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1. Recall the splitting field L over Q that you constructed in question 4(b) of Problem
Sheet 7 for the polynomial t8 − 16. Determine the subgroup of S4 to which Gal(L : Q)
is isomorphic.
Solution: Recall that L = Q(α, ζ), where α =

√
2 and ζ = (1 + i)/α. Thus in fact

L = Q(α, i). Take τ ∈ Gal(L : Q). Then τ is determined by its action on α =
√

2
and i =

√
−1. We begin by constructing Q-homomorphisms σ : Q(α) → Q(α, i). We

know that σ(α) must be a root of mα(Q) = t2 − 2, so σ(α) = ±α. We can extend
σ to τ : Q(α, i) → Q(α, i) by taking τ |Q(α) = σ and τ(i) = ±i, with the choice of
sign independent of the previous choice. Here, since mi(Q(α)) = t2 + 1, we find that
τ(i) must be one of the roots of t2 + 1, explaining the previous assertion. We thus
conclude that τ is one of the permutations τlm (l,m ∈ {0, 1}), where τlm(α) = (−1)lα
and τlm(i) = (−1)mi. Thus τ acts as one of the four permutations

(α − α)(i − i), (α − α), (i − i), id.

The group Gal(L : Q) is therefore isomorphic to the group of permutations

{(1), (1 2), (3 4), (1 2)(3 4)}.

2. Suppose that K is a field and that L : K is a splitting field extension for an irreducible
polynomial f ∈ K[t] of degree n. Assume that K ⊆ L.
(a) Show that whenever α and β are roots of f in L, and σ is a K-automorphism of

L, then σ(α) = σ(β) if and only if α = β;
Solution: Since σ is a K-automorphism of L, it is bijective and hence invertible.
Then σ(α) = σ(β) if and only if σ−1(σ(α)) = σ−1(σ(β)), which is to say, if and
only if α = β.

(b) Show that the elements of Gal(L : K) act as permutations on the n roots of f , and
hence deduce that Gal(L : K) has order dividing n!;
Solution: Let α ∈ L be a root of f , and consider τ ∈ Gal(L : K). Then τ(f(α)) =
f(τ(α)). Thus, under the action of any element τ of Gal(L : K), a root α of f
is taken to another root β of f . Since this mapping is bijective, it follows that
σ acts as a permutation on the set of roots of f . A permutation group on a set
of n objects is a subset of Sn (the permutation group on n letters), and hence by
Lagrange’s theorem has order dividing n!.

(c) Let g be a degree m polynomial in K[t], not necessarily irreducible, and let M : K
be a splitting field extension for g. Show that |Gal(M : K)| divides m!.
Solution: Let α ∈ M be a root of g, and consider τ ∈ Gal(M : K). Then again
τ(g(α)) = g(τ(α)). Thus, just as in the discussion for part (b), the mapping τ acts
as a permutation on the distinct roots of g. If the number of distinct roots of g
is n, then it follows that |Gal(M : K)| divides n!. But n ≤ m, so n! divides m!,
whence |Gal(M : K)| divides m!.

3. Suppose that L : K is a normal extension, and that K ⊆ L ⊆ K. Recall that since
L : K is algebraic, then any algebraic closure of K is an algebraic closure of L.
(a) Show that for any K-homomorphism τ : L→ K, one has τ(L) = L;
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Solution: Let τ : L → K be a K-homomorphism. Let α ∈ L. Then since
L : K is algebraic, one sees that α is algebraic over K, and so mα(K) exists.
Write g = mα(K). Then on noting that g is a K-homomorphism, we deduce that
0 = τ(g(α)) = g(τ(α)). But L : K is normal, so τ(α) ∈ L. Since this holds for all
α ∈ L, we infer that τ(L) ⊆ L. Finally, since L : K is algebraic, it follows from
Theorem 3.4 that τ(L) = L.

(b) Suppose that M is a field satisfying K ⊆ M ⊆ L. Show that L : M is a normal
extension.
Solution: Assume K ⊆ M ⊆ L, and let f ∈ M [t] \M be irreducible. Suppose
that α ∈ L is a root of f . Then f = λmα(M) for some λ ∈ M×. But mα(M)
divides mα(K), and since L : K is normal, one has that mα(K) splits over L.
Hence mα(M) also splits over L, and thus f splits over L. Then L : M is a normal
extension.

4. Which of the following field extensions are normal? Justify your answers.
(a) Q(

√
3) : Q

(b) Q( 3
√

3) : Q
(c) Q(

√
−1) : Q

(d) Q(
√

3, 3
√

3) : Q
(e) Q(

√
−1,
√

3, 3
√

3) : Q.
Solution: (a) Normal: this is a splitting field extension for t2−3 over Q, since t2−3 =
(t−
√

3)(t+
√

3) splits over Q(
√

3), and splitting field extensions are normal extensions.
(b) Not normal: the polynomial t3 − 3 has one root 3

√
3 lying in Q( 3

√
3), yet does not

split over the latter field. For writing ω = e2πi/3, the remaining roots 3
√

3ω and 3
√

3ω2

over Q are not real, and cannot lie in Q( 3
√

3).
(c) Normal: this is a splitting field extension for t2 + 1 over Q, since the polynomial
t2 + 1 = (t −

√
−1)(t +

√
−1) splits over Q(

√
−1), and splitting field extensions are

normal extensions.
(d) Not normal: the polynomial t3 − 3 has one root 3

√
3 lying in Q(

√
3, 3
√

3), yet does
not split over the latter field, for the remaining roots 3

√
3ω and 3

√
3ω2 over Q are not

real, and cannot lie in Q(
√

3, 3
√

3).
(e) Normal: this is a splitting field extension for (t2 + 1)(t3 − 3) over Q, since

(t2 + 1)(t3 − 3) = (t−
√
−1)(t+

√
−1)(t− 3

√
3)(t− ω 3

√
3)(t− ω2 3

√
3),

with ω = 1
2
(−1 +

√
−1
√

3) ∈ Q(
√
−1,
√

3, 3
√

3). Here, we confirm that this satisfies the

minimality condition on noting that
√

3 = (1 + 2ω 3
√

3/ 3
√

3)/
√
−1 ∈ Q(

√
−1,
√

3, 3
√

3).
Moreover, splitting field extensions are normal extensions.

5. Let K = F5(t). Find an algebraic field extension L : K which is not normal, and justify
your answer.
Solution: Let K denote an algebraic closure of K with K ⊂ K, and consider the
element t1/3 ∈ K that is a root of the polynomial X3 − t ∈ K[X]. We claim that the
algebraic extension L : K, where L = K(t1/3), is not a normal extension. If α ∈ K
satisfies the equation α3 − t = 0, then we have (α/t1/3)3 = 1, so that α = βt1/3 with
β3 = 1. Thus, we find that β satisfies the equation (β − 1)(β2 + β + 1) = 0. Then
either β = 1, or else (2β + 1)2 = −3. There is no element γ ∈ F5 with γ2 = −3, since
12 ≡ 42 ≡ 1 (mod 5) and 22 ≡ 32 ≡ −1 (mod 5). Observe that K(t1/3) = F5(t

1/3).
Then if γ ∈ F5(t

1/3) \ F5 satisfies γ2 = −3, then there is a non-constant polynomial
h ∈ F5[X] having the property that h(t1/3) = 0. The existence of such a polynomial
would show that t1/3, and hence also t, are algebraic over F5, contradicting the (implicit)
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assumption that t is transcendental over F5. Then no element γ ∈ K(t1/3) satisfies the
equation γ2 = −3, and thus the only solution β ∈ K(t1/3) of β3 = 1 is β = 1. The only
linear factor of X3−t over L[X] is therefore X−t1/3. Finally, since X3−t 6= (X−t1/3)3,
we conclude that X3 − t does not split over K(t1/3), whence L : K is not a splitting
field extension, and consequently is not normal.
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