conclude that GalQ(f) is insoluble, and hence that
f(t) = 0 cannot be solved by using radical extensions of Q.

3. Is the polynomial t6 − 4t2 + 2 soluble by radicals over Q?
Solution: Yes. The polynomial g(x) = x3 − 4x + 2 is soluble by radicals
since it is cubic (this is due to Cardano). Since f(t) = t6 − 4t2 + 2 = g(t2),
it follows that if α is any root of f lying in a splitting field extension, then
g(α2) = 0, so that a = α2 lies in a radical extension L of Q. But α = ±

√
a,

and hence α lies in L(
√
a), which is a radical extension of L, and hence also

a radical extension of Q. Thus t6 − 4t2 +2 is indeed soluble by radicals over
Q.

4. Let n be a positive integer and K a field with characteristic not dividing n.
Let L = K(ζ), where ζ is a primitive nth root of unity.
(a) Show that Gal(L : K) is isomorphic to a subgroup of the multiplicative

group (Z/nZ)×.
Solution: The group of all nth roots of unity in L is easily seen to
be generated by the primitive root ζ. From this it follows that L is
a splitting field for tn − 1 over K. Since the characteristic of K does
not divide n, the polynomial tn − 1 is relatively prime to its derivative
ntn−1, so tn − 1 is a separable polynomial. Therefore L : K is normal
and separable, and hence is a Galois extension.
Next, let σ ∈ Gal(L : K). Applying σ to the equation ζn = 1, we have
σ(ζ)n = 1, and thus σ(ζ) is also an nth root of unity. Thus, we find
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that σ(ζ) = ζe(σ) for some integer e(σ). Let σ′ ∈ Gal(L : K). Then

(σ′ ◦ σ)(ζ) = σ′(σ(ζ)) = σ′(ζe(σ)) = σ′(ζ)e(σ) = (ζe(σ
′))e(σ) = ζe(σ

′)e(σ).

On the other hand, reversing the roles of σ and σ′ and using the com-
mutativity of integer multiplication (so that e(σ′)e(σ) = e(σ)e(σ′)), we
arrive at the same expression. That is to say that σ and σ′ commute,
so Gal(L : K) is abelian.

We now take σ′ = σ−1 in the above to obtain ζ = ζe(σ
−1)e(σ). Since ζ is

a primitive nth root of unity, it follows that e(σ−1)e(σ)− 1 is divisible
by n, and thus e(σ−1)e(σ) ≡ 1 (mod n). In particular, e(σ) is invertible
modulo n. Thus the reduction of e(σ) modulo n defines a map φ :
Gal(L/K) → (Z/nZ)×. Again since ζ is a primitive root, it follows
from the above equation that e(σ′σ) ≡ e(σ′)e(σ) (mod n), whence φ is
a homomorphism.
Finally, note that since L = K(ζ), any σ ∈ Gal(L/K) is determined by
its action on ζ. Thus, if e(σ) ≡ e(σ′) (mod n) then σ(ζ) = σ′(ζ), so
that σ = σ′. Therefore, φ is injective, and Gal(L/K) is isomorphic to
its image in (Z/nZ)× under φ.

(b) Show that if n is prime and K = Q then either L = K or Gal(L : K) ∼=
(Z/nZ)×.
Solution: If K already contains a primitive nth root of unity then
we have L = K and there is nothing to prove. Otherwise ζ is a root
of tn − 1 that does not lie in K; in particular, ζ ̸= 1, so it is a root of
tn−1
t−1

= tn−1+. . .+1. We know already that this polynomial is irreducible
when n is prime, and thus it is the minimal polynomial of ζ. Therefore
[L : Q] = n − 1, so Gal(L : Q) has order n − 1, and thus is isomorphic
to (Z/nZ)×.

Note: There was a question in class about what happens in general, when
K is not necessarily equal to Q – can Gal(L : Q) be a proper subgroup of
(Z/nZ)×? The answer is yes, one can have that this is a proper subgroup.
The reason for this is that K may already contain d-th roots of unity for
certain divisors d of n. For example, if p ≡ 1 (mod 3), then Fp contains
primitive cube-roots of unity. Then, when K = Fp, a situation wherein
char(K) = p, one has (p, 3) = 1 and yet when ζ is a primitive cube root of
unity we have L = K(ζ) = K and Gal(L : Q) is trivial.

5. Let n be a positive integer. By Dirichlet’s theorem, there exists a prime
number p with p ≡ 1 (mod n).
(a) Let L = Q(e2πi/p). Show that Gal(L : Q) ∼= (Z/pZ)×.

Solution: The desired conclusion here is immediate from part (b) of
question 4, since e2πi/p is a primitive p-th root of unity.

(b) Show thatQ(e2πi/p) contains a subfieldM with the property that Gal(M :
Q) ∼= Cn.
Solution: Let p be a prime number with p ≡ 1 (mod n). Recall that
the multiplicative group of residues modulo p is cyclic for each prime
number p. Thus, from part (a), there is some σ ∈ Gal(L : Q) with the
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property that Gal(L : Q) = ⟨σ⟩, and moreover σ has order p− 1 = nd,
say. But then it follows that Gal(L : Q) has the subgroup H = ⟨σn⟩
of index d. Let M = FixL(H). Then, by the Fundamental Theorem of
Galois Theory, one has Gal(L : M) = H and

Gal(M : Q) ∼= Gal(L : Q)/Gal(L : M) ∼= ⟨σ⟩/⟨σn⟩ ∼= Cn,

since the cosets of H = ⟨σn⟩ within ⟨σ⟩ take the shape σrH with r =
0, 1, . . . , n− 1.
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