## GALOIS THEORY: SOLUTIONS TO HOMEWORK 6

1. Suppose that $L$ and $M$ are fields with an associated homomorphism $\psi: L \rightarrow M$. Show that whenever $L$ is algebraically closed, then $\psi(L)$ is also algebraically closed.
Solution: Suppose that $L$ is algebraically closed, and that $f^{\prime} \in \psi(L)[t]$ is irreducible. Then we have $f^{\prime}=\psi(f)$ for some $f \in L[t]$, and $\operatorname{deg} f^{\prime}=\operatorname{deg} f$. For the sake of deriving a contradiction, suppose that $\operatorname{deg} f^{\prime}>1$. Then $\operatorname{deg} f>1$. Since $L$ is algebraically closed, it follows that irreducible polynomials in $L[t]$ have degree 1 . We are forced to conclude, therefore, that $f$ is reducible, and hence that $f=g h$ for some polynomials $g, h \in L[t]$ with $\operatorname{deg} g \geq 1$ and $\operatorname{deg} h \geq 1$. Consequently, we have $f^{\prime}=g^{\prime} h^{\prime}$, where $g^{\prime}=\psi(g)$ and $h^{\prime}=\psi(h)$ satisfy the property that $\operatorname{deg} g^{\prime} \geq 1$ and $\operatorname{deg} h^{\prime} \geq 1$. However, this contradicts the assumption that $f^{\prime}$ is irreducible in $\psi(L)[t]$. We must therefore have $\operatorname{deg} f^{\prime}=1$. Thus we conclude that $\psi(L)$ is algebraically closed.
2. Let $L: K$ be a field extension with $K \subseteq L$. Let $\gamma \in L$ be transcendental over $K$, and consider the simple field extension $K(\gamma): K$. Show that $K(\gamma)$ is not algebraically closed.

Solution: Put $M=K(\gamma)$, and suppose that $M$ is algebraically closed. We show that the polynomial $t^{2}-\gamma$ is irreducible over $M[t]$, contradicting that $M$ is algebraically closed, and thereby establishing the desired conclusion. Suppose then that $\alpha \in M$ satisfies the relation $\alpha^{2}=\gamma$. Since $\alpha \in M=K(\gamma)$, it follows that there exists $n, m \in$ $\mathbb{Z}_{\geq 0}$ and $a_{i}, b_{i} \in K(0 \leq i \leq n)$, with $a_{n} \neq 0$ and $b_{m} \neq 0$, having the property that

$$
\alpha=\frac{a_{0}+a_{1} \gamma+\ldots+a_{n} \gamma^{n}}{b_{0}+b_{1} \gamma+\ldots+b_{m} \gamma^{m}}
$$

whence

$$
\left(a_{0}+a_{1} \gamma+\ldots+a_{n} \gamma^{n}\right)^{2}=\gamma\left(b_{0}+b_{1} \gamma+\ldots+b_{m} \gamma^{m}\right)^{2}
$$

Hence

$$
a_{n}^{2} \gamma^{2 n}+\ldots+a_{0}^{2}=b_{m}^{2} \gamma^{2 m+1}+\ldots+b_{0}^{2} \gamma
$$

Either $2 n>2 m+1 \geq 1$, in which case $\gamma$ is a root of the polynomial

$$
a_{n}^{2} t^{2 n}+\ldots+a_{0}^{2} \in K[t] \backslash K
$$

or else $2 m+1>2 n \geq 0$, in which case $\gamma$ is a root of the polynomial

$$
b_{m}^{2} t^{2 m+1}+\ldots-a_{0}^{2} \in K[t] \backslash K
$$

We therefore deduce that $\gamma$ is algebraic over $K$, contradicting our hypotheses that $\gamma$ is transcendental over $K$. Thus $K(\gamma)$ cannot be algebraically closed.

