
GALOIS THEORY: SOLUTIONS TO HOMEWORK 2

1. Let L : K be a field extension, and suppose that θ ∈ L satisfies the property that
[K(θ) : K] = p, where p is a prime number. Let

α = c0 + c1θ + . . .+ cp−1θ
p−1,

for some c0, . . . , cp−1 ∈ K, and suppose that α 6∈ K. By considering [K(α) : K], show
that K(α) = K(θ).
Solution: We have K(α) ⊆ K(θ), so the tower law yields

[K(θ) : K(α)][K(α) : K] = [K(θ) : K],

whence [K(α) : K] divides [K(θ) : K] = p. Since p is a prime, we therefore see that
[K(α) : K] ∈ {1, p}. But α 6∈ K, by hypothesis, so [K(α) : K] 6= 1. Then we conclude
that [K(α) : K] = p. By the tower law again, it follows that

[K(θ) : K(α)] = [K(θ) : K]/[K(α) : K] = 1,

and thus K(θ) = K(α).

2. Let L : K be a field extension with K ⊆ L. Let A ⊆ L, and let

C = {C ⊆ A : C is a finite set}.
Show that K(A) = ∪C∈CK(C), and further that when [K(C) : K] < ∞ for all C ∈ C,
then K(A) : K is an algebraic extension.
Solution: The field K(A) is the smallest subfield of L containing K and A. Thus, for
all C ∈ C, the field K(A) must contain K(C). So ∪c∈CK(C) ⊆ K(A).

Now take γ ∈ K(A). Then γ is a quotient of finite K-linear combinations of powers
of elements of A. Since this K-linear combination is finite, there is a finite set D ⊆ A so
that γ is a quotient of K-linear combinations of powers of elements in D. We therefore
have D ∈ C and γ ∈ K(D). Thus K(A) ⊆ ∪C∈CK(C).

We now address the final claim. Take α ∈ K(A). Then α ∈ K(C) for some C ∈ C.
Thus we deduce via the tower law that [K(C) : K(α)][K(α) : K] = [K(C) : K] < ∞,
whence [K(α) : K] <∞. We therefore conclude that α is algebraic over K. Since this
holds for all α ∈ K(A), we have that K(A) : K is an algebraic extension.

3. Let L : K be a field extension, and suppose that γ ∈ L satisfies the property that
degmγ(K) = 5. Suppose that h ∈ K[t] is a non-zero cubic polynomial. By noting
that γ is a root of the cubic polynomial g(t) = h(t) − h(γ) ∈ K(h(γ))[t], show that
[K(h(γ)) : K] = 5.
Solution: One has K ⊆ K(h(γ)) ⊆ K(γ) ⊆ L. Then by the tower law, we find
that [K(γ) : K] = [K(γ) : K(h(γ))][K(h(γ)) : K], whence [K(γ) : K(h(γ))] divides
[K(γ) : K]. But the degree of the minimal polynomial of γ over K is 5, so that
[K(γ) : K] = 5. We therefore see that [K(γ) : K(h(γ))] ∈ {1, 5}. But over the
field K(h(γ)), the element γ satisifies the cubic equation h(t) − h(γ) = 0, and thus
the minimal polynomial of γ over K(h(γ)) divides the latter cubic polynomial, so has
degree 1, 2 or 3. Consequently, we must have [K(γ) : K(h(γ))] ∈ {1, 2, 3}. In view of
our earlier observation, we are forced to conclude that the latter degree is 1, and then
the previous application of the tower law implies that [K(h(γ)) : K] = 5, which is to
say that the minimal polynomial of h(γ) over K has degree 5.
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4. Calculate the minimal polynomial of
5
√

7 + 3
√

21 over Q, and hence determine the degree

of the field extension Q(
5
√

7 + 3
√

21) : Q.

Solution: Write α =
5
√

7 + 3
√

21. Then α5 − 7 = 3
√

21, and hence (α5 − 7)3 = 21.
On putting f(x) = (x5 − 7)3 − 21 = x15 − . . . − (73 + 21), we see that f(α) = 0, and
thus it follows that the minimal polynomial mα(Q) of α divides f . But by applying
Eisenstein’s criterion using the prime 7, we see that f is irreducible: the lead coefficient
of f is not divisible by 7, all other coefficients are divisible by 7, and the constant
coefficient −(73 +21) is divisible by 7 but not by 72. Hence f is the minimal polynomial

of α over Q. The degree of the field extension Q(
5
√

7 + 3
√

21) : Q is therefore equal to
deg f = 15.

5. Let Q(α) : Q be a simple field extension with the property that the minimal polynomial
of α is t3 + 2t− 2. Calculate the minimal polynomials of α− 1 and α2 + 1 over Q, and
express the multiplicative inverses of these elements in Q(α) in the form c0 + c1α+ c2α
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for suitable rational numbers c0, c1, c2.
Solution: Write β = α− 1. Then α = β + 1, so that on substituting into the relation
α3 + 2α− 2 = 0 implied by the minimal polynomial of α, we obtain

0 = (β + 1)3 + 2(β + 1)− 2 = β3 + 3β2 + 5β + 1.

Then the minimal polynomial of β divides f(t) = t3 + 3t2 + 5t + 1. Since the latter
polynomial is cubic, if it is not irreducible it has a linear factor, and by Gauss’ Lemma
that factor may be written with integral coefficients. But since (consider the leading
and final coefficients) t± 1 are the only possible such factors, and f(±1) 6= 0, we must
conclude that no such factor exists, and hence f(t) is irreducible. Then α − 1 has
minimal polynomial t3 + 3t2 + 5t+ 1.

Next consider (α− 1)−1. One has (α− 1)3 + 3(α− 1)2 + 5(α− 1) + 1 = 0, and hence
(α− 1)−1 = −(α− 1)2 − 3(α− 1)− 5 = −α2 − α− 3.

Next write γ = α2 + 1. We aim to seek a polynomial relation satisfied by γ in stages.
Observe first that since α3 + 2α− 2 = 0, one has

γ2 = (α2 + 1)2 = α4 + 2α2 + 1 = α(α3 + 2α− 2) + 2α + 1 = 2α + 1,

and hence

γ3 = γ(2α + 1) = (α2 + 1)(2α + 1) = 2(α3 + 2α− 2) + α2 − 2α + 5 = γ − 2α + 4.

Then γ3 +γ2 = γ+ 5, whence the minimal polynomial of γ divides g(t) = t3 + t2− t−5.
Since the latter polynomial is cubic, if it is not irreducible it has a linear factor, and by
Gauss’ Lemma that factor may be written with integral coefficients. But since (consider
the leading and final coefficients) t± 1 and t± 5 are the only possible such factors, and
f(±1) 6= 0 and f(±5) 6= 0, we must conclude that no such factor exists, and hence g(t)
is irreducible. Then α2 + 1 has minimal polynomial t3 + t2 − t− 5.

Next consider (α2 + 1)−1. One has

5(α2 + 1)−1 = γ2 + γ − 1 = (2α + 1) + (α2 + 1)− 1 = α2 + 2α + 1,

and hence (α2 + 1)−1 = 1
5
(α2 + 2α + 1).
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