
GALOIS THEORY: SOLUTIONS TO HOMEWORK 4

1. (a) By considering the substitution t = x+ 1 and applying Eisenstein’s criterion, show
that the polnomial t6 + t3 + 1 is irreducible over Q[t].
(b) Suppose, if possible, that [Q(cos(2π/9), sin(2π/9)) : Q] = 2r, for some non-negative
integer r. Prove that the 9-th root of unity ω = cos(2π/9) + i sin(2π/9) satisfies the
property that [Q(ω) : Q] divides 2r+1.
(c) By considering the factorisation of t9 − 1 over Q[t], prove that [Q(ω) : Q] = 6.
Hence deduce that the angle 2π/9 is not constructible by ruler and compass, whence
the regular nonagon cannot be constructed by ruler and compass.

Solution: (a) We have (x+ 1)6 + (x+ 1)3 + 1 = x6 + 6x5 + 15x4 + 21x3 + 18x2 + 9x+ 3.
This polynomial is irreducible over Q[x] by Gauss’ Lemma and Eisenstein’s criterion
using the prime 3 (this monic polynomial has all save the leading coefficient divisible
by 3, and constant coefficient not divisible by 32). But if (x + 1)6 + (x + 1)3 + 1 is
irreducible, then so too is t6 + t3 + 1.

(b) Write K = Q(cos(2π/9), sin(2π/9)). Then ω ∈ K(i). Hence, by the tower law, one
has [K(i) : Q(ω)][Q(ω) : Q] = [K(i) : K][K : Q] = [K(i) : Q]. But i is a root of the
polynomial t2 + 1 over K, and hence its minimal polynomial has degree 1 or 2. Thus
[K(i) : K] ∈ {1, 2}. The question directs us to assume that [K : Q] = 2r, and thus
[K(i) : Q(ω)][Q(ω) : Q] ∈ {2r, 2r+1}. Then in any case [Q(ω) : Q] divides 2r+1.

(c) We have ω3 6= 1 and ω9 = 1, so ω is a root of the polynomial t9−1 = (t3−1)(t6+t3+1)
but not a root of t3−1. Then ω must be a root of the irreducible polynomial t6 + t3 + 1.
Thus mω(Q) = t6 + t3 + 1, whence [Q(ω) : Q] = deg(t6 + t3 + 1) = 6. But 6 does
not divide 2r+1 for r ∈ Z≥0, contradicting the assumption that [K : Q] = 2r. Thus
cos(2π/9) and sin(2π/9) are not both constructible by ruler and compass, whence the
angle 2π/9 is not constructible. But the construction of a regular nonagon would entail
constructing the angle 2π/9, so such cannot be constructed by ruler and compass.

2. (a) Suppose that P0, P1, . . . , Pn are points in R2 whose coordinates lie in a field extension
K of Q. Let P = (x, y) be a point of intersection of two ellipses with equations defined
over K. Explain why [K(x, y) : K] ≤ 4.
(b) Let P0 = (0, 0) and P1 = (1, 0), and suppose that P2, P3, . . . are constructed succes-
sively by simple cord-and-nail constructions (as discussed in Definition 13 of section 2.3
from the notes). Let j be a positive integer, write Pj = (xj, yj), and put Lj = Q(xj, yj).
Explain why, for some non-negative integers r and s, one has [Lj : Q] = 2r3s.

Solution: (a) We can assume that the equations of the two ellipses in question are

c20x
2 + c11xy + c02y

2 + c10x+ c01y + c00 = 0,

with cij ∈ K, and

d20x
2 + d11xy + d02y

2 + d10x+ d01y + d00 = 0,

with dij ∈ K. By eliminating the x2 term, we obtain a new equation of the shape

e11xy + e02y
2 + e10x+ e01y + e00 = 0.

If both e11 and e10 are zero, then this new equation is independent of x and we may solve
for y (or possibly all terms except the constant one are zero, and there is no solution).
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Then y lies in a quadratic field extension of K, and by back substitution we find that
at worst x lies in a quadratic field extension of this first extension. Otherwise, when
one at least of e11 and e10 is non-zero, then we may substitute for x from this equation
into the first so as to obtain a quartic equation for y. Back substituting into the linear
equation for x then shows that x lies in the same quartic field extension. The latter
conclusion, then, remains true in both cases, and [K(x, y) : K] ≤ 4.

(b) We expand on the conclusion of part (a) a little. Let Pi = (xi, yi) ∈ K2 (i ≥ 0).
Then the ellipse defined by taking Pj and Pk as foci, and Pl a third point on the ellipse,
has equation given by√

(x− xj)2 + (y − yj)2 =
√

(xl − xi)2 + (yl − yi)2 +
√

(xl − xk)2 + (yl − yk)2

−
√

(x− xk)2 + (y − yk)2.

The coefficients here all lie in K, and moreover the distance between any two points
from {P1, . . . , Pn} all lie in a field extension K0 of K with [K0 : K] = 2m for some
non-negative integer m. We see this by adjoining the relevant square-roots of elements
of K in sequence, making use of the Tower Law. By squaring and cancelling terms,
and squaring again to remove the final square-root, we obtain an equation of the first
shape described in part (a), with cij ∈ K0. The intersection of such a curve with a
line generates points lying in a quadratic field extension, as is the case for ruler-and-
compass constructions. If instead we consider the intersection of such a curve with a
second such curve (of the second shape described in part (a), with dij ∈ K0), then
we are in the situation considered in part (a). In such circumstances we find that any
point of intersection (x, y) satisfies the property that [K0(x, y) : K0] ≤ 4. Hence, as a
consequence of the Tower Law we conclude that [K0(x, y) : K] = 2mu for some integer
u with 1 ≤ u ≤ 4.

Now put M0 = Q and Mj = Mj−1(xj, yj) (j ≥ 1). By part (a), one has [Mj : Mj−1] =
2mj3nj for some mj ≥ 0 and nj ∈ {0, 1} for each j. Then it follows from the Tower Law
that

[Mj : Q] = [Mj : Mj−1][Mj−1 : Mj−2] . . . [M1 : M0]

is a product of terms, each of the shape 2u3v, and hence divisible only by 2 or 3. Then
[Mj : Q] = 2a3b for some a, b ∈ Z≥0. But, again by the Tower Law, since Lj ⊆ Mj, we
have [Mj : Lj][Lj : Q] = [Mj : Q] = 2a3b, so that [Lj : Q] is a divisor of 2a3b. Then we
are forced to conclude that [Lj : Q] = 2r3s for some r, s ∈ Z≥0, as required.

3. (a) Prove that the polynomial t5 − 2 is irreducible over Q[t].
(b) Prove that 21/5 is not constructible by cord-and-nail.

Solution: (a) The polynomial t5 − 2 is irreducible over Q, by Eisenstein’s criterion
using the prime 2, since this polynomial is monic, has 2 dividing all coefficients save the
leading coefficient, and 22 does not divide the constant term.

(b) Let θ = 21/5. Then θ is a root of the monic irreducible polynomial t5− 2, and hence
has the latter as its minimal polynomial over Q. Thus [Q(θ) : Q] = deg(t5 − 2) = 5.
But if θ = 21/5 lies in some field L constructible by cord-and-nail, then Q(θ) ⊆ L. By
the tower law and question 2(b), therefore, there exist r, s ∈ Z≥0 having the property
that [L : Q(θ)][Q(θ) : Q] = 2r3s, which implies that 5 divides 2r3s. The latter yields a
contradiction, and so 21/5 is not constructible by cord-and-nail.

4. Suppose that L : K is a field extension with K ⊆ L, and that τ : L → L is a K-
homomorphism. Suppose also that f ∈ K[t] has the property that deg f ≥ 1, and
additionally that α ∈ L.
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(a) Show that when f(α) = 0, then f(τ(α)) = 0.
(b) Deduce that when τ is a K-automorphism of L, we have that f(α) = 0 if and only
if f(τ(α)) = 0.

Solution: (a) Write f = c0 + c1t+ . . .+ cnt
n, where cn 6= 0, and suppose that f(α) = 0.

Since f ∈ K[t], we have ci ∈ K for each i. Hence, since τ is a K-homomorphism,

0 = τ(f(α)) = c0 + c1τ(α) + . . .+ cn(τ(α))n = f(τ(α)).

(b) If τ is a K-automorphism of L, then τ−1 : L→ L exists and is a K-homomorphism.
Thus, as in (a), when f(τ(α)) = 0, we have 0 = τ−1(f(τ(α))) = f(τ−1(τ(α))) = f(α).
Thus f(α) = 0 if and only if f(τ(α)) = 0.

5. Let L : K be a field extension. Show that Gal(L : K) is a subgroup of Aut(L).

Solution: Suppose first that K ⊆ L. Since the identity map ι on L is in Aut(L), and
it leaves K pointwise fixed, we have ι ∈ Gal(L : K). Now consider σ, τ ∈ Gal(L : K).
Thus σ, τ ∈ Aut(L), and hence σ ◦ τ and σ−1 both lie in Aut(L). Also, for each α ∈ K,
we have σ(α) = α and τ(α) = α, since σ and τ leave K pointwise fixed. Thus we have
σ ◦ τ(α) = σ(τ(α)) = σ(α) = α. Also, one has σ−1(α) = α for all α ∈ K (for we have
σ−1(β) = α for the value of β satisfying σ(β) = α). Hence σ ◦ τ and σ−1 both lie in
Gal(L : K), whence Gal(L : K) is a subgroup of Aut(L).

Now suppose that L : K is a field extension relative to an embedding ϕ : K → L.
Then in the above argument, for α ∈ K we have σ(ϕ(α)) = ϕ(α) and τ(ϕ(α)) = ϕ(α),
and so σ ◦ τ(ϕ(α)) = ϕ(α) and σ−1(ϕ(α)) = ϕ(α). Thus the identity map, together
with σ ◦ τ and σ−1 are K-homomorphisms. Thus Gal(L : K) is a subgroup of Aut(L).
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