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1. (a) Suppose that n andm are coprime with n =
∏

ph∥n p
h andm =

∏
πh|m πh,

say, with p and π denoting prime numbers. Since (n,m) = 1, the primes p and
π occurring in these products are distinct, and thus

s(nm) =
∏
p|nm

p =

∏
p|n

p

∏
π|m

π

 = s(n)s(m).

Moreover, one has s(1) = 1, and so we conclude that s(n) is a multiplicative
function of n.

(b) By Möbius inversion, the arithmetic function f(n) defined by putting

f(n) =
∑
d|n

µ(d)s(n/d)

satisfies the property that s(n) =
∑

d|n f(d). But µ(n) and s(n) are both
multiplicative functions, and thus f is also a multiplicative function. We have
f(1) = 1, and when p is prime and h ⩾ 1,

f(ph) =
h∑

a=0

µ(pa)s(ph−a) = s(ph)− s(ph−1) =

{
p− 1, when h = 1,

p− p = 0, when h ⩾ 2.

Thus, in all cases one has f(ph) = µ2(ph)φ(ph), and by multiplicativity we
conclude that f(n) = µ2(n)φ(n).

2. For each prime power ph one has

h∑
j=0

ϕ(ph−j)τ(pj) =
h−1∑
j=0

(ph−j − ph−j−1)(j + 1) + ϕ(p0)τ(ph)

= ph + ph−1 + · · ·+ p− h+ h+ 1 =
∑
d|ph

d = σ(ph),

and so

σ(ph) =
∑
d|ph

ϕ(ph/d)τ(d).

Thus it follows from multiplicativity of left and right hand sides that σ(n) =∑
d|n ϕ(n/d)τ(d) for n ∈ N.
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3. (a) We have σ(n) =
∑

d|n d, and hence∑
1⩽n⩽x

σ(n)

n2
=
∑

1⩽n⩽x

∑
d|n

d

n2
=
∑

1⩽d⩽x

∑
1⩽m⩽x/d

d

(md)2

=
∑

1⩽d⩽x

1

d

∑
1⩽m⩽x/d

1

m2
=
∑

1⩽d⩽x

1

d

(
π2

6
+O(d/x)

)

=
π2

6

∑
1⩽d⩽x

1

d
+O

(
1

x

∑
1⩽d⩽x

1

)

=
π2

6
log x+O(1).

(b) Also, we have ϕ(n) = n
∑

d|n µ(d)/d, and hence∑
1⩽n⩽x

ϕ(n)

n2
=
∑

1⩽n⩽x

1

n

∑
d|n

µ(d)/d =
∑

1⩽d⩽x

∑
1⩽m⩽x/d

µ(d)

md2

=
∑

1⩽m⩽x

1

m

∑
1⩽d⩽x/m

µ(d)

d2
=
∑

1⩽m⩽x

1

m

(
6

π2
+O(m/x)

)
=

6

π2
log x+O(1).

4. (a) By multiplicativity, one has

µ2(d)

d2
=
∏
p|d

p−2,

when d is squarefree, and µ2(d)/d2 = 0 otherwise, and hence∏
p

(1 + 1/p2) =
∞∑
d=1

d squarefree

∏
p|d

p−2 =
∞∑
d=1

µ2(d)

d2
.

(b) Then
∞∑
d=1

µ2(d)

d2
=

∏
p(1− 1/p2)−1∏
p(1− 1/p4)−1

=
ζ(2)

ζ(4)
.

Thus∑
1⩽d⩽x

µ2(d)

d2
=

∞∑
d=1

µ2(d)

d2
+O

(∑
d>x

1

d2

)
=

π2/6

π4/90
+O(1/x) =

15

π2
+O(1/x).

5. Define

β(n) =
n∑

a=1
(a,n)=1

log(a/n).
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Then, applying the formula that we are asked to recall in the question, one
obtains

β(n) =
∑
d|n

n∑
a=1
d|a

µ(d) log(a/n) =
∑
d|n

µ(d)

n/d∑
b=1

log

(
b

n/d

)

=
∑
d|n

µ(n/d)
d∑

b=1

log(b/d) =
∑
d|n

µ(n/d) log(d!/dd).

Consequently, one finds that
n∏

a=1
(a,n)=1

a = nϕ(n)eβ(n) = nϕ(n)
∏
d|n

(
d!

dd

)µ(n/d)

.
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