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1. Introduction. For any integer k ≥ 2 let µk(n) denote the characteristic
function on the set of k-free numbers, that is, µk(n) = 0 if there is a prime
p with pk|n, and µk(n) = 1 otherwise. A twin of k-free numbers is a natural
number n such that µk(n) = µk(n + 1) = 1. It has long been known that the
set of these twins has positive density

ϱ = ϱk =
∏
p

(
1− 2

pk

)
, (1.1)

and although the first explicit reference to an asymptotic formula for the count-
ing function

Ak(x) =
∑
n≤x

µk(n)µk(n+ 1)

seems to be a paper by Carlitz [2], the estimate

Ak(x) = ϱx+O(x
2

k+1+ε) (1.2)

is at least implicit in the work of Evelyn and Linfoot [4] and Estermann [3].
The latter formula (1.2) was then proved in refined form, with xε replaced by
(log x)4/3, by Mirsky [7]. More recently, Heath-Brown [5] considered the case

k = 2 and obtained (1.2) with O(x
7
11+ε) in place of O(x

2
3+ε).

In this paper we study the exponential sum

S(α) = Sk(α) =
∑
n≤x

µk(n)µk(n+ 1)e(αn) (1.3)

associated with k-free twins. In recent years there has been an increased interest
in the L1-norm of exponential sums over reasonably dense sets of which the k-
free twins form an example. Our first theorem adds to the small stock of such
sums for which a non-trivial estimate can be obtained.

Theorem 1. Let k ≥ 2. Then∫ 1

0

|Sk(α)|dα≪ x
1

k+1+ε.

The trivial upper bound for this integral is O(
√
x), and is obtained through

Cauchy-Schwarz’s inequality and Parseval’s identity∫ 1

0

|Sk(α)|2dα = Ak(x). (1.4)
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According to general principles, the L1-norm is bounded below by a function
not much smaller than

√
x if the underlying sequence is not well-distributed

among a fair share of the arithmetic progressions. Inversely, if the sequence
is well- and reasonably equi-distributed in most arithmetic progressions, then
the L2-norm (1.4) tends to be concentrated on the major arcs in a standard
Hardy-Littlewood dissection of the unit interval. Not unexpectedly, the k-free
twins fall into the latter category, as the next theorem shows.

Let 1 ≤ Q ≤ 1
2

√
x, and let M = M(Q) denote the union of the intervals

M(q, a) = {α ∈ [Q−1, 1 +Q−1] : |qα− a| < Q/x}

with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. Moreover, let m = m(Q) = [Q−1, 1 +
Q−1]\M(Q). We have

Theorem 2. Let k ≥ 2. Then∫
m(Q)

|Sk(α)|2dα≪ x1+εQ
1
k−1 +Q3− 2

k x
2
k−1+ε + x

4
k+1−1+εQ2.

These estimates should be compared with the results of a recent investigation
by Brüdern, Granville, Perelli, Vaughan and Wooley [1], hereafter cited as V,
where the exponential sum over k-free numbers was studied. In particular, it
was shown that one has∫ 1

0

∣∣∣∑
n≤x

µk(n)e(αn)
∣∣∣dα≪ x

1
k+1+ε, (1.5)

∫
m(Q)

∣∣∣∑
n≤x

µk(n)e(αn)
∣∣∣dα≪ x1+εQ

1
k−1 + x

2
k−1+εQ3− 2

k . (1.6)

These estimates seem to be the first instances where L1-norms and L2-norms
over minor arcs allowed for a breaking through the familiar “square root cancel-
lation” barrier, leaving aside trivial examples such as arithmetic progressions.
The results of this paper show that such is possible even if the underlying
sequence is not multiplicative. We refer the reader to Perelli [8] for a more
exhaustive survey of this matter.

Note that the estimates (1.5) and in Theorem 1 are of the same strength.
The proof of (1.5) in V is elementary and depends mainly on the convolution
formula

µk(n) =
∑
dk|n

µ(d). (1.7)

In the new context of twins we make use of (1.7) for n and n+1. By Schwarz’s
inequality, applied to a suitable portion of the resulting exponential sum, it
is possible to link the L1-norm of S(α) to an upper bound for the number of
solutions of the diophantine equation svk − ruk = 1, with all four variables in
certain ranges. An elaboration of the ideas of V then leads to Theorem 1. We
present the details in §2.
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Theorem 2 compares easily with the very similar bound (1.6). The strategy is
the same as in V, though in the present context we must examine the distribution
of k-free twins in arithmetic progression. By standard methods, this information
can be transported to an asymptotic formula for the major arc contribution to
(1.4). This takes the shape ∫

M

|S(α)|2dα ∼ ϱ2Sx (1.8)

where S is the singular series associated naturally with the trivial equation
n = m in k-free twins (see (4.4) for a precise definition). A comparison of Euler
products shows that S = ϱ−1, and from (1.8), (1.4) and (1.2) one finds∫

m

|S(α)|2dα = o(x)

as x→ ∞. Explicit control of error terms in this argument yields Theorem 2.

As in V one can deduce from Theorem 2 results for binary additive problems
with twins of k-free numbers. We content ourselves with just one example. For
k ≥ l ≥ 2, let

rk,l(n) =
∑

a+b=n

µk(a)µk(a+ 1)µl(b)µl(b+ 1)

denote the number of representations of n as the sum of a k-free twin and an
l-free twin. Let Sk,l(n) denote the natural singular series associated with this
binary problem (see (6.6) for a definition). We have

Theorem 3. Let k ≥ l ≥ 2. Then

rk,l(n) = Sk,l(n)ϱkϱln+O(n9/10+ε).

We are certainly not asserting that this asymptotic formula could not be
obtained by an elementary argument, or that the error term is the sharpest
obtainable one. The point is the relative ease by which the result is obtained, and
that the circle method succeeds at all with a binary additive problem, contrary
to a widely held belief. As we shall see in section 6, the circle method neatly
disentangles the different multiplicative constraints on the two summands.

One might ask whether the results of this paper persist in more general
situations such as r-tuples of k-free numbers, that is, integers n such that
n, n + b1, . . . , n + br−1 are all k-free. This is indeed the case, and at least
this particular example can be treated by the ideas in this paper, at the cost of
extra complication in detail. The arguments in §2 may be extended to establish
the bound∫ 1

0

∣∣∣∑
n≤x

µk(n)µk(n+ b1) . . . µk(n+ br−1)e(αn)
∣∣∣ dα≪ x

1
k+1+ε.
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Similarly, the conclusions of Theorem 2 can be validated for exponential sums
over r-tuples, by working along the lines of Tsang [9]. There is, however, a
grander design underneath the surface of the present article which relates the
study of exponential sums cognate to their prototype (1.3) with a sieve theory
which we hope to present in a forthcoming publication.

Our notation is standard or otherwise explained at the appropriate stage of
the argument. Statements involving an ε are true for all ε > 0, with implicit
constants in Vinogradov or Landau symbols depending on ε.

2. The L1-norm. We prepare for the proof of Theorem 1 with a simple lemma
which will also be of use in the next section where we deal with the distribution
of k-free numbers in arithmetic progressions.

Lemma 2.1. Let 1 ≤ y ≤ x2/k, and let Θ(x, y) denote the number of quadruples
r, s, u, v satisfying the conditions

svk − ruk = 1, ruk ≤ x (2.1)

and uv ≥ y. Then
Θ(x, y) ≪ x2+εy−k, (2.2)

and also
Θ(x, y) ≪ x1+εy1−k + x

2
k+1+ε. (2.3)

Proof. From (2.1) we have ruksvk ≤ x(x+1), whence rs ≤ x(x+1)y−k for any
quadruple counted by Θ(x, y). The total number of choices for r, s therefore is
bounded by O(x2+εy−k), by a divisor argument. For any such choice of r, s,
the number of solutions in u, v of the equation svk − ruk = 1 is O(xε) (see, for
example, Estermann [3]), and (2.2) follows.

To derive (2.3), we note that for y ≥ x
2

k+1 , one has x2y−k ≤ x
2

k+1 , whence

(2.3) follows from (2.2). Therefore, we may suppose that y < x
2

k+1 . Then,

counting those quadruples where uv > x
2

k+1 again by (2.2), we find that

Θ(x, y) ≪ x
2

k+1+ε +Θ∗,

where Θ∗ is the number of quadruples r, s, u, v satisfying (2.1) and

y ≤ uv ≤ x
2

k+1 .

From (2.1) one has (u, v) = 1. For any fixed choice of u, v, it follows that
ruk ≡ −1 (mod vk) which fixes the value of r modulo vk. By (2.1), the total
number of possibilities for r is O(1 + x(uv)−k). But for any given r, u, v, the
value of s is fixed by the equation in (2.1). Hence,

Θ∗ ≪
∑

y≤uv≤x2/(k+1)

(1 + x(uv)−k) ≪ x
2

k+1+ε + x1+εy1−k,
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which implies (2.3).

The proof of Theorem 1 is now swiftly overwhelmed. To simplify notational
obstacles, let I(r, s, u, v) denote the condition that r, s, u, v satisfy (2.1). Then,
by (1.3) and the convolution formula (1.7), imported for µk(n) and µk(n + 1),
we infer that

S(α) =
∑

I(r,s,u,v)

µ(u)µ(v)e(αruk).

Let 1 ≤ y ≤ x2/k, and write

T1(α) =
∑

I(r,s,u,v)
uv≤y

µ(u)µ(v)e(αruk), T2(α) =
∑

I(r,s,u,v)
uv>y

µ(u)µ(v)e(αruk).

Then, by Schwarz’s inequality,∫ 1

0

|S(α)| dα ≤
∫ 1

0

|T1(α)| dα+
(∫ 1

0

|T2(α)|2 dα
) 1

2

. (2.4)

To estimate the second summand on the right hand side, we observe that the
number of quadruples r, s, u, v satisfying (2.1) with a prescribed value of ruk is
O(xε), by an immediate divisor argument. Hence, by Parseval’s identity and
Lemma 2.1, ∫ 1

0

|T2(α)|2 dα≪ xεΘ(x, y) ≪ x1+εy1−k + x
2

k+1+ε.

The treatment of the first term on the right hand side of (2.4) is different.
We pick up the condition svk = ruk +1 implicit in I(r, s, u, v) by orthogonality
and rewrite T1(α) as

T1(α) =
∑
uv≤y

µ(u)µ(v)

∫ 1

0

V ((α+ β)uk, xu−k)V (−βvk, (x+ 1)v−k)e(β) dβ,

where
V (γ, z) =

∑
m≤z

e(γm).

It follows that∫ 1

0

|T1(α)| dα ≤
∑
uv≤y

∫ 1

0

∫ 1

0

|V ((α+ β)uk, xu−k)V (−βvk, (x+ 1)v−k)| dα dβ.

The function V (γ, z) has period 1 in γ. By a change of variable, we infer that∫ 1

0

|T1(α)| dα ≤
∑
uv≤y

∫ 1

0

∫ 1

0

|V ((α+ β), xu−k)V (−β, (x+ 1)v−k)| dα dβ

≪
∑
uv≤y

∫ 1

0

∫ 1

0

min(x, ∥α+ β∥−1)min(x, ∥β∥−1) dα dβ

≪ y(log y)(log x)2.
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Choosing y = x1/(k+1), Theorem 1 now follows from (2.4).

3. Twins of k-free numbers in arithmetic progressions. The relevance
of the distribution in arithmetic progressions for the success of our method has
already been stressed. Neither an asymptotic formula for the counting function

Ak(x; q, a) =
∑
n≤x

n≡a (mod q)

µk(n)µk(n+ 1) (3.1)

nor an estimate for the variance of the ensuing error terms seem to be available
in the literature. We therefore proceed by supplying such formulae. Let

g(q, a) =

∞∑
u,v=1
(uk,q)|a

(vk,q)|a+1

µ(uv)

ukvk
(q, ukvk). (3.2)

We then have the following elementary estimates.

Lemma 3.1. Uniformly in a and q, one has

Ak(x; q, a) = q−1g(q, a)x+O(x
2

k+1+ε).

Once a main term for Ak(x; q, a) has been determined, it is natural to consider
the variance

Υk(x,Q) =
∑
q≤Q

q∑
a=1

∣∣Ak(x; q, a)− q−1g(q, a)x
∣∣2 .

Lemma 3.2. When 1 ≤ Q ≤ x, one has

Υk(x,Q) ≪ x
2
k+εQ2− 2

k + x
4

k+1+ε.

Both lemmata follow from a common principle. We continue to use the
notational conventions introduced in §2. Then, writing n = ruk, n+1 = svk in
(3.1), we infer from (1.7) that

Ak(x; q, a) =
∑

I(r,s,u,v)

ruk≡a (mod q)

µ(u)µ(v) = B1(q, a) +B2(q, a), (3.3)

say, where B1(q, a) is the portion of the central sum with uv ≤ y, and B2(q, a)
is the complementary part with uv > y. Here 1 ≤ y ≤ x2/k is a parameter at
our disposal.

We evaluate B1(q, a) by counting, for any given pair u, v with uv ≤ y,
the number of r, s such that ruk ≡ a (mod q), and I(r, s, u, v) holds. From
svk − ruk = 1 one has (u, v) = 1. Moreover, the congruences ruk ≡ a (mod q)
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and svk ≡ a + 1 (mod q) imply that (uk, q)|a and (vk, q)|a + 1. Thus, the
simultaneous conditions I(r, s, u, v) and ruk ≡ a (mod q) necessitate that

(u, v) = 1, (uk, q)|a, (vk, q)|a+ 1, (3.4)

as we henceforth assume. Subject to these extra conditions, we note that for a
given r there will be an integer s such that svk−ruk = 1 if and only if ruk ≡ −1
(mod vk).

Next, since (u, v) = 1 and a ≡ −1 (mod (q, vk)), the simultaneous congru-
ences

r
uk

(uk, q)
≡ a

(uk, q)
(mod

q

(uk, q)
) and ruk ≡ −1 (mod vk) (3.5)

are compatible, and combine to a single congruence to modulus

qvk

(uk, q)(vk, q)
.

It follows that the congruences (3.5) have

x(q, uk)(q, vk)

qukvk
+O(1)

solutions r with 1 ≤ r ≤ xu−k, provided that (3.4) holds. It follows that

B1(q, a) =
∑
uv≤y

(3.4) holds

(
x(q, ukvk)

qukvk
µ(u)µ(v) +O(1)

)
.

Finally, we note that µ(uv) = 0 if (u, v) > 1, so that we may replace µ(u)µ(v)
by µ(uv) and then drop (u, v) = 1 from the summation condition. In order to
complete the sum over uv < y to an infinite series, we proceed as follows. We
define for 1 ≤ i < k the integers

πi =
∏

pi∥(q,a)

p, ϖi =
∏

pi∥(q,a+1)

p,

and define also
πk =

∏
pk|(q,a)

p, ϖk =
∏

pk|(q,a+1)

p.

By invoking the simple bound∑
U<u≤2U

(uk,q)|a

∑
V <v≤2V

(vk,q)|a+1

µ2(uv)
(q, ukvk)

ukvk

≤ (UV )−k
∑
e1|π1

f1|ϖ1

. . .
∑
ek|πk

fk|ϖk

UV

e1f1 . . . ekfk

k∏
i=1

(eifi)
i

≪ qε(UV )1−k
k∏

i=1

(πiϖi)
i−1,
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we find that ∑
uv>y

(uk,q)|a
(vk,q)|a+1

µ2(uv)
(q, ukvk)

ukvk
≪ qεy1−k

k∏
i=1

(πiϖi)
i−1

(the reader may care to compare this argument with that on pp. 744–745 of V).
We then find that

B1(q, a)−
x

q

∞∑
u,v=1
(uk,q)|a

(vk,q)|a+1

µ(uv)

ukvk
(q, ukvk) ≪ y1+ε + xy1−k+εqε−1

k∏
i=1

(πiϖi)
i−1.

This confirms the asymptotic formula

B1(q, a) = xq−1g(q, a) +O

(
y1+ε + qε−1xy1−k+ε

k∏
i=1

(πiϖi)
i−1

)
. (3.6)

To complete the proof of Lemma 3.1, we merely note that B2(q, a) ≤ Θ(x, y),
in the notation of Lemma 2.1. By (2.2), (3.6) and (3.3), it follows that

Ak(x; q, a) = xq−1g(q, a) +O
(
x2+εy−k + y1+ε

)
,

from which Lemma 3.1 is obtained by choosing y = x
2

k+1 .

To derive Lemma 3.2, we observe that (3.6) and (3.3) yield

|Ak(x; q, a)− q−1g(q, a)x|2

≪ y2+ε + qε−2x2y2−2k+ε
k∏

i=1

(πiϖi)
2i−2 + |B2(q, a)|2.

Now
q∑

a=1

|B2(q, a)|2 ≤ U(q),

where U(q) is the number of rj , sj , uj , vj (j = 1, 2) satisfying I(rj , sj , uj , vj) for
j = 1, 2 and

r1u
k
1 ≡ r2u

k
2 (mod q), u1v1 > y, u2v2 > y.

We sum over q and find that∑
q≤Q

q∑
a=1

|B2(q, a)|2 ≤
∑

I∗(rj ,sj ,uj ,vj)
j=1,2

∑
q≤Q

q|r1uk
1−r2u

k
2

1

≤ Q
∑

I∗(rj ,sj ,uj ,vj)

r1u
k
1=r2u

k
2

1 + xε
∑

I∗(rj ,sj ,uj ,vj)

r1u
k
1 ̸=r2u

k
2

1
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where I∗ indicates that I is supplemented by uv > y. For the first remain-
ing sum we note that r1u

k
1 = r2u

k
2 implies that s1v

k
1 = s2v

k
2 . Hence, if

I∗(r1, s1, u1, v1) holds, there are at most O(xε) quadruples r2, s2, u2, v2 satis-
fying I∗(r2, s2, u2, v2) and r1u

k
1 = r2u

k
2 . Hence, in the notation of the statement

of Lemma 2.1,

∑
q≤Q

q∑
a=1

|B2(q, a)|2 ≪ QxεΘ(x, y) + xεΘ(x, y)2,

and therefore, by (2.3), and an argument similar to that straddling pp. 746
–747 of V,

Υk(x,Q) ≪ Q2y2+ε + x2+εy2−2k +Q(x1+εy1−k + x
2

k+1+ε) + x
4

k+1+ε

from which Lemma 3.2 follows by choosing y = (x/Q)
1
k .

For Q > x, a simple bound suffices for our needs. Since g(q, a) ≪ qε and
Ak(x; q, a) ≤ xq−1 + 1 by obvious estimates, we have in this case

Υk(x,Q) ≪
∑
q≤Q

q∑
a=1

(
xqε−1

k∏
i=1

(πiϖi)
i−1 + 1

)2

≪ x2Qε +Q2.

Perhaps it is worth pointing out that our approach to Υk(x,Q) is rather
crude and susceptible to various improvements. WhenQ is small, the methods of
Heath-Brown [5] and Tsang [9] will provide a better estimate, at least when k =
2. Indeed, when k = 2, Heath-Brown [5] has shown that Θ(x, y) ≪ x7/6+εy−5/6

when y > x1/2. Using this in the above argument, the error term in Lemma
3.1 may be reduced to O(x7/11+ε), and also Lemma 3.2 may be improved in
certain ranges of Q. Furthermore, the work of Vaughan [11] is likely to yield
superior bounds when

√
x < Q < x. In the ranges for Q which are of interest

in arithmetic applications such as Theorem 3, such improvements seem to have
little impact.

A noticeable feature of our variance estimate is that the function g(q, a) does
not only depend on q and (a, q), unlike most sequences investigated hitherto.
We draw the reader’s attention to part X of Hooley’s acclaimed series on this
subject matter [6] where situations of this kind are analysed in an abstract
set-up.

We close this section with a brief analysis of g(q, a). By (3.2),

g(q, a) =

∞∑
n=1

µ(n)
(q, nk)

nk
ψk(n; q, a)

where ψk(n; q, a) denotes the number of pairs u, v of natural numbers with
uv = n which satisfy (3.4). It is immediate that for any fixed a, q the function
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ψk(n; q, a) is multiplicative in n. Hence g(q, a) can be written as an Euler
product which takes the provisional form

g(q, a) =
∏
p

(
1− (pk, q)

pk
ψk(p; q, a)

)
.

By (3.4), we have ψk(p; q, a) = 2 for all p ∤ q. It is therefore convenient to
introduce the functions

f(q) =
∏
p|q

(
1− 2

pk

)−1

, h(q, a) =
∏
p|q

(
1− (pk, q)

pk
ψk(p; q, a)

)
, (3.7)

so that from (1.1) we can now infer the basic identity

g(q, a) = ϱf(q)h(q, a). (3.8)

For any p|q let pν∥q. Then ψk(p; q, a) = ψk(p; p
ν , a). The equation uv = p

admits the solutions u = p, v = 1 and u = 1, v = p. However, for ν ≥ 1, we
cannot have (pk, pν)|a and (pk, pν)|a+1 simultaneously. By (3.4), it follows that
ψk(p; p

ν , a) = 1 if (pk, pν)|a(a+1), and ψk(p; p
k, a) = 0 otherwise. Consequently,

we have

h(q, a) =
∏
pν∥q

(pν ,pk)|a(a+1)

(
1− (pk, pν)

pk

)
=

∏
p|q

(pk,q)|a(a+1)

(
1− (pk, q)

pk

)
. (3.9)

From this handier formula one readily confirms the quasi-multiplicative property
that for any coprime natural numbers q1, q2 and any integers a1, a2 one has

h(q1q2, a1q2 + a2q1) = h(q1, a1q2)h(q2, a2q1). (3.10)

4. Gaussian sums and singular series. Recalling (3.2) and (3.7), we now
form the sums of Gaussian type

G(q, a) =

q∑
b=1

g(q, b)e
(ab
q

)
, H(q, a) =

q∑
b=1

h(q, b)e
(ab
q

)
(4.1)

which by (3.8) are related by

G(q, a) = ϱf(q)H(q, a). (4.2)

Then we introduce the sum

H(q) =

q∑
a=1

(a,q)=1

|H(q, a)|2 (4.3)
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which is used in turn to define the singular series

S =

∞∑
q=1

q−2f(q)2H(q). (4.4)

Lemma 4.1. The function H(q) is multiplicative. For all primes p one has

H(p) = 2p3−2k
(
1− 2

p

)
,

H(pν) = 2p3ν−2k
(
1− 1

p

)
(2 ≤ ν ≤ k),

H(pν) = 0 (ν > k).

Proof. The multiplicative property follows from the Chinese Remainder Theo-
rem, (3.10), (4.1) and (4.3) by a standard argument (see Vaughan [10], Lemma
2.11 for a model), and we may omit the details.

For any prime p and any ν ≥ 1, the orthogonality of characters and (4.1),
(4.3) yield

H(pν) =

pν∑
a=1

∣∣∣ pν∑
b=1

h(pν , b)e
(ab
pν

)∣∣∣2 − pν∑
a=1
p|a

∣∣∣ pν∑
b=1

h(pν , b)e
(ab
pν

)∣∣∣2
= pνK1(p

ν)− pν−1K2(p
ν) (4.5)

where

K1(p
ν) =

pν∑
a=1

h(pν , a)2, K2(p
ν) =

pν∑
a,b=1

a≡b (mod pν−1)

h(pν , a)h(pν , b). (4.6)

We dispose of the case ν > k first. By (3.9), one has h(pν , a) = h(pν , b)
whenever a ≡ b (mod pk). Hence, for ν > k,

K2(p
ν) =

pν∑
a=1

h(pν , a)2
pν∑
b=1

a≡b mod pν−1

1 = pK1(p
ν),

and (4.5) yields H(pν) = 0, as required.

We may now suppose that 1 ≤ ν ≤ k. By (3.9),

h(pν , a) =

{
1− pν−k, if pν |a(a+ 1),

1, otherwise.
(4.7)

11



From (4.6), we now find that

K1(p
ν) = 2(1− pν−k)2 +

pν−2∑
a=1

1 = 2(1− pν−k)2 + pν − 2. (4.8)

Similarly, when ν = 1, we deduce from (4.6) and (4.7) that

K2(p) =
( p∑

a=1

h(p, a)
)2

=
(
2(1− p1−k) + p− 2

)2
= p2(1− 2p−k)2.

When combined with (4.8) for ν = 1, the identity H(p) = 2p3−2k(1 − 2
p ) is

readily confirmed from (4.5).

It remains to consider the case where 2 ≤ ν ≤ k. By (4.6), terms with a = b
will contribute to K2(p

ν) exactly K1(p
ν). Hence, on writing

K3(p
ν) =

pν∑
a,b=1

a≡b (mod pν−1)
a̸=b

h(pν , a)h(pν , b),

we infer from (4.5) that

H(pν) = pν
(
1− 1

p

)
K1(p

ν)− pν−1K3(p
ν). (4.9)

A formula for K1(p
ν) being already available, we proceed to evaluate K3(p

ν).
By (4.7), we have h(pν , a) = 1 for 1 ≤ a ≤ pν − 2. We therefore split the sum
K3(p

ν) into the subsum, K4(p
ν), where 1 ≤ a ≤ pν − 2 and 1 ≤ b ≤ pν − 2, and

its complement, K5(p
ν), where one at least of a and b is either pν − 1 or pν .

Now

K4(p
ν) = #{(a, b) : 1 ≤ a, b ≤ pν − 2, a ̸= b, a ≡ b (mod pν−1)}

= (pν − 2p)(p− 1) + (2p− 2)(p− 2)

= (pν − 4)(p− 1).

In order to evaluate K5(p
ν), note that by the symmetry between a and b, one

has

K5(p
ν) = 2

pν∑
a=pν−1

h(pν , a)

pν∑
b=1

b≡a (mod pν−1)
b ̸=a

1 = 4(1− pν−k)(p− 1).

Since K3(p
ν) = K4(p

ν)+K5(p
ν), we deduce from (4.8) and (4.9) and a straight-

forward computation that H(pν) = 2p3ν−2k(1 − 1
p ), as claimed. The proof of

Lemma 3.1 is complete.
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Lemma 4.2. For any Q ≥ 1, one has∑
Q<q≤2Q

q−2f(q)2H(q) ≪ Q
1
k−1+ε.

The singular series S defined by (4.4) converges absolutely, and one has S =
ϱ−1.

Proof. By (3.7), one has f(q) ≪ 1, and therefore we begin with∑
Q<q≤2Q

q−2f(q)2H(q) ≪ Q
1
k−1

∑
q≤2Q

q−1− 1
kH(q).

By Lemma 4.1, we have H(q) = 0 unless q is (k+1)-free. Any (k+1)-free integer
q has a unique representation q = q1q

2
2 · · · qkk with pairwise coprime and square-

free natural numbers qj (1 ≤ j ≤ k). By Lemma 4.1 again, and an elementary
estimate for the divisor function,

∑
q≤2Q

q−1− 1
kH(q) ≪ Qε

∑
q1q22 ···qkk≤2Q

k∏
ν=1

q
2ν− ν

k−2k
ν ≪ Q2ε

which confirms the first statement of the lemma. The absolute convergence of S
is an immediate corollary, and the general term in the series (4.4) is multiplica-
tive as a consequence of (3.7) and Lemma 4.1. Therefore, S can be rewritten
as an Euler product, say

S =
∏
p

χp,

where by another application of (3.7) and Lemma 4.1, the Euler factor χp is

χp = 1 +

∞∑
ν=1

p−2νf(pν)2H(pν)

= 1 + 2
(
1− 2

pk

)−2
(
p1−2k

(
1− 2

p

)
+

k∑
ν=2

pν−2k
(
1− 1

p

))
=
(
1− 2

pk

)−1

.

A comparisom with (1.1) yields the identity S = ϱ−1, as required.

5. The major arc contribution. It is time to embark on the main argument.
We follow V in spirit and provide an asymptotic formula for the integral (1.8).
With this end in view, let 1 ≤ Q ≤ 1

2

√
x and M = M(Q) be the set of major

arcs defined prior to the statement of Theorem 2. When |qα − a| ≤ Q/x with
1 ≤ a ≤ q ≤ Q and (a, q) = 1 define

S∗(α) = q−1G(q, a)I
(
α− a

q

)
, (5.1)
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where
I(β) =

∑
n≤x

e(βn)

and G(q, a) is given by (4.1). This defines a function S∗ on M which serves as
an approximation to S(α). The next lemma controls the error between S and
S∗ in mean square.

Lemma 5.1. Suppose that 1 ≤ Q ≤ 1
2

√
x. Then∫

M(Q)

|S(α)− S∗(α)|2 dα≪ Q3− 2
k x

2
k−1+ε + x

4
k+1−1+εQ2.

This lemma should be compared with Lemma 3.2 of V. The proof is almost
identical save that the function G(q, a) in (5.1) is, in the context of V, only a
function of q. The slightly more general situation hardly affects the argument,
and therefore we content ourselves with a few hints on the necessary changes.
The definition (3.8) in V now takes the shape

u(n; q, a) =

{
µk(n)µk(n+ 1)e(an/q)− q−1G(q, a), when 1 ≤ n ≤ x,

0, otherwise.

Then the proof of V, Lemma 3.2, still applies in the new context, and yields
(compare V, (3.15))∫

M

|S(α)− S∗(α)|2dα

≪ Qε max
1≤R≤Q

( Q2

xR2
G(R) + Q

x
Υk(x, 2R) +

Q2

x2R

∫ x

0

Υk(y, 2R)dy
)
,

where Υk(x,Q) is the variance estimated in Lemma 3.2, and where

G(R) =
∑

R<q≤2R

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2.

By (4.2), (4.3) and Lemma 4.2,

G(R) ≪ R
1
k−1+ε, (5.2)

and Lemma 5.1 follows by invoking Lemma 3.2 to bound Υk.

Lemma 5.2. For 1 ≤ 2R ≤ Q ≤ 1
2

√
x, one has∫

M(2R)\M(R)

|S∗(α)|2dα≪ xR
1
k−1+ε.

Proof. Note that for |β| ≤ 1
2 one has

|I(β)| ≪ x(1 + x|β|)−1. (5.3)
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Hence, the integral in question does not exceed

≪ G(R)
∫ ∞

−∞
x2(1 + x|β|)−2dβ +

∑
q≤R

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2
∫ ∞

R/(qx)

β−2dβ.

The conclusion of the lemma is now readily verified by recalling (5.2).

To establish Theorem 2, we integrate the identity

|S(α)|2 − |S∗(α)|2 = |S(α)− S∗(α)|2 + 2 Re S∗(α)(S(α)− S∗(α))

over M(Q). By Lemma 5.1 and a dyadic splitting up argument, it follows that∫
M(Q)

|S(α)|2dα−
∫
M(Q)

|S∗(α)|2dα≪ xε(Q3− 2
k x

2
k−1 + x

4
k+1−1Q2 +E) (5.4)

where

E = max
1≤R≤Q

∫
M(2R)\M(R)

|S∗(α)(S(α)− S∗(α))|dα.

By Schwarz’s inequality, Lemma 5.1 and Lemma 5.2,

E ≪ max
R≤Q

(
xR

1
k−1+ε

) 1
2
(
R3− 2

k x
2
k−1+ε + x

4
k+1−1+εR2

) 1
2

≪ x
1
k+εQ1− 1

2k + x
2

k+1+εQ
1
2+

1
2k .

The second integral on the left hand side of (5.4) is evaluated by recalling (5.3).
Since ∫ 1/2

−1/2

|I(β)|2dβ = [x],

we deduce that∫
M(Q)

|S∗(α)|2dα =
∑
q≤Q

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2
(
[x] +O

(xq
Q

))
.

By (5.2) it follows that∫
M(Q)

|S∗(α)|2dα = x

∞∑
q=1

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2 +O(xQ
1
k−1+ε).

By (4.2) and (4.4), the infinite sum on the right is ϱ2S, and Lemma 4.2 yields∫
M(Q)

|S∗(α)|2dα = ϱx+O(xQ
1
k−1+ε).
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We substitute back into (5.4) and subtract the resulting formula from (1.4).
Invoking (1.2) we then find that∫

m(Q)

|S(α)|2dα

≪ xε
(
xQ

1
k−1 +Q3− 2

k x
2
k−1 + x

4
k+1−1Q2 + x

1
kQ1− 1

2k + x
2

k+1Q
1
2+

1
2k

)
.

Here the last two terms on the right hand side are always dominated by the
others, and Theorem 2 follows.

6. A binary additive problem. We briefly sketch a proof of Theorem 3. It
will now be useful to take x = N in the previous analysis, and fix the value of
Q as Q = N1/5. Then, with m = m(Q),M = M(Q), one has, by Theorem 2,∫

m

|Sr(α)|2dα≪ x
9
10+ε

for all r ≥ 2. Since

rk,l(N) =

∫ 1

0

Sk(α)Sl(α)e(−αN)dα

by orthogonality, we may conclude from Cauchy-Schwarz’s inequality that

rk,l(N) =

∫
M

Sk(α)Sl(α)e(−αN)dα+O(N
9
10+ε). (6.1)

We now replace Sk and Sl by their approximations S∗
k and S∗

l defined in (5.1).
Here it is now advisable to make the dependence on k and l explicit; we also
apply this convention to the sums (4.1) by now writing Gk(q, a), Hk(q, a), and
similarly fk(q) instead of f(q). For 1 ≤ R ≤ Q, one has∫

M(2R)\M(R)

|(Sk(α)− S∗
k(α))Sl(α)|dα

≤
(∫

M(2R)

|Sk(α)− S∗
k(α)|2dα

) 1
2

(∫
m(R)

|Sl(α)|2dα

) 1
2

whence by Lemma 5.1, Theorem 2 and a dyadic splitting up argument, we find
that ∫

M

|(Sk(α)− S∗
k(α))Sl(α)| dα≪ x

9
10 . (6.2)

Similarly, by applying Lemmata 5.1 and 5.2, one confirms the estimate∫
M

|S∗
k(α) (Sl(α)− S∗

l (α))| dα≪ x
9
10 . (6.3)
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We now substitute S∗
k(α) for Sk(α) in (6.1), and control the error with (6.2).

Then we substitute S∗
l (α) for Sl(α), and deduce from (6.3) that

rk,l(N) =

∫
M

S∗
k(α)S

∗
l (α)e(−αN)dα+O(N

9
10+ε).

=
∑
q≤Q

q−2

q∑
a=1

(a,q)=1

Gk(q, a)Gl(q, a)e(−aN/q)J∗(q) +O(N
9
10+ε),

where we write

J∗(q) =

∫ Q/(qN)

−Q/(qN)

I(β)2e(−βN)dβ.

By (5.2) and Schwarz’s inequality,

∑
R<q≤2R

q−2

q∑
a=1

(a,q)=1

|Gk(q, a)Gl(q, a)| ≪ R
1
2 (

1
k+ 1

l )−1+ε, (6.4)

and

J∗(q) =

∫ 1/2

−1/2

I(β)2e(−βN)dβ +O
(qN
Q

)
= N +O

(qN
Q

)
. (6.5)

By (6.4) and (6.5), we routinely deduce that

rk,l(N) = N

∞∑
q=1

q−2

q∑
a=1

(a,q)=1

Gk(q, a)Gl(q, a)e(−aN/q) +O(N
9
10+ε).

The infinite series on the right hand side converges absolutely, and by (4.2)
factors as ϱkϱlSk,l(N), where

Sk,l(N) =

∞∑
q=1

q−2fk(q)fl(q)

q∑
a=1

(a,q)=1

Hk(q, a)Hl(q, a)e(−aN/q). (6.6)

This proves Theorem 3. We remark that arguments such as those used in the
proof of Lemma 4.1 can be used to show that the innermost sum in (6.6) is a
multiplicative function of q. Therefore, the singular series can be rewritten as
an Euler product. Moreover, as in the proof of Lemma 4.1, one confirms that
for ν > k ≥ l ≥ 2 one has

pν∑
a=1
p∤a

Hk(p
ν , a)Hl(p

ν , a)e(−aN/pν) = 0

irrespective of the value of N . Hence

Sk,l(N) =
∏
p

(1 + ωk,l(p)),
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where

ωk,l(p) =
(
1− 2

pk

)−1(
1− 2

pl

)−1 k∑
ν=1

p−2ν

pν∑
a=1
p∤a

Hk(p
ν , a)Hl(p

ν , a)e(−aN/pν).

One can now follow the pattern laid down in the proof of Lemma 4.1 to compute
the Euler factors explicitly. We spare the reader the tedious details.
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