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1. Suppose that E : K and F : K are finite extensions having the property that K, E and
F are contained in a field L.
(a) Show that EF : K is a finite extension;

Solution: Since E : K and F : K are both finite extensions, then for some natural
number n there exist elements α1, . . . , αn ∈ E, all algebraic over K, such that
E = K(α1, . . . , αn). Thus EF = F (α1, . . . αn), and it follows from the tower law
that [EF : F ] ≤

∏n
i=1[F (αi) : F ] <∞. But then, again by the tower law, one has

[EF : K] = [EF : F ][F : K] <∞, and so EF : F is a finite extension.
(b) Show that when E : K and F : K are both normal, then E ∩ F : K is a normal

extension;
Solution: For any α ∈ E ∩F , one sees that since E is algebraic over K, then α is
algebraic over K. Hence E ∩ F : K is algebraic. Suppose next that f ∈ K[t] \K
has the property that f is irreducible over K, and f(α) = 0 for some α ∈ E ∩ F .
Thus f splits over E and over F , and so f splits over E ∩ F . Hence E ∩ F : K is
a normal extension.

(c) Show that when E : K and F : K are both normal, then EF : E ∩ F is a normal
extension.
Solution: Theorem 6.7 shows that EF : K is normal. Since EF : E ∩ F : K is a
tower of field extensions with EF : K normal, it follows from Proposition 6.3 that
EF : E ∩ F is also normal.

2. Suppose that L : M is an algebraic extension with M ⊆ L. Show that when α ∈ L and
σ : M →M is a homomorphism, then σ(mα(M)) is separable over σ(M) if and only if
mα(M) is separable over M .
Solution: Suppose that α ∈ L and σ : M → M is a homomorphism. This homomor-
phism may be extended to a homomorphism σ : M →M . Since L : M is algebraic, we
know that mα(M) exists. Over M , we have

mα(M) = (t− α1)
r1 · · · (t− αd)rd ,

where α1, . . . , αd are distinct and r1, . . . , rd ∈ N. Then

σ(mα(M)) = (t− σ(α1))
r1 · · · (t− σ(αd))

rd ,

and since σ is necessarily injective, we know that σ(α1), . . . , σ(αd) are distinct. Thus
mα(M) has multiple roots if and only if σ(mα(M)) has multiple roots. We know that
σ(mα(M)) is irreducible over σ(M) since mα(M) is irreducible over M . Hence mα(M)
is separable over M if and only if σ(mα(M)) is separable over σ(M).

3. (a) Suppose that f ∈ K[t] is separable over K and that L : K is a splitting field
extension for f . Show that L : K is separable.
Solution: Assume that K ⊆ L. Since L : K is a splitting field extension for f , we
have that L = K(α1, . . . , αn), where α1, . . . , αn ∈ L are the roots of f . For each i
with 1 ≤ i ≤ n, we have that mαi

(K) divides f , and since f is separable over K
and mαi

(K) is irreducible over K, we know by definition that mαi
(K) is separable

over K. Thus αi is separable over K for each i, and hence by Theorem 7.4, the
field extension L : K is separable.
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(b) Suppose that L : K is a splitting field extension for S ⊆ K[t] where each f ∈ S is
separable over K. Show that L : K is a separable extension.
Solution: Let α ∈ L. Then by Proposition 1.9, we have that α ∈ D, where D
is some finite subset of A = {β ∈ L : g(β) = 0 for some g ∈ S}. For each β ∈ D,
choose gβ ∈ S in such a manner that β is a root of gβ. Put h =

∏
β∈D gβ, and let

M : K be a splitting field extension for h. We may assume here that K ⊆M ⊆ L.
Since gβ is separable over K for each β ∈ D, we deduce that h is separable over K.
Thus, by part (a), we conclude that M : K is separable. But α ∈ K(D) ⊆M , and
so α is separable over K. Finally, since this argument holds for all α ∈ L, we find
that L : K is separable.

4. Let p be a prime number, let Fp denote the finite field of p elements, and let K = Fp(t).
Suppose that L : K is a field extension, and s ∈ L is transcendental over K.
(a) Write J = K(s), and let E denote a splitting field for the polynomial xp− t ∈ J [x].

Show that for some ξ ∈ E, one has xp − t = (x− ξ)p, and deduce that [E : J ] = p.
Solution: Let E denote a splitting field for xp−t over J . Write h(x) = xp−t. Since
E is a splitting field for h, there exists some ξ ∈ E with h(ξ) = 0. In particular,
one has ξp = t. But since the binomial coefficients

(
p
r

)
are divisible by p, and hence

zero in Fp for 1 ≤ r < p, we have (x− ξ)p = xp − ξp = xp − t, as desired.
We next show that h is irreducible over J . If (x−ξ)p = xp−t = fg, with f, g ∈ J [x]
monic polynomials of degree at least one, then since E[x] is a UFD, one finds that
f = (x − ξ)u and g = (x − ξ)p−u for some integer u with 1 ≤ u ≤ p − 1. Since
p and u are coprime, so too are p − u and u, and hence there exist a, b ∈ Z with
au + b(p− u) = 1. Thus x− ξ = fagb ∈ J [x], whence ξ ∈ J . But then there exist
c, d ∈ Fq[s, t] \ {0} with ξ = c/d. Hence t = ξp = cp/dp, so that cp = tdp. The
degree of the polynomial on the left hand side of the last relation is divisible by p,
while on the right hand side the degree is congruent to 1 modulo p, a contradiction.
Thus, the hypothesised factorisation does not exist, and so h is irreducible over J .
Finally, since h is irreducible over J [x], one has h = mξ(J). Since E = J(ξ), we
deduce that [E : J ] = deg(mξ(J)) = p, as desired.

(b) Let U : J be a splitting field extension for the polynomial (xp − t)(xp − s). By
considering a splitting field extension F for the polynomial xp − s ∈ E[x], show
that [U : J ] = p2.
Solution: We have E = J(ξ) ⊆ Fp(ξ, s). The same argument as in part (a), in all
essentials, shows that [F : E] = p. For some η ∈ U we have xp−s = (x−η)p. Were
xp−s to fail to be irreducible over E[x], then for some integer v with 1 ≤ v ≤ p−1,
we would have ηv = s. But then we deduce as before that η ∈ E. Then the relation
ηp = s implies the existence of polynomials c′, d′ ∈ Fp(ξ)[s] with (c′)p = s(d′)p,
leading to a contradiction (on considering the degrees of left and right hand sides
as polynomials in s). Then xp − s is irreducible over E[x]. Since F = E(η), we
obtain [F : E] = deg(mη(E)) = p, as required. Finally, by the Tower Law, we have
[F : J ] = [F : E][E : J ] = p2. But E ( U ⊆ F . Then by the Tower Law we see
that [U : J ] is a divisor of p2 exceeding p, which is to say that [U : J ] = p2.

5. With the same notation as in the previous question:
(a) Show that if γ ∈ U , then γp ∈ J .

Solution: The field U contains elements ξ and η with ξp = t and ηp = s, and
one has (xp − t)(xp − s) = (x − ξ)p(x − η)p, so that U = J(ξ, η). Then if γ ∈ U ,
we may find non-zero polynomials q, r ∈ J [x1, x2] for which γ = q(ξ, η)/r(ξ, η).
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But then by our earlier observation concerning pth powers, one finds that γp =
q(ξp, ηp)/r(ξp, ηp) = q(t, s)/r(t, s) ∈ J .

(b) What is the degree of the field extension J(γ) : J? Explain.
Solution: Let δ = γp ∈ J . Then the minimal polynomial of γ over J divides tp−δ,
hence has degree at most p. In particular, one has 1 ≤ [J(γ) : J ] ≤ p. On the other
hand, since J ⊆ J(γ) ⊆ U , it follows from the Tower Law that [J(γ) : J ] divides
[U : J ] = p2. Thus we conclude that [J(γ) : J ] = 1 or p.

(c) Deduce that U : J is a finite field extension which is not simple.
Solution: Suppose that U : J is a simple extension, so that for some element
γ ∈ U , one has U = J(γ). Then from part (b) we have [U : J ] = [J(γ) : J ] = 1 or
p, yet from 4(b) we must have [U : J ] = p2. This yields a contradiction, and so the
finite field extension U : J is not simple.

c©Trevor D. Wooley, Purdue University 2024. This material is copyright of Trevor D. Wooley at
Purdue University unless explicitly stated otherwise. It is provided exclusively for educational
purposes at Purdue University, and is to be downloaded or copied for your private study only.


