
GALOIS THEORY: SOLUTIONS TO HOMEWORK 5

1. Suppose that L : F and L : F ′ are finite extensions with F ⊆ L and F ′ ⊆ L, and
further that ψ : F → F ′ is an isomorphism. Explain why there are at most [L : F ]
ways to extend ψ to a homomorphism from L into L. [This is Corollary 3.6 – consider
F -homomorphisms acting on L.]

Solution: We apply the argument of the proof of Theorem 3.5, writing K0 = F and
K ′0 = F ′, and taking σ0 = ψ as the isomorphism mapping K0 into K ′0 in place of the
identity map. The remainder of the proof of Theorem 3.5 now remains identical, and
shows that there are at most [L : F ] ways of extending σ0 = ψ to a homomorphism
from L into L, as required.

2. Let M be a field. Show that the following are equivalent:
(i) the field M is algebraically closed;

(ii) every non-constant polynomial f ∈ M [t] factors in M [t] as a product of linear
factors;

(iii) every irreducible polynomial in M [t] has degree 1;
(iv) the only algebraic extension of M containing M is M itself.

Solution: Suppose that (i) holds. Consider f ∈ M [t] \M , and note that f has a root
α1 ∈ M . With n = deg f , we define gi inductively as follows. Define g1 ∈ M [t] by
means of the relation f = (t−α1)g1. Then, for 1 < i ≤ n, define gi ∈M [t] by means of
the relation gi−1 = (t− αi)gi. Since deg gi = n− i, we see that gi−1 is non-constant for
1 < i ≤ n, and hence has a root αi ∈ M . We note in this context that gn ∈ M× is the
leading coefficient of f . Thus f = gn(t− α1) · · · (t− αn), and thus (i) implies (ii).
Suppose next that (ii) holds, and suppose that f ∈ M [t] is irreducible. Then f is non-
zero and non-constant. Since f factors as a product of deg f linear factors, we must
have deg f = 1, and thus (ii) implies (iii).
Next suppose that (iii) holds, and suppose that α lies in some algebraic extension field
N extending M . Assume M ⊆ N . Then α is algebraic over M , and hence there is some
irreducible polynomial mα(M) ∈M [t], which, in view of the hypothesis (iii), has degree
1. Since this polynomial is also monic, we infer that t − α = mα(M) ∈ M [t], whence
α ∈M . But then N = M , and so (iii) implies (iv).
Finally, suppose that (iv) holds. Let f ∈M [t] \M , and let N be a field extension of M
with M ⊆ N containing a root α of f . Then M(α) : M is an algebraic extension. The
hypothesis (iv) thus implies that M(α) = M , whence α ∈M . Then (iv) implies (i).
In this way, we have confirmed the equivalence of (i), (ii), (iii) and (iv).
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