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1. (a) We begin by finding the continued fraction expansion of
√
k2 + 2, noting

that

[
√
k2 + 2] = k, 1/(

√
k2 + 2− k) = 1

2
(
√
k2 + 2 + k),

[1
2
(
√
k2 + 2+k)] = k, 1/(1

2
(
√
k2 + 2+k)−k) = 2/(

√
k2 + 2−k) =

√
k2 + 2+k,

[
√
k2 + 2+k] = 2k, 1/((

√
k2 + 2+k)−2k) = 1/(

√
k2 + 2−k) = 1

2
(
√
k2 + 2+k),

and we obtain repetition. Thus
√
k2 + 2 = [k; k, 2k].

This is a continued fraction, periodic with period 2, and thus the fundamen-
tal solution corresponds to the convergent p1/q1 = (k ·k+1)/k of the continued
fraction expansion of

√
k2 + 2. Indeed, one has (k2 + 1)2 − (k2 + 2)k2 = 1.

Then the fundamental solution of this Pellian equation x2 − (k2 + 2)y2 = 1 is
(x, y) = (k2 + 1, k). All solutions are determined by the relation

x+ y
√
k2 + 2 = ±(k2 + 1 + k

√
k2 + 2)n (n ∈ Z).

(b) One solution immediately visible to the equation x2 − (k2 + 2)y2 = −2
is (x1, y1) = (k, 1). We can find a second by examining the integers (x2, y2)
defined via the relation

x2 + y2
√
k2 + 2 = (k +

√
k2 + 2)(k2 + 1 + k

√
k2 + 2)

= k(k2 + 1) + k(k2 + 2) + (k2 + 1 + k2)
√
k2 + 2.

Indeed, if we take (x2, y2) = (2k3 + 3k, 2k2 + 1), then we find that

x2
2 − (k2 + 2)y22 = (2k3 + 3k)2 − (k2 + 2)(2k2 + 1)2 = −2.

2. (a) Observe that

x3 + y3
√
d =

x2 + y2
√
d

x1 + y1
√
d
=

(x2 + y2
√
d)(x1 − y1

√
d)

x2
1 − dy21

= −(x1x2 − dy1y2 + (x1y2 − x2y1)
√
d).

Moreover, one has

x2
3 − dy23 = (x1x2 − dy1y2)

2 − d(x1y2 − x2y1)
2

= (x2
1 − dy21)(x

2
2 − dy22) = (−1)2 = 1.

(b) Suppose that (x1, y1) is the solution from (a) of the equation x2 − dy2 =
−1. Then, whenever (x2, y2) is a second solution, it follows from part (a)

that x2 + y2
√
d = (x1 + y1

√
d)(x3 + y3

√
d) for some solution (x3, y3) of the

Pell equation x2 − dy2 = 1. But by considering the general solution of the
Pellian equation x2 − dy2 = 1, one must have x3 + y3

√
d = ±(x0 + y0

√
d)n

1
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for some n ∈ Z. Hence, the set of all solutions of the negative Pell equation
x2 − dy2 = −1 is given by the relation

x+ y
√
d = ±(x1 + y1

√
d)(x0 + y0

√
d)n (n ∈ Z).

3. (a) We begin by finding the continued fraction expansion of
√
k2 + 1, noting

that
[
√
k2 + 1] = k, 1/(

√
k2 + 1− k) =

√
k2 + 1 + k,

[
√
k2 + 1+k] = 2k, 1/((

√
k2 + 1+k)−2k) = 1/(

√
k2 + 1−k) =

√
k2 + 1+k,

and we obtain repetition. Thus
√
k2 + 1 = [k; 2k].

This is a continued fraction, periodic with period 1, and thus the fundamen-
tal solution corresponds to the convergent p1/q1 = (k ·2k+1)/2k of the contin-
ued fraction expansion of

√
k2 + 1. Indeed, one has (2k2+1)2−(k2+1)(2k)2 =

1. Then the fundamental solution of this Pellian equation x2 − (k2 + 1)y2 = 1
is (x, y) = (2k2 + 1, 2k). All solutions are determined by the relation

x+ y
√
k2 + 1 = ±(2k2 + 1 + 2k

√
k2 + 1)n (n ∈ Z).

(b) A self-evident solution of the negative Pell equation x2 − (k2 + 1)y2 = −1
is (x, y) = (k, 1). Thus, in view of the solution of problem 2(b) together with
problem 3(a), the general solution of this negative Pell equation is furnished
by the relation

x+ y
√
k2 + 1 = ±(k +

√
k2 + 1)(2k2 + 1 + 2k

√
k2 + 1)n (n ∈ Z).

We note that (k +
√
k2 + 1)2 = 2k2 + 1+ 2k

√
k2 + 1, and thus the previous

relation may be abbreviated to the relation

x+ y
√
k2 + 1 = ±(k +

√
k2 + 1)2n+1 (n ∈ Z).
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