We obtain bounds on fractional parts of binary forms of the shape
\[
\Psi(x, y) = \alpha_k x^k + \alpha_l x^l y^{k-l} + \alpha_{l-1} x^{l-1} y^{k-l+1} + \cdots + \alpha_0 y^k
\]
with \(\alpha_k, \alpha_l, \ldots, \alpha_0 \in \mathbb{R}\) and \(l \leq k - 2\). By exploiting a variant of Weyl’s inequality and inductive arguments, we derive estimates superior to those obtained hitherto for the best exponent \(\sigma\), depending on \(k\) and \(l\), such that
\[
\min_{0 \leq x, y \leq X \atop (x, y) \neq (0, 0)} \|\Psi(x, y)\| \leq X^{-\sigma + \epsilon}.
\]