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1. Suppose that K is an algebraic closure of K, and assume that K ⊆ K. Take α ∈ K
and suppose that σ : K → K is a homomorphism.
(a) Show that σ can be extended to a homomorphism τ : K → K.
(b) Prove that the number of distinct roots of mα(K) in K is equal to the number of
distinct roots of σ(mα(K)) in K.
Solution: (a) Since K is an algebraic extension of K with K ⊆ K, and σ : K → K is
a homomorphism, Theorem 4.6 shows that σ extends to a homomorphism τ : K → K.
(b) In K[t], we have mα(K) =

∏d
i=1(t − γi)

ri , where γ1, . . . , γd are distinct, and

r1, . . . , rd ∈ N. By part (b) there is a homomorphism τ : K → K extending σ. Recall

that τ is necessarily injective. Then σ(mα(K)) = τ(mα(K)) =
∏d

i=1(t− τ(γi))
ri . Since

τ is injective, one has that τ(γ1), . . . , τ(γd) are distinct, and the conclusion follows.

2. Suppose that L : K is an algebraic extension of fields.
(a) Show that L is an algebraic closure of K, and hence L ' K.
(b) Suppose that K ⊆ L ⊆ L. Show that one may take K = L.
Solution: (a) Consider L : K as an extension relative to the embedding ϕ, and L : L as
an extension relative to the embedding ψ. Then L : K is an extension of fields relative
to the embedding ψ◦ϕ, and since L is algebraically closed, then L is an algebraic closure
of K. Thus Proposition 4.9 shows that, since K is also an algebraic closure of K, then
L ' K.
(b) Suppose that there is a smaller algebraic closure K of K than L. We may suppose
that K is an algebraic extension of K with K ⊆ K. We have that L is an algebraic
closure of K and K ⊆ L. Take ϕ : K → L to be the inclusion mapping. Theorem 4.6
shows that ϕ can be extended to a homomorphism from K into L. Thus L : K is a field
extension with [L : K] > 1 (since K is smaller than L). But this contradicts the fact
that K is algebraically closed. Thus we may take K = L, as claimed.

3. For each of the following polynomials, construct a splitting field L over Q and compute
the degree [L : Q].
(a) t3 − 1
(b) t7 − 1
Solution: (a) One has t3−1 = (t−1)(t−ω)(t−ω2), where ω = e2πi/3 = 1

2
(−1+

√
−3).

So Q(ω) : Q is a splitting field extension for t3−1. We see that (t3−1)/(t−1) = t2+t+1
is monic, and it is easy to check that this polynomial has no linear factor and hence is
irreducible. Hence mω(Q) = t2 + t+ 1, and [Q(ω) : Q] = 2.
(b) One has t7 − 1 = (t − 1)(t − ζ)(t − ζ2) · · · (t − ζ6), where ζ = e2πi/7. So Q(ζ) : Q
is a splitting field extension for t7 − 1. We see that (t7 − 1)/(t − 1) = t6 + . . . + t + 1
is monic, and we have seen that (tp − 1)/(t− 1) is irreducible over Q when p is prime.
Hence mζ(Q) = t6 + . . .+ t+ 1, and [Q(ζ) : Q] = 6.

4. For each of the following polynomials, construct a splitting field L over Q and compute
the degree [L : Q].
(a) t4 + t2 − 6
(b) t8 − 16

1
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Solution: (a) We have t4+t2−6 = (t2−2)(t2+3) = (t+
√

2)(t−
√

2)(t+
√
−3)(t−

√
−3).

Then with L = Q(
√

2,
√
−3), we have that L : Q is a splitting field extension for

t4+t2−6. The polynomial t2−2 has
√

2 as a root, and t2−2 is irreducible by Eisenstein’s
criterion using the prime 2. Thus m√2(Q) = t2− 2 and [Q(

√
2) : Q] = degm√2(Q) = 2.

Put K = Q(
√

2), and note that
√
−3 is a root of the polynomial t2+3. This polynomial

is irreducible over K[t], since
√
−3 is not real, and yet K ⊂ R. Thus m√−3(K) = t2 + 3

and [K(
√
−3) : K] = degm√−3(K) = 2. The tower law thus yields

[L : Q] = [Q(
√

2,
√
−3) : Q(

√
2)][Q(

√
2) : Q] = 2 · 2 = 4.

(b) We have t8−16 = t8−24 = (t−α)(t− ζα) · · · (t− ζ7α), where α = 8
√

16 =
√

2 ∈ R+

and ζ = e2πi/8. Thus, with L = Q(α, ζα, ζ2α, . . . , ζ7α), we see that L : Q is a splitting
field extension for t8 − 16. Note that ζ = (ζα)/α ∈ L, and hence Q(α, ζ) ⊆ L. Also,
for k ∈ N, one has ζkα ∈ Q(α, ζ), and so L ⊆ Q(α, ζ). We therefore conclude that
L = Q(α, ζ). Next, noting that mα(Q) = t2 − 2, we see that [Q(α) : Q] = 2. Also, we
have ζ = (1 + i)/α, so αζ − 1 is a root of the polynomial t2 + 1, whence ζ is a root of
the polynomial α2t2 − 2αt + 2 = 2t2 − 2αt + 2. But ζ 6∈ R, and so this polynomial is
irreducible over Q(α). Thus mζ(Q(α)) = t2−αt+ 1, and [Q(α, ζ) : Q] = 2. It therefore
follows from the tower law that [L : Q] = [Q(α, ζ) : Q(α)][Q(α) : Q] = 4.

5. Suppose that L : K is a splitting field extension for the polynomial f ∈ K[t] \K.
(a) Prove that [L : K] ≤ (deg f)!.
(b) Prove that [L : K] divides (deg f)!.
Solution: (a) The conclusion in part (a) follows of course from that of part (b), but
we nonetheless provide the slightly simpler argument available in this case. We use
induction on n = deg(f). In the base case n = 1, we have [L : K] = 1, so the conclusion
holds. Suppose now that n > 1 and that the desired conclusion holds for all polynomials
of degree smaller than n. Let α ∈ L be any root of f . Then f factors as (t − α)g for
some polynomial g ∈ K(α)[t] of degree n − 1. Moreover, we have that L is a splitting
field for g over K(α). By induction, we therefore see that [L : K(α)] ≤ (n− 1)!. Since
[K(α) : K] = n, the Tower Law shows that [L : K] ≤ n · (n − 1)! = n. This confirms
the inductive step, and the desired conclusion follows.

(b) In the second case we again proceed by induction on n = deg(f), and again the case
n = 1 is immediate. Now, when n > 1, we split the argument according to whether f
is reducible or not over K. If f is irreducible, let α ∈ L be any root of f . Then f again
factors as (t − α)g for some other polynomial g ∈ K(α)[t] of degree n − 1. Moreover,
we have that L is a splitting field for g over K(α). By induction, we therefore see that
[L : K(α)] divides (n − 1)!. Since [K(α) : K] = n, the Tower Law shows that [L : K]
divides n · (n− 1)! = n!.

On the other hand, if f = gh is reducible, let M be the subfield of L generated by K
and the roots of g. Then M is a splitting field for g over K and L is a splitting field for
h over M . By induction, we have that [M : K] divides r! and [L : M ] divides (n− r)!,
where r = deg(g). Hence [L : K] = [L : M ][M : K] divides r!(n − r)!, which in turn
divides n! (with quotient equal to the binomial coefficient

(
n
r

)
).

We confirm the inductive step in both cases, and the desired conclusion follows by
induction.
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