
NUMBER THEORY: HOMEWORK 13

TO BE HANDED IN BY THURSDAY 24TH APRIL 2025 BY 6PM

1. Let k be a positive integer.

(a) Find the fundamental solution of the Pell equation x2 − (k2 + 2)y2 = 1,
and hence write down a relation that determines all solutions of this equation.

(b) Find two distinct solutions (x1, y1) and (x2, y2) of the generalised Pell
equation x2 − (k2 + 2)y2 = −2 in which all xi and yi are positive.

2. Let d be a positive integer which is not a perfect square, and consider the
negative Pell equation

x2 − dy2 = −1.

(a) Suppose that this equation has distinct non-trivial solutions (x1, y1) and

(x2, y2) with respective associated real numbers x1 + y1
√
d and x2 + y2

√
d.

Show that the real number

x3 + y3
√
d =

x2 + y2
√
d

x1 + y1
√
d

is associated with a solution (x3, y3) of the Pell equation x2 − dy2 = 1.

(b) Suppose that the fundamental solution of the Pell equation x2−dy2 = 1 is
(x0, y0). Find a relation that defines all solutions of the negative Pell equation
x2 − dy2 = −1.

3.Let k be a positive integer.

(a) Find the fundamental solution of the Pell equation x2 − (k2 + 1)y2 = 1,
and hence write down a relation that determines all solutions of this equation.

(b) Find a solution of the negative Pell equation x2 − (k2 + 1)y2 = −1, and
hence write down a relation that determines all solutions of this equation.
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