
ON VU’S THIN BASIS THEOREM IN WARING’S PROBLEM

Trevor D. Wooley∗

1. Introduction. A set of integers B is said to be an asymptotic basis of order
h if every sufficiently large natural number is the sum of h elements of B. Write
Nk0 for the set of kth powers of non-negative integers. Expressed in this language,
the number G(k) familiar to additive number theorists may be defined as the least
number g satisfying the property that the set Nk0 constitutes an asymptotic basis
of order g. For larger exponents k, the best available upper bound for G(k) due to
Wooley [16] shows that

G(k) < k(log k + log log k + 2 +O(log log k/ log k)). (1.1)

Rather recently, Vu [14] has shown that whenever s is sufficiently large in terms of
k, then there exists a thin asymptotic basis Xk ⊆ Nk0 of finite order s. When we
refer to Xk as being “thin”, we mean that for every large number t, one has

card(Xk ∩ [1, t])� (t log t)1/s (1.2)

(see Theorem 4.1 of Vu [14]; we refer the reader to [2], [4], [7], [15] and [17] for earlier
conclusions relevant to the case k = 2, and to [3] and [6] for weaker conclusions
available previously for k > 2). Although Vu does not record explicitly how large
s must be in order that the conclusion (1.2) be valid, a careful reading of the
paper, together with a perusal of the associated references, reveals that one must
take s of size somewhat larger than 2k3 log k, or possibly even k2k, in order that
Vu’s argument be applicable. Indeed, Vu’s main theorem establishes information
on the number of representations underlying the above discussion, provided that s
is very much larger in terms of k (see Theorem 1.2 of Vu [14], and Theorem 1.1
and the ensuing discussion below). In this paper we establish the existence of a
thin asymptotic basis Xk of finite order s, satisfying the property (1.2), whenever
s > (1+o(1))k log k. Indeed, we are essentially able to show that a thin asymptotic
basis of order s exists whenever current technology from the Hardy-Littlewood
method permits one to establish that G(k) 6 s− 2.
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In order to describe our main conclusion precisely, we must introduce some
notation. At this stage we concentrate on simplicity of exposition rather than
precision, and we defer a more technical discussion applicable to smaller exponents
k to §5 below. Let k be an integer with k > 3. For each natural number s, define
the positive number ∆s = ∆s(k) to be the unique solution of the equation

∆se
∆s/k = ke1−2s/k. (1.3)

Also, define the exponent σ(k) by putting

σ(k) = max
s,t,w∈N
2s>k+1

k −∆t −∆s∆w

2(s(k + ∆w −∆t) + tw(1 + ∆s))
. (1.4)

We remark that the argument of the proof of Corollary 2 to Theorem 4.2 of Wooley
[16] shows that when k is large, one has

σ(k)−1 = k(log k +O(log log k)). (1.5)

Next, we define G(k) by taking

G∗(k) = max
v>k
{2v + 3 + 2[∆v/(2σ(k))]},

and then putting
G(k) = min{G∗(k) , 2k + 1}. (1.6)

Finally, when Xk ⊆ Nk0 , we write Rs(n;Xk) for the number of solutions of the
equation

xk1 + xk2 + · · ·+ xks = n,

with xki ∈ Xk (1 6 i 6 s).

Theorem 1.1. Suppose that k and s are natural numbers with k > 3 and s > G(k).
Then there exists a subset Xk = Xk(s) of Nk0 such that, when n is sufficiently large
in terms of k and s, one has

log n� Rs(n;Xk)� log n. (1.7)

In particular, the cardinality of the set Xk(s) satisfies the condition (1.2).

By computing an asymptotic expansion of G(k) via the argument of §5 of Wooley
[16], one derives the following immediate corollary.

Corollary 1. For each natural number k with k > 3, there exists a thin asymptotic
basis Xk ⊆ Nk0 of order

G(k) = k(log k + log log k + 2 +O(log log k/ log k)).
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A comparison of the conclusion of this corollary with the upper bound (1.1) reveals
that, for larger values of k, almost nothing is lost by restricting bases to thin sets.
We note that refinements of Theorem 1.1 for smaller values of k are discussed in
§5.

As remarked earlier, Vu has shown that a conclusion similar to this corollary
holds in which the order of the basis Xk is somewhat larger than 2k3 log k (see
Theorem 4.1 of Vu [14]). The sharper conclusion recorded in Theorem 1.1, on the
other hand, is made available by Vu [14] only for s > Ck48k, for a suitable positive
constant C (see Theorem 1.2 of Vu [14], and the discussion initiating §§2.2 and
3 of that paper; here we have corrected an arithmetic oversight in the discussion
at the start of §2.2 of Vu [14], wherein it is evident that one must take s3(k)
as dK3k3 in place of dK3k2). In contrast to this previous work of Vu, our new
conclusions are applicable as soon as the implicit number of variables is as large,
essentially speaking, as the upper bound for G(k) available from current technology
in Waring’s problem.

As is pointed out in Vu [14], a thin asymptotic basis Xk ⊆ Nk0 may always be

converted to a thin basis X̂k of order h, in which every natural number is the sum

of h elements of X̂k, provided that h is not too small. When k > 2, let g(k) denote
the smallest number s with the property that every positive integer is the sum of
at most s kth powers of natural numbers. Suppose that Xk is a thin asymptotic
basis of order h, and let N0 be the largest integer that is not a sum of h elements
of Xk. Then provided only that h > g(k), it follows that the set

X̂k = Xk ∪ {0, 1k, 2k, . . . , [N1/k
0 ]k}

forms a thin basis of order h. We therefore obtain the following consequence of the
methods underlying Theorem 1.1, and here we make use of the current knowledge
concerning the value of g(k) (see, for example, Chapter 1 of Vaughan [10], and
associated references).

Corollary 2. Suppose that k is an integer with k > 3. Then there exists a basis

X̂k of order s, with

card(X̂k ∩ [1, t])� (t log t)1/s

for each positive number t, if and only if s > g(k).

It may be illuminating to recall here that it is now known that whenever k > 2,
one has

g(k) = 2k +
[
(3/2)k

]
− 2,

provided that

2k
{

(3/2)k
}

+
[
(3/2)k

]
6 2k,

and that when this condition fails, one has

g(k) = 2k +
[
(3/2)k

]
+
[
(4/3)k

]
− δ,
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where δ is 2 or 3 according to whether[
(4/3)k

] [
(3/2)k

]
+
[
(4/3)k

]
+
[
(3/2)k

]
equals or exceeds 2k.

As with Vu’s treatment of this problem, our argument has two phases. Rather
than work with the complete set of integers, as Vu does, we consider instead a
special set A of smooth numbers that comprise a convenient subset of N on which
to base our analysis. Such subsets permit the use of the powerful new technology
involving smooth Weyl sums associated with the latest developments in Waring’s
problem. In the first phase of our argument, whenever m ∈ N and s > G(k), we
seek to establish the bounds

1�
∑

xi∈A (16i6s)
xk1+···+xks=m

(x1 . . . xs)
−1+k/s � 1, (1.8)

and also, when 1 6 l < s, we establish the related upper bound∑
xi∈A (16i6l)
xk1+···+xkl =m

(x1 . . . xl)
−1+k/s � m−µ, (1.9)

for a suitable positive number µ. Rather than proceed by dividing the ranges for
the variables into many boxes, which was the approach adopted by Vu [14], we
instead recognise that

∑
xi∈A (16i6s)
xk1+···+xks=m

(x1 . . . xs)
−1+k/s =

∫ 1

0

F (α)se(−mα)dα, (1.10)

where
F (α) =

∑
x∈A∩[1,m1/k]

x−1+k/se(αxk),

and, as usual, we write e(z) for e2πiz. The integral (1.10) may be estimated via the
Hardy-Littlewood method, the weights causing only technical difficulties. We note,
however, that several manoeuvres from the repertoire of the circle method enthusi-
ast are required in order to successfully negotiate all of the difficulties encountered.

The bounds (1.8) and (1.9) are exploited in the second phase of our analysis
by means of Vu’s probabilistic analysis, the only innovation in our argument being
some additional input from the circle method (see the discussion at the start of §4
below, and in particular Lemmata 4.4 and 4.5). We note, however, that this minor
improvement in the second phase accounts, by itself, for a factor k improvement in
the upper bounds for the number of variables employed.
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Throughout, the letter ε will denote a sufficiently small positive number, and P
will be a large real number. We use � and � to denote Vinogradov’s notation,
and write f � g when g � f and f � g. We write dαe for the smallest integer at
least as large as α, and [α] for the greatest integer not exceeding α. We then put
{α} = α−[α]. Also, we write ‖α‖ for miny∈Z |α−y|. Finally, in an effort to simplify
our account, whenever ε appears in a statement, we assert that the statement holds
for every positive number ε. Thus the “value” of ε may change from statement to
statement.

The author is grateful to the referee for comments on this paper.

2. Auxiliary mean value estimates. Our application of the Hardy-Littlewood
method involves the use of some mean value estimates for modified smooth Weyl
sums. Before describing these estimates, we require some notation. We fix a natural
number k with k > 3, define g = G(k) by means of the formulae (1.3)–(1.6), and
put θ = 1 + 10−100k−2. When 1 6 R 6 P , we define the set A∗(P,R) of R-smooth
numbers up to P by

A∗(P,R) = {n ∈ [1, P ] ∩ Z : p prime and p|n⇒
√
R < p 6 R},

and we write B(P,R) for A∗(P,R) \ A∗(θ−1P,R). We then define the associated
set C(P,R) by

C(P,R) =

H⋃
h=0

{lm : m ∈ B(θhP/
√
R,R) and θ−h−1

√
R < l 6 θ−h

√
R}, (2.1)

where

H =

[
logR

8 log θ

]
.

We remark that whenever n ∈ C(P,R), then n is uniquely represented in the shape
n = lm with

m ∈ B(θhP/
√
R,R), θ−h−1

√
R < l 6 θ−h

√
R and 0 6 h 6 H,

as is apparent by considering the prime factorisation of n. Observe also that when-
ever n ∈ C(P,R), then necessarily n ∈ (θ−2P, P ]. Finally, when η is a real number
with 0 < η 6 1, we define the infinite set Aη by

Aη =
∞⋃
m=1

C(θ2m, θ2mη), (2.2)

and we write Aη(P ) for Aη ∩ [1, P ]. Note that if we define the conventional set of
R-smooth numbers not exceeding P by

A(P,R) = {n ∈ [1, P ] ∩ Z : p prime and p|n⇒ p 6 R},



6 TREVOR D. WOOLEY

then one plainly has Aη(P ) ⊆ A(P, P η).
We must next define the exponential sums that are the key characters in our

argument. When t is a natural number and P is a large positive number, we write

M+ =

⌈
logP

log(θ2)

⌉
, M− =

[
log(t−1/kP )

log(θ2)

]
− 1,

and then define
P+ = θ2M+ and P− = θ2M− .

Note that

P 6 P+ < θ2P and θ−4t−1/kP < P− 6 θ−2t−1/kP.

For later use, it is convenient also to define

Hη(m) = [mη/4].

When η is a real number with 0 < η 6 1, we define the exponential sums f(α) =
ft,η(α;P ) and h(α) = ht,η(α;P ) by

ft,η(α;P ) =
∑

x∈Aη(P+)

x−1+k/te(αxk) (2.3)

and
ht,η(α;P ) =

∑
x∈Aη(P+)
x>P−

x−1+k/te(αxk). (2.4)

Our first mean value estimate provides a crude, yet effective, bound for the
moments of the sum f(α).

Lemma 2.1. Suppose that t and w are natural numbers with t > w > G(k) − 1.
Suppose also that η is a positive number sufficiently small in terms of k and w, and
that P is a positive number sufficiently large in terms of k, w and η. Then one has∫ 1

0

|ft,η(α;P )|wdα� (logP )w.

Here, the implicit constant in Vinogradov’s notation may depend at most on t, k
and η.

Proof. Define the exponential sums

gt,η(α;Q) =
∑

x∈C(Q,Qη)

x−1+k/te(αxk),

hη(α;Q) =
∑

x∈A(Q,Qη)

e(αxk) and H(α;Q) =
∑

θ−2Q<x6Q

e(αxk).
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Then we find from (2.2) and (2.3) that

ft,η(α;P ) =

M+∑
m=1

gt,η(α; θ2m).

Write u = [w/2], and put ν = w−2u. Observe that a trivial estimate for gt,η(α;Q)
leads to the upper bound

|gt,η(α;Q)| 6
∑

16x6Q

x−1+k/t � Qk/t.

Then on combining this trivial estimate for gt,η(α;Q) with Hölder’s inequality, one
obtains∫ 1

0

|ft,η(α;P )|wdα�Mw−1
+

M+∑
m=1

(θ2mk/t)ν
∫ 1

0

|gt,η(α; θ2m)|2udα. (2.5)

Observe next that, from orthogonality, it follows that the mean value∫ 1

0

|gt,η(α;Q)|2udα

is equal to the number of integral solutions of the equation

xk1 + · · ·+ xku = xku+1 + · · ·+ xk2u,

with xi ∈ C(Q,Qη) (1 6 i 6 2u), and with each solution x being counted with
weight

(x1x2 . . . x2u)−1+k/t � (Q2u)−1+k/t.

On recalling that C(Q,Qη) ⊆ A(Q,Qη), and also that C(Q,Qη) ⊆ (θ−2Q,Q], we
deduce from orthogonality that∫ 1

0

|gt,η(α;Q)|2udα� (Q2u)−1+k/t

∫ 1

0

|H(α;Q)2hη(α;Q)2u−2|dα. (2.6)

However, the argument of §5 of Wooley [16] (see also §8 of Vaughan and Wooley [13])
shows that the mean value on the right hand side of (2.6) is O(Q2u−k) whenever
2u > G(k)− 1. Then the upper bound (2.6) yields the relatively sharp estimate∫ 1

0

|gt,η(α;Q)|2udα� Qk(2u/t−1). (2.7)

Finally, on substituting (2.7) into (2.5), we find that whenever t > w > G(k)−1,
one has ∫ 1

0

|ft,η(α;P )|wdα� (logP )w max
Q6P+

(Qk/t)ν(Qk(2u/t−1))

� (logP )w max
Q6P+

Qk(w/t−1) � (logP )w.

Here, the implicit constant in Vinogradov’s notation depends at most on w, k and
η, and thus the conclusion of the lemma follows whenever P is sufficiently large in
terms of the latter quantities.

We require also an analogue of Lemma 2.1 of use for the exponential sum
ht,η(α;P ), though here we are able to derive a sharper conclusion.
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Lemma 2.2. Suppose that t and w are natural numbers with t > w > G(k) − 1.
Suppose also that η is a positive number sufficiently small in terms of k, and that
P is a positive number sufficiently large in terms of w, k and η. Then one has∫ 1

0

|ht,η(α;P )|wdα� P k(w/t−1).

Here, the implicit constant in Vinogradov’s notation may depend at most on t, k
and η.

Proof. We find from (2.2) and (2.4) that

ht,η(α;P ) =

M+∑
m=M−+1

gt,η(α; θ2m),

where the exponential sum gt,η(α;Q) is defined as in the proof of Lemma 2.1. Again,
we write u = [w/2], and put ν = w − 2u. Then by combining our trivial estimate
for gt,η(α;Q) with Hölder’s inequality, we obtain

∫ 1

0

|ht,η(α;P )|wdα� (M+ −M−)w−1

M+∑
m=M−+1

(θ2mk/t)ν
∫ 1

0

|gt,η(α; θ2m)|2udα.

(2.8)
On noting that M+ −M− �t,k 1, and recalling the estimate (2.7) from the proof
of Lemma 2.1, we conclude from (2.8) that∫ 1

0

|ht,η(α;P )|wdα� max
θ−4t−1/kP<Q6θ2P

(Qk/t)ν(Qk(2u/t−1))� P k(w/t−1).

Here, the constants implicit in Vinogradov’s notation may depend at most on t, k
and η. This completes the proof of the lemma.

Finally, we provide a mean value estimate that yields useful information when
one of the underlying variables is relatively small.

Lemma 2.3. Suppose that t is a natural number with t > G(k). Suppose also that
η is a positive number sufficiently small in terms of k, and that P is a positive
number sufficiently large in terms of t, k and η. Then whenever Q 6 P 1/t and
1 6 v 6 t− 1, one has∫ 1

0

|ht,η(α;P )ft,η(α;P )t−v−1ft,η(α;Q)v|dα� P−k/t
3

.

Proof. A trivial estimate for ft,η(α;Q) yields the bound

|ft,η(α;Q)| � Qk/t � P k/t
2

.



THIN BASES IN WARING’S PROBLEM 9

It therefore follows from Hölder’s inequality that∫ 1

0

|ht,η(α;P )ft,η(α;P )t−v−1ft,η(α;Q)v|dα

� P k/t
2

I
1−v/(t−1)
1 I

(v−1)/(t−1)
2 I

1/(t−1)
3 ,

where

I1 =

∫ 1

0

|ft,η(α;P )|t−1dα, I2 =

∫ 1

0

|ft,η(α;Q)|t−1dα

and

I3 =

∫ 1

0

|ht,η(α;P )|t−1dα.

But Lemma 2.1 provides the upper bound Ii � (logP )t (i = 1, 2), and Lemma 2.2
shows that I3 � P−k/t. Thus we deduce that∫ 1

0

|ht,η(α;P )ft,η(α;P )t−v−1ft,η(α;Q)v|dα� (logP )tP−k/(t
2(t−1)),

and the conclusion of the lemma is immediate whenever P is sufficiently large in
terms of t, k and η.

3. Application of the Hardy-Littlewood method. In this section we seek to
obtain good upper and lower bounds for the weighted sum

Ys,η(n) =
∑

x1,...,xs∈Aη
xk1+···+xks=n

(x1 . . . xs)
−1+k/s,

valid for appropriate ranges of s and η. This we achieve by means of the Hardy-
Littlewood method, and it is this that constitutes the most difficult aspect of this
paper. We summarise the conclusion of this section as the following theorem.

Theorem 3.1. Suppose that k > 3, that s > G(k), and that η is a positive number
sufficiently small in terms of k. Then whenever n is sufficiently large in terms of
s, k and η, there exist positive numbers Ξ± = Ξ±(s, k, η), independent of n, with
the property that

Ξ−(s, k, η) 6 Ys,η(n) 6 Ξ+(s, k, η).

We remark that with some additional effort, it is possible to obtain an asymptotic
formula for Ys,η(n).

In order to initialise our application of the circle method, we put P = n1/k, and
recall the definitions of P± from §2, wherein we set t = s. It follows that whenever

xk1 + · · ·+ xks = n,
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with xi ∈ N, then necessarily

max
16i6s

xi > (n/s)1/k > P−.

On recalling the definitions (2.3) and (2.4), it is therefore apparent from orthogo-
nality that

Ys,η(n) � Y +
s,η(n), (3.1)

where

Y +
s,η(n) =

∫ 1

0

hs,η(α;P )fs,η(α;P )s−1e(−nα)dα. (3.2)

Before proceeding further, we dispose of solutions implicit in (3.2) in which one or
more variables are unusually small. In this context, we write

Ms =

[
log(n1/(ks))

log(θ2)

]
− 1, Ps = θ2Ms ,

and define
f̂s,η(α;P ) = fs,η(α;P )− fs,η(α;Ps). (3.3)

We then put

Ŷs,η(n) =

∫ 1

0

hs,η(α;P )f̂s,η(α;P )s−1e(−nα)dα. (3.4)

The parameters s, η and P may at this point be considered fixed, with s > G(k),
with η > 0 sufficiently small in terms of k, and with P sufficiently large in terms of
s, k and η.

Lemma 3.2. One has

Y +
s,η(n)− Ŷs,η(n)� n−1/s3 .

Proof. One has

|fs,η(α;P )s−1 − f̂s,η(α;P )s−1| �
s−1∑
v=1

|fs,η(α;P )s−1−vfs,η(α;Ps)
v|,

and thus it follows from (3.2) and (3.4) via Lemma 2.3 that

Y +
s,η(n)− Ŷs,η(n)�

s−1∑
v=1

∫ 1

0

|hs,η(α;P )fs,η(α;P )s−1−vfs,η(α;Ps)
v|dα

� P−k/s
3

.

The conclusion of the lemma follows on recalling that P = O(n1/k).
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Next write L = exp(log n/
√

log log n), and define the set of major arcs M to be
the union of the intervals

M(q, a) = {α ∈ [0, 1) : |α− a/q| 6 LP−k},

with 0 6 a 6 q 6 L and (a, q) = 1. We then denote the corresponding set of minor
arcs by m = [0, 1) \M. When B ⊆ [0, 1), it is convenient to define

Ŷs,η(n;B) =

∫
B

hs,η(α;P )f̂s,η(α;P )s−1e(−nα)dα, (3.5)

and it is then evident that

Ŷs,η(n) = Ŷs,η(n;m) + Ŷs,η(n;M). (3.6)

We first analyse the contribution of the minor arcs to Ŷs,η(n), beginning with
an analogue of Weyl’s inequality. We save space here by establishing a rather weak
bound that nonetheless suffices for our purposes.

Lemma 3.3. One has

sup
α∈m
|hs,η(α;P )| � P k/sL−2−2k

.

Proof. We proceed in some generality. Let U and V be large positive numbers, and
suppose that U ⊆ (θ−1U,U ]∩Z. It is convenient to write Z = UV . Let δ be a real
number with 0 < δ < 1, and define the exponential sum Υ(α) = Υ(α;U, V ) by

Υ(α;U, V ) =
∑
u∈U

∑
θ−1V <v6V

(uv)−δe(α(uv)k). (3.7)

The exponential sum hs,η(α;P ) may be decomposed as a sum of relatively few
exponential sums of the shape Υ(α;U, V ), and so a reasonable version of Weyl’s
inequality for the latter suffices to establish the conclusion of the lemma.

Write

Φ(γ) =
∑

θ−1V <v6V

v−δe(γvk) and Ψ(γ) =
∑

θ−1U<u6U

e(γuk). (3.8)

Also, define the polynomial p(t;w) by

p(t;w) = 1
2k!w1 . . . wk−1(2t+ w1 + · · ·+ wk−1). (3.9)

Then by a simple variant of the familiar Weyl differencing lemma (see, for example,
Lemma 2.3 of Vaughan [10]), one finds that

|Φ(γ)|2
k−1

6 (2V )2k−1−k
∑
|v1|<V

· · ·
∑

|vk−1|<V

∑
x∈I

ω(x;v)e(p(x;v)γ),



12 TREVOR D. WOOLEY

in which ω(x;v) denotes a weight function arising from the factor v−δ in (3.8), and
one that satisfies

|ω(x;v)| � (V −δ)2k−1

, (3.10)

and I = I(v) is an interval of integers contained in (θ−1V, V ]. An application of
Hölder’s inequality to (3.7) therefore reveals that

|Υ(α)|2
k−1

� U2k−1−1
∑

θ−1U<u6U

|u−δΦ(αuk)|2
k−1

� U−1+(1−δ)2k−1

V 2k−1−k
∑
x,v

|ω(x;v)Ψ(αp(x;v))|,
(3.11)

where the summation is over integers x, v satisfying

|vi| < V (1 6 i 6 k − 1) and θ−1V < x 6 V. (3.12)

On recalling the upper bound (3.10), we find that an application of Hölder’s
inequality to (3.11) leads to the estimate

|Υ(α)|2
2k−2

�
(
U−1+(1−δ)2k−1

V −k+(1−δ)2k−1
)2k−1

V k(2k−1−1)Ω, (3.13)

where
Ω =

∑
x,v

|Ψ(αp(x;v))|2
k−1

,

and the summation over x and v again satisfies (3.12). A second application of the
Weyl differencing lemma, however, shows that

|Ψ(γ)|2
k−1

6 (2U)2k−1−k
∑
|u1|<U

· · ·
∑

|uk−1|<U

∑
y∈J

e(p(y;u)γ),

where J = J(u) is an interval of integers contained in (θ−1U,U ]. On substituting
the latter bound into (3.13), we arrive at the estimate

|Υ(α)|2
2k−2

� Z(1−δ)22k−2−k
∑
x,v

∑
y,u

e(αp(x;v)p(y;u)), (3.14)

where the summation is over integers x,v and y,u satisfying (3.12) and

|ui| < U (1 6 i 6 k − 1) and θ−1U < y 6 U. (3.15)

On recalling (3.9), it is evident that∑
θ−1V <x6V

e(αp(x;v)p(y;u))� min{V, ‖k!v1 . . . vk−1p(y;u)α‖−1}, (3.16)
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where we interpret min{V, ‖0‖−1} to be V . But the expression

k!v1 . . . vk−1p(y;u)

plainly vanishes for at most O(Uk−1V k−2(U+V )) values of y,u,v satisfying (3.12)
and (3.15). Write

Ξ = k!(k + 1)!UkV k−1 and L = exp(log Ξ/
√

log log Ξ),

and observe that for each positive number ε, whenever 1 6 ξ 6 Ξ, the number of
divisors of ξ is O(Lε). Then we find from substituting (3.16) into (3.14) that

|Υ(α)|2
2k−2

� Z(1−δ)22k−2−k(Zk(U−1 + V −1) + LεΘ), (3.17)

where
Θ =

∑
16ξ6Ξ

min{Zk/ξ, ‖αξ‖−1}.

Suppose that a ∈ Z, q ∈ N and α ∈ R satisfy the property that (a, q) = 1 and
|α− a/q| 6 q−2. Then it follows from Lemma 2.2 of Vaughan [10] that

Θ� Zk(q−1 + V −1 + qZ−k) log(2qZ),

whence by (3.17),

|Υ(α)|2
2k−2

� LεZ(1−δ)22k−2

(q−1 + U−1 + V −1 + qZ−k) log(2qZ).

On noting that the latter estimate is trivial for q > Zk, we conclude at last that

|Υ(α)| � LεZ1−δ(q−1 + U−1 + V −1 + qZ−k)22−2k

. (3.18)

Suppose next that α ∈ m. By Dirichlet’s approximation theorem, there exist
a ∈ Z and q ∈ N with 0 6 a 6 q 6 L−1P k, (a, q) = 1 and |α − a/q| 6 q−1LP−k.
But since α ∈ m, one necessarily has q > L. On noting that the conditions here on
a and q ensure that |α − a/q| 6 q−2, we may conclude from (3.18) that whenever
M− < m 6M+ and 0 6 h 6 Hη(m), then one has∑

u∈B(θ2m+h−mη,θ2mη)

∑
θmη−h−1<v6θmη−h

(uv)−1+k/se(α(uv)k)

� LεP k/s(q−1 + P−η/5 + qP−k)22−2k

� P k/sL−21−2k

.

Then it follows from (2.1) and (2.4) that

sup
α∈m
|hs,η(α;P )| �M+(Hη(M+) + 1)P k/sL−21−2k

� P k/sL−2−2k

.

This completes the proof of the lemma.

In combination with Lemmata 2.1 and 2.2, the upper bound for hs,η(α;P ) pro-

vided by Lemma 3.3 leads easily to an acceptable estimate for Ŷs,η(n;m).
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Lemma 3.4. Under the hypotheses on s, η and P described in the preamble to
Lemma 3.2, one has

Ŷs,η(n;m)� L−2−3k/s.

Proof. An application of Hölder’s inequality to (3.5) reveals that

Ŷs,η(n;m) 6 I
1/s
4 I

1−1/s
5 , (3.19)

where

I4 =

∫
m

|hs,η(α;P )|sdα and I5 =

∫ 1

0

|f̂s,η(α;P )|sdα.

But it follows from (3.3) and Lemma 2.1 that

I5 �
∫ 1

0

|fs,η(α;P )|sdα+

∫ 1

0

|fs,η(α;Ps)|sdα� (logP )s. (3.20)

Also, on combining the conclusions of Lemmata 2.2 and 3.3, one finds that

I4 6
(

sup
α∈m
|hs,η(α;P )|

)∫ 1

0

|hs,η(α;P )|s−1dα

� (P k/sL−2−2k

)(P−k/s)� L−2−2k

. (3.21)

Then on substituting (3.20) and (3.21) into (3.19), we conclude that

Ŷs,η(n;m)� (logP )sL−2−2k/s � L−2−3k/s.

This completes the proof of the lemma.

Before embarking on an analysis of the major arcs, we provide an auxiliary
estimate required to replace the functions h and f by suitable major arc approxi-
mations. In this context, when a ∈ Z, q ∈ N and β ∈ R, we introduce the functions

S(q, a) =

q∑
r=1

e(ark/q) and vδ(β;W ) =

∫ W

θ−1W

γ−δe(βγk)dγ. (3.22)

Lemma 3.5. Let δ be a real number with 0 < δ < 1, and write

Fδ(α;W ) =
∑

θ−1W<w6W

w−δe(αwk).

Suppose that α ∈ R, a ∈ Z and q ∈ N. Then one has

Fδ(α;W )− q−1S(q, a)vδ(α− a/q;W )�W−δ(q +W k|qα− a|).
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Proof. For the sake of concision, we write β = α − a/q. Then by sorting the
summation into arithmetic progressions modulo q, one obtains∑

θ−1W<w6W

w−δe(αwk)

=

q∑
r=1

∑
(θ−1W−r)/q<y6(W−r)/q

(yq + r)−δe((β + a/q)(yq + r)k)

=

q∑
r=1

e(ark/q)
∑

(θ−1W−r)/q<y6(W−r)/q

(yq + r)−δe(β(yq + r)k).
(3.23)

We replace the last sum in (3.23) by a smooth integral, replacing each term by an
integral over a unit interval, with an appropriately bounded error term. For any
suitably smooth functions G(z) and H(z), one has∣∣∣G(z)e(H(z))−

∫ 1/2

−1/2

G(z + σ)e(H(z + σ))dσ
∣∣∣

6 sup
−1/26σ61/2

|G(z + σ)e(H(z + σ))−G(z)e(H(z))|,

so that by the Mean Value Theorem,

G(z)e(H(z))−
∫ 1/2

−1/2

G(z + σ)e(H(z + σ))dσ

� sup
−1/26σ61/2

(|G′(z + σ)|+ |G(z + σ)H ′(z + σ)|) .

We therefore find that the expression∑
(θ−1W−r)/q<y6(W−r)/q

(yq + r)−δe(β(yq + r)k)

−
∫ (W−r)/q

(θ−1W−r)/q
(zq + r)−δe(β(zq + r)k)dz

(3.24)

is
� (θ−1W )−δ + q−1WM,

where

M = sup
θ−1W/q6z6W/q

(
q(zq + r)−1−δ + (zq + r)−δ|βq(zq + r)k−1|

)
.

But by a change of variable, the integral occurring in equation (3.24) is equal to

q−1

∫ W

θ−1W

γ−δe(βγk)dγ = q−1vδ(β;W ),
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and hence we conclude from (3.23) that

Fδ(α;W )− q−1S(q, a)vδ(β;W )

�
q∑
r=1

(
W−δ + q−1W (qW−1−δ +W−δ|βqW k−1|

)
� qW−δ(1 +W k|β|).

This completes the proof of the lemma.

Next define the functions ṽ(β) and ṽ1(β) for β ∈ R by

ṽ(β) =

M+∑
m=Ms+1

Hη(m)∑
h=0

∑
u∈B(θ2m+h−mη,θ2mη)

u−1+k/sv1−k/s(u
kβ; θmη−h) (3.25)

and

ṽ1(β) =

M+∑
m=M−+1

Hη(m)∑
h=0

∑
u∈B(θ2m+h−mη,θ2mη)

u−1+k/sv1−k/s(u
kβ; θmη−h). (3.26)

We may now introduce the major arc approximations f∗(α) and h∗(α), to f̂s,η(α;P )
and hs,η(α;P ), respectively. Define the functions f∗(α) and h∗(α) for α ∈ [0, 1) by
putting

f∗(α) = q−1S(q, a)ṽ(α− a/q) and h∗(α) = q−1S(q, a)ṽ1(α− a/q),

when α ∈ M(q, a) ⊆ M, and by taking f∗(α) = 0 and h∗(α) = 0 otherwise. A
fairly immediate consequence of Lemma 3.5 provides useful bounds for the quality

of the approximation of f∗(α) to f̂s,η(α;P ), and h∗(α) to hs,η(α;P ), when α ∈M.

Lemma 3.6. Uniformly for α ∈M, one has

f̂s,η(α;P )− f∗(α)� P k/sL−4

and
hs,η(α;P )− h∗(α)� P k/sL−4.

Proof. Making use of the notation introduced in the statement of Lemma 3.5, it is
apparent from (2.3) and (3.3) that

f̂s,η(α;P ) =

M+∑
m=Ms+1

Hη(m)∑
h=0

∑
u∈B(θ2m+h−mη,θ2mη)

u−1+k/sF1−k/s(αu
k; θmη−h).

(3.27)
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But from Lemma 3.5 it follows that whenever α ∈ M(q, a) ⊆ M and u ∈ N, one
has

F1−k/s(αu
k; θmη−h)− q−1S(q, a)v1−k/s(u

k(α− a/q); θmη−h)

� q(θmη−h)−1+k/s(1 + (θmη−hu)k|α− a/q|)

� L(θmη−h)−1+k/s(1 + L(θmη−hu/P )k).

Then it follows from (3.27) that whenever α ∈M, one has

f̂s,η(α;P )− f∗(α)

�
M+∑

m=Ms+1

Hη(m)∑
h=0

∑
16u6θ2m+h−mη

L(θmη−hu)−1+k/s(1 + L(θ2m/P )k)

� L2

M+∑
m=Ms+1

(θ2m)k/s
Hη(m)∑
h=0

(θmη−h)−1.

On recalling the definitions of M+, Ms and Hη(m), we therefore conclude that

f̂s,η(α;P )− f∗(α)� L2

M+∑
m=Ms+1

(θ2m)k/sθ−3mη/4

� L2(P+)k/s−3η/8 � P k/sL−4.

This establishes the desired approximation to f̂s,η(α;P ). The same method, mutatis
mutandis, yields the desired conclusion also for hs,η(α;P ).

Now define

Y ∗s,η(n) =

∫ 1

0

h∗(α)f∗(α)s−1e(−nα)dα.

Lemma 3.7. One has

Y +
s,η(n)− Y ∗s,η(n)� L−2−3k/s.

Proof. Trivial estimates for f̂s,η(α;P ) and hs,η(α;P ) yield

f̂s,η(α;P )� P k/s and hs,η(α;P )� P k/s.

Thus we find from Lemma 3.6 that, uniformly for α ∈M, one has

hs,η(α;P )f̂s,η(α;P )s−1 − h∗(α)f∗(α)s−1 � (P k/sL−4)(P k/s)s−1

� P kL−4.
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But the measure of the set of arcs M is plainly O(L3P−k), and thus we deduce that

Ŷs,η(n;M)− Y ∗s,η(n)�
∫
M

P kL−4dα� L−1.

Finally, from Lemmata 3.2, 3.4 and equation (3.6), we see that

Y +
s,η(n)− Y ∗s,η(n)� n−1/s3 + L−2−3k/s + L−1,

and the conclusion of the lemma follows immediately.

We now enter the final stages of the major arc analysis. Write

A(q, n) =

q∑
a=1

(a,q)=1

(q−1S(q, a))se(−na/q),

and define

S(n;W ) =
∑

16q6W

A(q, n) and S(n) =
∞∑
q=1

A(q, n). (3.28)

Also, put

J(n;W ) =

∫ W

−W
ṽ1(β)ṽ(β)s−1e(−βn)dβ (3.29)

and

J(n) =

∫ ∞
−∞

ṽ1(β)ṽ(β)s−1e(−βn)dβ. (3.30)

Then on recalling the definitions of f∗(α), h∗(α) and M, we find that

Y ∗s,η(n) = S(n;L)J(n;LP−k). (3.31)

The truncated singular series S(n;W ) defined in (3.28) is the familiar one stem-
ming from the classical analysis of Waring’s problem for s kth powers. Since s > 4k
for k > 3, one finds by the familiar classical treatment (see Chapters 2 and 4 of
Vaughan [10], for example) that

S(n)−S(n;L)� L−1/k,

and further that 1� S(n)� 1 uniformly in n. We therefore see from (3.31) that

J(n;LP−k)� Y ∗s,η(n)� J(n;LP−k). (3.32)

In order to extend the truncated singular integral appearing in (3.32) to the full
singular integral J(n), we require upper bounds for ṽ(β) and ṽ1(β).
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Lemma 3.8. For every real number β, one has

ṽ(β)� P k/s(1 + P k|β|)−1/s and ṽ1(β)� P k/s(1 + P k|β|)−1.

Proof. The desired conclusions follow via the argument leading to equation (8.18)
of Brüdern and Wooley [1]. We present a reasonably detailed account here, for
the sake of completeness. We begin by noting that Theorem 3 on page 400 of
Tenenbaum [8] establishes the bound

card(A∗(Q,R))� Q(logR)−1, (3.33)

uniformly for Q >
√
R > 2. But for 0 < Q <

√
R, the set A∗(Q,R) contains

at most the element 1, and thus the aforementioned bound remains valid for all
positive numbers Q. Observe next that whenever φ ∈ R \ {0}, it follows via partial
integration that whenever 0 < δ < 1,

vδ(φ;W ) = (2πikφ)−1
(
W 1−k−δe(φW k)− (θ−1W )1−k−δe(φ(θ−1W )k)

)
− (2πikφ)−1

∫ W

θ−1W

(1− k − δ)γ−k−δe(φγk)dγ

�W 1−δ(W k|φ|)−1.

On combining this estimate with a trivial one, therefore, we obtain the upper bound

v1−k/s(φ;W )�W k/s(1 +W k|φ|)−1, (3.34)

uniformly for φ ∈ R.
Next, for φ > 0 and Q > T > 1, define

U(φ;Q,T,R) =
∑

u∈B(Q/T,R)

u−1+k/sT k/s(1 + T kukφ)−1.

Whenever u ∈ B(Q/T,R), one has u > θ−1Q/T , and thus we see that

U(φ;Q,T,R)� (Q/T )−1+k/sT k/s(1 +Qkφ)−1card (A∗(Q/T,R)),

whence by (3.33),

U(φ;Q,T,R)� Qk/s(logR)−1(1 +Qkφ)−1. (3.35)

On substituting the upper bound (3.35) into (3.25), we obtain from the estimate
(3.34) the new bound

ṽ(β)�
M+∑

m=Ms+1

Hη(m)∑
h=0

U(β; θ2m, θmη−h, θ2mη)

�
M+∑

m=Ms+1

Hη(m)∑
h=0

(θ2m)k/sm−1(1 + θ2mk|β|)−1.
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But Hη(m) = O(m), and so it follows that

ṽ(β)�
M+∑

m=Ms+1

θ2mk/s(1 + θ2mk|β|)−1. (3.36)

When |β| 6 θ−2M+k, we find from the latter inequality that

ṽ(β)�
M+∑

m=Ms+1

θ2mk/s � P
k/s
+ � P k/s.

When |β| > θ−2M+k, meanwhile, we define M0 via the relation |β| = θ−2M0k, and
we deduce that

ṽ(β)�
∑

Ms+16m6M0

θ2mk/s +
∑

M0<m6M+

θ2mk/s−2mk|β|−1

� θ2M0k/s + (θ2M0k)−1+1/s|β|−1 � |β|−1/s.

Then in any case, one has

ṽ(β)� P k/s(1 + P k|β|)−1/s,

and this yields the first estimate of the lemma.
In order to estimate ṽ1(β), we follow the same argument as that above, but now

we obtain the estimate

ṽ1(β)�
M+∑

m=M−+1

θ2mk/s(1 + θ2mk|β|)−1

in place of (3.36). However, since M+ −M− � 1, we immediately deduce that

ṽ1(β)� P k/s(1 + P k|β|)−1,

and so the proof of the lemma is complete.

We now return to the analysis of the singular integral J(n;LP−k). Observe first
that on substituting the conclusion of Lemma 3.8 into (3.29) and (3.30), one finds
that

J(n)− J(n;LP−k)� P k
∫ ∞
LP−k

(1 + P kβ)−2+1/sdβ � L−1+1/s. (3.37)

Similarly, one has

J(n)� P k
∫ ∞

0

(1 + P kβ)−2+1/sdβ � 1, (3.38)
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so that the singular integral is absolutely convergent. On substituting (3.37) and
(3.38) into (3.32), we conclude thus far that

Y ∗s,η(n)� 1 +O(L−1+1/s)� 1. (3.39)

In order to bound from below the singular integral J(n), we require an estimate
for the cardinality of the set A∗(Q,R). Here we apply work of Friedlander [5].
Suppose that A, B and C are fixed real numbers with B > A > 1 and C > 0. Let
Q and R be large real numbers satisfying RA 6 Q 6 RB . Then as an immediate
consequence of Theorem 1 of Friedlander [5], one has the bounds

CQ

logR
�A,B card(A∗((1 + C)Q,R))− card(A∗(Q,R))�A,B

CQ

logR
. (3.40)

Observe next that on making a change of variable in (3.22), it follows that for each
positive number ζ, one has

v1−k/s(ζ
kβ;W ) = ζ−k/s

∫ ζW

θ−1ζW

γ−1+k/se(βγk)dγ. (3.41)

Define J∗(n) = J∗(n;Z) by

J∗(n;Z) =

∫ ∞
−∞

∫
B(Z)

(γ1 . . . γs)
−1+k/se(β(γk1 + · · ·+ γks − n))dγdβ, (3.42)

where
B(Z) = [θ−1Z1, Z1]× [θ−1Z2, Z2]× · · · × [θ−1Zs, Zs].

Then with Z = Z(m,h,u) defined by

Zi = uiθ
miη−hi (1 6 i 6 s),

it follows from (3.30) together with (3.25), (3.26) and (3.41) that

J(n) =
∑

m,h,u

(u1 . . . us)
−1J∗(n;Z), (3.43)

where the summation is over

M− + 1 6 m1 6M+, Ms + 1 6 mi 6M+ (2 6 i 6 s), (3.44)

0 6 hj 6 Hη(mj) and uj ∈ B(θ2mj+hj−mjη, θ2mjη) (1 6 j 6 s). (3.45)

Consider next the set Σ of ordered pairs (σ, τ) ∈ R2 with

s−1/k < σ < 1, 0 < τ < 1 and σk + (s− 1)τk = 1. (3.46)
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We aim to show that for some (σ, τ) ∈ Σ, there exists an s-tuple m satisfying (3.44)
for which one has

θ2m1−7/5 < σP < θ2m1−3/5 and θ2mj−7/5 < τP < θ2mj−3/5 (2 6 j 6 s).
(3.47)

Note first that there is a choice of σ0 with θ−26−1/k 6 σ0 < 6−1/k for which the
first condition of (3.47) is met with σ = σ0. Define the positive number τ0 to be
the corresponding solution τ of the equation in (3.46). Then plainly 0 < τ0 < 1. It
is possible that the second condition of (3.47) is already met with τ = τ0, in which
case we are done. Otherwise, we consider the sequence of ordered pairs (σi, τi) ∈ R2

defined by

σi+1 = θ−2σi, τi+1 = (1− σki+1)1/k(s− 1)−1/k (0 6 i < 5).

It is simple to verify that each pair (σ, τ) = (σi, τi) (0 6 i < 5), defined in this
way, satisfies the conditions (3.46). Moreover, by construction, the first condition
of (3.47) is met with σ = σi for each i. Also, since |θ−2k − 1| < 10−100 and

1/5− 10−10 <
σki

1− σki
< 1/5,

it is apparent that for each i with 0 6 i < 5, one has

τi+1

τi
=

(
1− (θ−2σi)

k

1− σki

)1/k

< (1 + 0.401× 10−100k−1)1/k < θ0.41,

and similarly
τi+1/τi > (1 + 0.399× 10−100k−1)1/k > θ0.39.

It follows that for some i with 0 6 i < 5, there is an integer m for which

θ2m−5/4 < τiP < θ2m−3/4,

whence the second condition of (3.47) is satisfied with τ = τi. This establishes the
existence of the desired pair (σ, τ) ∈ Σ.

With the fixed choice of m provided by the above discussion, and an arbitrary
choice of h satisfying (3.45), we find that whenever

θ2mi−3/5+hi−miη < ui < θ2mi−2/5+hi−miη (1 6 i 6 s), (3.48)

then

[θ2m1−7/5, θ2m1−3/5]× [θ2m2−7/5, θ2m2−3/5]× · · · × [θ2ms−7/5, θ2ms−3/5] ⊆ B(Z).

An application of Fourier’s integral formula to (3.42) establishes in such circum-
stances that

J∗(n;Z)� (Z1 . . . Zs)
−1+k/s(Z1 . . . Zs/n)

� (P s)−1+k/sP s−k = 1.
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Then we may conclude from (3.43) that

J(n)�
∑
h,u

(u1 . . . us)
−1,

where the summation is over values of h and u satisfying (3.45) and (3.48), for our
fixed selection of m. We therefore find from (3.40) that

J(n)�
s∏
i=1

Hη(mi)∑
h=0

(θ−2mi−hi+miη)(θ2mi+hi−miη/mi)


�

s∏
i=1

(m−1
i Hη(mi)).

Finally, on recalling that Hη(mi) � mi, we conclude that J(n) � 1, whence by
(3.37), we also have J(n;LP−k) � 1. The relation (3.32) consequently yields the
desired conclusion

Y ∗s,η(n)� 1. (3.49)

On recalling (3.1) and the conclusion of Lemma 3.7, it is apparent from the
estimates (3.39) and (3.49) that

1� Ys,η(n)� 1,

and so the conclusion of Theorem 3.1 has finally been established.

4. Thin bases in random sets. We are now in a position from which we may
apply the ideas of Vu [14] so as to establish Theorem 1.1. There are sufficiently
many differences between the framework developed in §§2 and 3 here, and that
found in Vu [14], that a reasonably detailed account seems appropriate. However,
we will economise where possible.

We fix natural numbers k > 3 and s > G(k), and we take η to be a positive
number, sufficiently small in terms of s and k (in the context of §3). We define a
random subset X = Xk,s(η) of Nk0 by including in X, for each large integer x ∈ Aη,
the number xk with probability

px = cx−1+k/s(log x)1/s. (4.1)

Here, the number c is a positive constant to be fixed later. We take tx to be the
characteristic random variable indicating the choice of xk, so that tx = 1 when xk

is included in X, and tx = 0 otherwise. In particular, one has Pr(tx = 1) = px and
Pr(tx = 0) = 1−px, and furthermore the tx are independent for x ∈ Aη. Following
Vu [14], we express the number of representations of n as the sum of s kth powers
of elements of X as the random variable

RsX(n) =
∑
x

s∏
j=1

txj , (4.2)
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where the summation is over xj ∈ Aη (1 6 j 6 s), with

x1 6 x2 6 . . . 6 xs, (4.3)

and satisfying the equation

xk1 + · · ·+ xks = n. (4.4)

We write G(t) for the polynomial on the right hand side of (4.2), and we note that
this polynomial depends only on the variables ty with y ∈ Aη ∩ [1, n1/k].

In order to make use of Vu’s concentration lemma so as to establish Theorem
1.1, we must introduce some further notation. Let t1, . . . , tm be independent {0, 1}-
random variables, and consider a polynomial F (t) = F (t1, . . . , tm) of degree d. We
say that F is positive if all of its non-zero coefficients are positive, and we say that
F is normal if its coefficients are at most 1 in size. For each set A of at most d
indices, with possible repetitions, we write ∂A(F ) for the partial derivative of F
with respect to the variables given by the indices in A. We also write E(F ) for the
expectation of F , and EA(F ) for E(∂AF ).

Lemma 4.1. When s is a fixed natural number, and k, α and ε are fixed posi-
tive numbers, there is a positive number g = g(s, k, α, ε) satisfying the following
property. Whenever F (t1, . . . , tn) is a positive, normal, homogeneous polynomial of
degree s satisfying

(1) E(F ) > g log n,
(2) for all sets of indices A with 1 6 card(A) 6 s− 1, one has EA(F ) < n−α,

then one has

Pr(|F − E(F )| > εE(F )) < n−2k.

Proof. This is Vu’s concentration lemma (see Lemma 1.3 of Vu [14]).

Finally, we recall the Borel-Cantelli Lemma (this is Lemma 1.5 of Vu [14]).

Lemma 4.2. Let (Ai)
∞
i=1 be a sequence of events in a probability space. Suppose

that the series
∑∞
i=1 Pr(Ai) converges. Then with probability 1, at most a finite

number of the events Ai can occur.

We now initiate our main assault on the proof of Theorem 1.1. We divide the
solutions underlying RsX(n) into two types, namely those that are “small” and
those that are “typical”. Recall the definition of Ps from §3. We let S+(n) denote
the set of s-tuples (x1, . . . , xs) ∈ Asη satisfying (4.3), (4.4) and x1 > Ps, and let

S0(n) denote the corresponding set of s-tuples with the last inequality replaced by
x1 6 Ps. Also, let S+

X (n) denote the set corresponding to S+(n) wherein we restrict
the s-tuples x to the set Xs, and likewise for S0

X(n). Finally, define

R+
X,s(n) =

∑
x∈S+

X(n)

s∏
j=1

txj and R0
X,s(n) =

∑
x∈S0

X(n)

s∏
j=1

txj ,
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so that by (4.2) one has

RsX(n) = R+
X,s(n) +R0

X,s(n). (4.5)

It is convenient to write F+(t) for the polynomial R+
X,s(n), and similarly F 0(t) for

R0
X,s(n).
In preparation for an application of Lemma 4.1, we estimate the expectations of

F+(t) and its partial derivatives. In what follows, we suppose that n is sufficiently
large in terms of s, k and η.

Lemma 4.3. One has E(F+) � cs log n. Here, the constants implicit in Vino-
gradov’s notation depend at most on s, k and η.

Proof. On recalling (4.1), we see that

E(F+(t)) = cs
∑

x1,...,xs∈Aη

s∏
i=1

x
−1+k/s
i (log xi)

1/s,

where the summation is subject to (4.3), (4.4) and x1 > Ps. The last condition,
together with (4.3), ensures that log xi � log n for 1 6 i 6 s, so that on considering
the diophantine equation underlying (3.4), we see that

E(F+) � csŶs,η(n) log n. (4.6)

It may be worth remarking here that in order to account for the condition (4.3),
one may need to reorder variables. Such permutations, however, lead to implicit
factors of at most s! within (4.6). But by Theorem 3.1 together with Lemma 3.2,
there exist positive numbers Ξ±, independent of n and c, with the property that

Ξ− +O(n−1/s3) 6 Ŷs,η(n) 6 Ξ+ +O(n−1/s3).

The conclusion of the lemma is therefore immediate from (4.6).

Lemma 4.4. Let A be a set of indices {i1, . . . , ir} with ij ∈ Aη ∩ {1, 2, . . . , [n1/k]}
(1 6 j 6 r), and with 1 6 r 6 s− 1. Then one has EA(F+)� csn−1/s3 .

Proof. With A defined as in the statement of the lemma, we write

m = n−
∑
y∈A

yk

and l = s− card(A). From the definition of F+, one has

∂AF
+ =

∑
x∈S+

X(n)
A⊂x

∏
xj∈x\A

txj ,
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whence from (4.1),

EA(F+)� cl
∑

x1,...,xl∈Aη

l∏
i=1

x
−1+k/s
i (log xi)

1/s,

where the summation is subject to

xl > xl−1 > . . . > x1 > Ps (4.7)

and
xk1 + · · ·+ xkl = m. (4.8)

It follows from (4.8) that xi 6 m1/k (1 6 i 6 l) and xl > (m/l)1/k, and from
(4.7) we see that m > P ks � n1/s. Then on noting that the above inequality now
yields

EA(F+)� cl logm
∑

x1,...,xl∈Aη

(x1 . . . xl)
−1+k/s,

under the same conditions, it follows by considering the underlying diophantine
equations that

EA(F+)� cl logm

∫ 1

0

hs,η(α;m1/k)fs,η(α;m1/k)l−1e(−αm)dα.

An application of Hölder’s inequality, followed by use of Lemmata 2.1 and 2.2, leads
to the upper bound

EA(F+)� (cl logm)
(∫ 1

0

|hs,η(α;m1/k)|s−1dα
)1/(s−1)

×
(∫ 1

0

|fs,η(α;m1/k)|s−1dα
)(l−1)/(s−1)

� (cl logm)(m−1/s)1/(s−1)((logm)s−1)(l−1)/(s−1)

� clm−1/s2 .

Consequently, our earlier observation that m� n1/s delivers the conclusion

EA(F+)� cln−1/s3 .

This completes the proof of the lemma.

We are now equipped to apply Lemma 4.1. We take s and k as above, set α =
1/s4, and choose ε to be a sufficiently small positive number. Let g = g(s, k, α, ε)
be the number implicitly defined in the statement of Lemma 4.1. Then if we choose
c large enough, we find that Lemma 4.3 guarantees that E(F+) > g log n, and
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Lemma 4.4 shows that for all sets of indices A with 1 6 card(A) 6 s − 1, one has
EA(F+) < n−α. Then Lemma 4.1 demonstrates that

Pr(|F+ − E(F+)| > εE(F+)) < n−2.

But
∑∞
n=1 n

−2 converges, and so Lemma 4.2 implies that with probability 1, the
chain of inequalities

(1− ε)E(F+) 6 F+ 6 (1 + ε)E(F+)

fails to hold on at most finitely many occasions. In particular, with probability 1,
one has

R+
X,s(n) � log n. (4.9)

It remains to consider the contribution of R0
X,s(n) within (4.5).

Lemma 4.5. One has E(F 0)� csn−1/s4 .

Proof. On recalling the definition of F 0(t), it follows from (4.1) that

E(F 0)� cs
∑

x1,...,xs∈Aη

s∏
i=1

x
−1+k/s
i (log xi)

1/s,

where the summation is subject to (4.3), (4.4) and x1 < Ps. But it follows from
(4.4) that xi 6 n1/k (1 6 i 6 s) and xs > (n/s)1/k. Then on noting that the above
inequality yields

E(F 0)� cs log n
∑

x1,...,xs∈Aη

(x1 . . . xs)
−1+k/s,

under the same summation conditions, it follows by considering the underlying
diophantine equations that

E(F 0)� cs log n

∫ 1

0

hs,η(α;P )fs,η(α;P )s−2fs,η(α;P 1/s)e(−nα)dα.

Then it follows from Lemma 2.3 that

E(F 0)� cs log n

∫ 1

0

|hs,η(α;P )fs,η(α;P )s−2fs,η(α;P 1/s)|dα

� (cs log n)n−1/s3 � csn−1/s4 .

This completes the proof of the lemma.

The proof of Theorem 1.1. Equipped with the analogue of Lemma 3.6 of Vu [14]
provided by Lemma 4.5, the argument bridging pages 128 and 129 of Vu [14] may
be applied to show that there is a positive constant C such that, with probability
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at least 4/5, one has R0
X,s(n) 6 C for every natural number n. Combined with our

earlier conclusion (4.9), we see that there exists a sequence X and a finite number
N0 such that RsX(n) � log n for all n > N0. In order to complete the proof of
Theorem 1.1, we note merely that since∑

n6st

RsX(n)� t log t

and ∑
n6st

RsX(n)� (card(X ∩ [1, t]))s,

then for all large numbers t one has

card(X ∩ [1, t])� (t log t)1/s.

Corollary 1 to Theorem 1.1 follows from (1.6) via a modest computation, and
Corollary 2 follows from Theorem 1.1 via an immediate argument of Vu [14]. As a
simple variant of the latter, we proceed as follows. Suppose that s > g(k), whence,
in particular, one has s > G(k). Our proof of Theorem 1.1 shows that there is
a thin set X for which there is a natural number N0, satisfying the property that
whenever n > N0, then one has RsX(n) � log n. We now modify our definition of
Aη, replacing it with the set

Aη ∪ {0, 1, 2, . . . , [N1/k
0 ]},

and we revise the definition of the probability function px by setting px = 1 for

0 6 x 6 [N
1/k
0 ]. The latter has the effect of ensuring that the set X automatically

contains the elements 0, 1k, . . . , [N
1/k
0 ]k. Since this adjustment affects only finitely

many (small) elements of X, one finds that the discussion of §§2 and 3, as well as

this section, remains valid. In this way we establish the existence of a set X̂, with

card(X̂ ∩ [1, t])� (t log t)1/s

for each positive number t, and satisfying the condition that Rs
X̂

(n) � log n for all

n > N0. Moreover, it follows from the definition of g(k) that this set X̂ also satisfies
the property that whenever 1 6 n 6 N0, one has

Rs
X̂

(n) > 1� log n.

Then X̂ is a basis of order s, and this completes the proof of Corollary 2 to Theorem
1.1.
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5. Thin bases for smaller exponents, and related problems. The treatment
of §§2–4 above was somewhat general, in order that some measure of concision be
achieved. However, an expert in the modern smooth number variants of the circle
method will rapidly discern a simple underlying pattern. Suppose that, whenever
η is a positive number sufficiently small in terms of k, one has the bound∫ 1

0

∣∣∣ ∑
x∈A(P,Pη)

e(αxk)
∣∣∣2udα� P 2u−k. (5.1)

Then one may establish the conclusion of Theorem 1.1 with G(k) replaced by 2u+1.
In particular, combining the available mean values of the shape (5.1) from the work
of Vaughan [9] and Vaughan and Wooley [12], [13], one may establish the following
theorem.

Theorem 5.1. Let H(k) denote the number appearing in the table below. Then
whenever 3 6 k 6 20 and s > H(k), there exists a subset Xk = Xk(s) of Nk0 , with
cardinality satisfying the condition (1.2), and such that, when n is sufficiently large
in terms of k and s, one has

log n� Rs(n;Xk)� log n.

k 3 4 5 6 7 8 9 10 11 12
H(k) 9 13 19 27 35 43 51 61 69 77

k 13 14 15 16 17 18 19 20
H(k) 85 93 101 111 119 127 135 143

Here, when k = 4, the tabulated value H(4) = 13 indicates that whenever s > 13,
the above conclusion holds whenever n satisfies the additional condition that n ≡ r
(mod 16) for some integer r with 1 6 r 6 s.

We note that the tabulated entry H(6) = 27 can be reduced to H(6) = 25 with
some technical effort. The problem here is that one has only the estimate∫ 1

0

∣∣∣ ∑
x∈A(P,Pη)

e(αx6)
∣∣∣24

dα� P 18+ε,

valid for each ε > 0, available from work of Vaughan and Wooley [12]. However,
technology described in Vaughan and Wooley [11] can be adapted in the present
context to yield a serviceable substitute for (5.1) with k = 6 and u = 24.

It may also be useful to point out that, for those enthusiasts of an exotic disposi-
tion, the methods herein are easily adapted to restricted sets. All that is necessary
to make progress is a set H ⊆ N, well-distributed in arithmetic progressions modulo
q to a height at least as large as (log x)A for elements of size x, with A sufficiently
large, and for which one has a mean value estimate of the shape∫ 1

0

∣∣∣ ∑
x∈H∩[1,Q]

e(αxk)
∣∣∣2udα� Q−k(card(H ∩ [1, Q]))2u.
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There should be no difficulty, for example, in proving that for k > 1, there exist
thin sets of kth powers of prime numbers that provide asymptotic bases. Similar
comments hold, mutatis mutandis, when kth powers are replaced by more general
polynomials.
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