
PAIRS OF CUBIC FORMS IN MANY VARIABLES

Rainer Dietmann and Trevor D. Wooley1

1. Introduction. A celebrated theorem of Birch [1] asserts that a system of
homogeneous polynomials, with rational coefficients from a number field K, has a
non-trivial rational zero provided only that these polynomials are of odd degree,
and the system has sufficiently many variables in terms of the number and degrees
of these polynomials. The condition that the degrees be odd can be omitted if
one substitutes a p-adic field for K (see Brauer [4]), and similarly if one instead
substitutes a purely imaginary field for K (see Peck [17]). Much effort has been
expended on the task of quantifying the condition that there be “sufficiently many
variables”. Linear algebra applies, of course, when the forms all have degree one.
Davenport [6] showed that 16 variables suffice for a single cubic form defined over
Q, and the same conclusion was subsequently established in any number field by
Pleasants [18]. Meanwhile, Lewis [13] had shown rather earlier that 10 variables
suffice to solve a homogeneous cubic equation in any p-adic field. It seems fair to
say that the current state of knowledge for larger systems of odd degree, and for
systems involving polynomials of larger degrees, remains highly unsatisfactory. In
this note we consider pairs of homogeneous cubic equations, arguably the simplest
situation that remains without a satisfactory solution. Our new conclusions go
beyond those obtained previously by the second author (see [21, 22]) and, as with
this previous work, have relevance also for the existence of rational linear spaces on
cubic hypersurfaces.

We require some notation in order to discuss our conclusions. When K is a
field, and r and m are non-negative integers, let γK(r;m) denote the least integer
(if any such integer exists) with the property that whenever s > γK(r;m), and
fi(x) ∈ K[x1, . . . , xs] (1 ≤ i ≤ r) are cubic forms, then the system of equations
fi(x) = 0 (1 ≤ i ≤ r) possesses a solution set which contains a linear subspace of
Ks with projective dimension m. If no such integer exists, define γK(r;m) to be
+∞. We abbreviate γK(r; 0) to γK(r), and γK(1; 0) to γK . In §2 we establish the
upper bounds recorded in the following two theorems.

2000 Mathematics Subject Classification. 11D72, 11E76.

Key words and phrases. Diophantine equations, rational points.
1Supported in part by NSF grant DMS-9970440, by the Department of Mathematics at Harvard

University, and by the Max Planck Institute for Mathematics in Bonn. The authors are grateful

to the CIRM in Luminy for fostering the discussions that led to the production of this paper.

Typeset by AMS-TEX

1



2 DIETMANN AND WOOLEY

Theorem 1. Let p be a rational prime, and suppose that F is an algebraic exten-
sion of Qp (possibly Qp itself).

(a) Define δm for m ≥ 0 by taking δ0 = 18, δ2 = 18, and

δm =
{

16, when 2|m and m 6= 0, 2,
20, when 2 - m.

Then for each non-negative integer m, one has

γF (1;m) ≤ 1
2 (5m2 + 19m + δm).

(b) Define εm for m ≥ 0 by taking

εm =
{

18, when 3|m,
26, when 3 - m.

Then whenever the field of residue classes of F has odd cardinality q with q ≥ 5,
one has

γF (1;m) ≤ 1
2 (5m2 + 17m + εm).

(c) Define κm for m ≥ 0 by taking κ0 = 18, κ2 = 30, κ3 = 28, κ6 = 22, and

κm =
{

16, when 3|m and m 6= 0, 3, 6,

24, when 3 - m and m 6= 2.

Then whenever the field of residue classes of F has odd cardinality q with q ≥ 11,
one has

γF (1;m) ≤ 1
2 (5m2 + 15m + κm).

The bounds recorded in Theorem 1 may be compared with that presented in
Theorem 2(a) of Wooley [21], which shows that whenever F is an algebraic extension
of Qp, then

γF (1;m) ≤ 1
2 (5m2 + 21m + ζm),

where ζm is 18 or 22 according to whether m is even or odd. See the end of §2 for
a discussion concerning the extent to which the conditions q ≥ 5 and q ≥ 11, in
Theorems 1(b) and (c), respectively, are justified by available literature.

Theorem 2. Let L be an algebraic extension of Q (possibly Q itself).
(a) Define ηm to be 30 or 34 according to whether m is even or odd. Then for each

non-negative integer m, one has

γL(1;m) ≤ 1
2 (5m2 + 33m + ηm).

(b) Define θm by taking θ0 = 30, θ2 = 30, and

θm =
{

28, when 2|m and m 6= 0, 2,

32, when 2 - m.
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Then whenever L is a purely imaginary field extension of Q, one has

γL(1;m) ≤ 1
2 (5m2 + 31m + θm).

For comparison, Theorem 2(b) of Wooley [21] demonstrates that

γL(1;m) ≤ 1
2 (5m2 + 37m + 30).

The conclusion of Theorem 2(a) above is superior to the latter bound for m > 1.
When m = 1, these bounds coincide. In particular, any cubic hypersurface defined
over Q, of projective dimension at least 35, necessarily contains a rational line.

By combining the conclusions of Theorems 1 and 2 with a consequence of ear-
lier work of the second author (see [22]), one obtains new bounds for the number
of variables required to guarantee the existence of a non-trivial zero to a pair of
homogeneous cubic equations. In §3 we establish the following conclusions.

Theorem 3. Let p be a rational prime, and suppose that F is an algebraic exten-
sion of Qp (possibly Qp itself).

(a) For all such fields F , one has γF (2) ≤ 298;
(b) Provided that F is not an extension of Q2 with degree exceeding 1, and not a

completely ramified extension of Q3, then γF (2) ≤ 288;
(c) Suppose that F is not an extension of Q2 with degree exceeding 1, not Q7, not

a completely ramified extension of Q3, Q5 or Q7, and not a completely ramified
extension of an inert quadratic extension of Q3. Then γF (2) ≤ 278;

(d) One has

γQp(2) ≤
{

150, when p ≡ 2 (mod 3),
233, when p = 3.

Earlier work of Leep and Schmidt [12, equation (3.16p)] had established the
bound γQp(2) ≤ 320, this having been improved and generalised in Wooley [21] to
obtain γF (2) ≤ 308 for any field extension F of Qp. Of course, by combining the
conclusions of parts (b) and (d) of Theorem 3, we now have γQp

(2) ≤ 288 for every
prime p. Moreover, in view of Theorem 3(c), one has γQp

(2) ≤ 278, except possibly
when p = 7.

Theorem 4. Let L be any field extension of Q (possibly Q itself).
(a) For all such fields L, one has γL(2) ≤ 827;
(b) When L is a purely imaginary field extension of Q, one has γL(2) ≤ 811.

By way of comparison, part (b) of Corollary 1 to Theorem 2 in Wooley [21]
establishes the upper bound γL(2) ≤ 855 for any field extension L of Q, this in turn
representing an improvement on Schmidt’s earlier estimate γQ(2) ≤ 5139 (see [19]).

With the exception of part (d) of Theorem 3, our proofs of the above conclusions
depend for their success on the modification of a beautiful observation of Lewis (see
[14]). Suppose that a K-rational cubic hypersurface C contains a K-rational linear
space L of dimension d, say L = span{v1, . . . ,vd}. Suppose also that one is able
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to find a vector w, linearly independent of {v1, . . . ,vd}, and lying in a quadratic
extension L of K, with the property that W = span{v1, . . . ,vd,w} is contained
in C. Under such circumstances, Lewis observes that C necessarily contains a K-
rational linear space of dimension d + 1. Thus, given a linear space in C partially
defined in the quadratic extension L, one is able to construct a corresponding linear
space defined completely in K. The main innovation of the present paper is to make
an inspired choice for the quadratic extension L, so as to save additional variables
over the previous explicit version of Lewis’ agument as described in Wooley [21].

Since the argument of Lewis underlying the above observation is purely algebraic,
and as far as we are aware, no conceptual argument is available in the literature,
we now describe a geometric argument that justifies Lewis’ observation. We be-
gin by recalling the classical zero-dimensional version. Suppose that a K-rational
cubic hypersurface C contains a point x defined in a quadratic extension L of K.
It is possible that x is already a K-rational point when considered projectively,
in which case C contains a K-rational point. Otherwise, the conjugate x∗ of x is
an L-rational point of C distinct from x. The line L passing through x and x∗

is fixed under conjugation, and is either contained in C, or else necessarily inter-
sects C in a third point y, by Bezout’s theorem, and moreover y is fixed under
conjugation. In any case, therefore, C contains a K-rational point. Suppose next
that the hypotheses described in the previous paragraph hold. It is possible that,
considered projectively, the space W is already K-rational, in which case C con-
tains a K-rational linear space of dimension d + 1. Otherwise, the linear space
W and its conjugate W∗ = span{v1, . . . ,vd,w∗} are distinct. The linear space
X = span{v1, . . . ,vd,w,w∗} is fixed under conjugation, has dimension d + 2, and
contains the linear spaces W and W∗. By intersection theory, therefore (see The-
orem 7.7 of Hartshorne [10]), the linear space X is either contained in C, or else
necessarily intersects C in a third linear space Y of dimension d+1, and moreover Y
is fixed under conjugation. In any case, therefore, the cubic hypersurface C contains
a K-rational linear space of dimension d + 1.

The authors thank the referee for useful comments.

2. Linear spaces on cubic hypersurfaces. Our proofs of Theorems 1 and 2
rest on a technical lemma devoted to the existence of certain linear spaces on the
intersection of quadratic hypersurfaces. In order to describe the latter lemma, we
must introduce some notation. When K is a field, and r and m are non-negative
integers, let βK(r;m) denote the least integer (if any such integer exists) with the
property that whenever s > βK(r;m), and gi(x) ∈ K[x1, . . . , xs] (1 ≤ i ≤ r) are
quadratic forms, then the system of equations gi(x) = 0 (1 ≤ i ≤ r) possesses a
solution set that contains a linear subspace of Ks with projective dimension m.
If no such integer exists, define βK(r;m) to be +∞. Define similarly the integer
β∗K(r;m) by taking

β∗K(r;m) = inf
L

βL(r;m),

where the infimum is taken over all quadratic extensions L of K. Also, when K is
an extension of a p-adic field for some prime p, we define the integer β0

K(r;m) by
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taking
β0

K(r;m) = inf
M

βM (r;m),

where the infimum is taken over all (inert) quadratic extensions M of K, wherein
M = K(

√
d) for some valuation unit d in K. Finally, we note that although the

bulk of our account makes use of the language of projective geometry, it occasion-
ally simplifies our discussion to make use of corresponding affine language. Such
expedience should pose no difficulties even for those readers less familiar with ge-
ometry.

We begin with an auxiliary lemma that might be considered to be a variant of
Proposition 2.2 of Leep [11].

Lemma 2.1. Suppose that r and m are positive integers.
(a) For any field F , one has

β∗F (r;m) ≤ max{βF (r; 0) + (m− 1)(r + 1) , βF (r − 1; 0) + m(r + 1) + r}.

(b) Suppose that F is a field extension of Qp, for some prime p. Then

β0
F (r;m) ≤ max{βF (r; 0) + (m− 1)(r + 1) , βF (r − 1; 0) + m(r + 1) + 2r}.

Proof. There is no loss of generality in supposing that βF (r;m) is finite. Suppose
that

s > βF (r; 0) + (m− 1)(r + 1) (2.1)

and that with k = 1 or 2,

s > βF (r − 1; 0) + m(r + 1) + kr. (2.2)

Let g1, . . . , gr ∈ F [x1, . . . , xs] be quadratic forms. Then in view of Corollary 2.4(ii)
of Leep [11], the lower bound (2.1) suffices to ensure that the polynomials gi(x)
(1 ≤ i ≤ r) vanish simultaneously on an F -rational linear space of affine dimension
m. Let e1, . . . , em be a basis for the latter subspace. We may extend this basis to
a new basis e1, . . . , es for the whole space F s. Write

x = y1e1 + · · ·+ ymem + z1em+1 + · · ·+ zs−mes,

and substitute into the system gi(x) = 0 (1 ≤ i ≤ r). We now obtain a system of
equations

m∑
i=1

hij(z)yi + qj(z) = 0 (1 ≤ j ≤ r), (2.3)

with hij(z) ∈ F [z] (1 ≤ i ≤ m, 1 ≤ j ≤ r) linear forms, and with qj(z) ∈ F [z] (1 ≤
j ≤ r) quadratic forms. The aforementioned linear forms vanish simultaneously on
an F -rational linear subspace U of affine dimension t ≥ (s−m)−rm. Let ê1, . . . , êt
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be a basis for U , write z = w1ê1 + · · ·+ wtêt, and substitute into (2.3). We obtain
a new system of equations

Qj(w) = 0 (1 ≤ j ≤ r), (2.4)

with Qj(w) ∈ F [w] (1 ≤ j ≤ r) quadratic forms. We seek now to obtain a
non-trivial solution of the system (2.4) over some quadratic extension L of F (or,
respectively, some inert quadratic extension L of F ). Given any such solution, it
follows from the above argument that there exists an associated vector e0 ∈ Ls,
linearly independent of e1, . . . , em, such that whenever y0, . . . , ym ∈ L, the vector
x = y0e0 + · · · + ymem satisfies the system gi(x) = 0 (1 ≤ i ≤ r). In particular,
the latter system possesses a solution set that contains a linear subspace of Ls with
projective dimension m. The first conclusion of the lemma therefore follows on
checking that a quadratic extension L of F exists for which, with k = 1, one has

t > βL(r; 0), (2.5)

and the second conclusion follows on demonstrating that when k = 2, then the
lower bound (2.5) holds for some inert quadratic extension L of F .

In order to verify that (2.5) holds whenever (2.2) is satisfied in the respective
cases, we consider a system (2.4) as above. An application of Corollary 2.4(ii) of
Leep [11] establishes that whenever

t > βF (r − 1; 0) + kr, (2.6)

as is guaranteed by the lower bound (2.2), then the system of equations Qj(w) = 0
(1 ≤ j ≤ r − 1) possesses a solution set that contains a linear subspace of F s

with affine dimension k + 1. Let ẽ0, . . . , ẽk be a basis for this linear space, write
w = v0ẽ0 + · · · + vkẽk, and substitute into (2.4). The latter system of equations
now simplifies to the shape

Qr(v0ẽ0 + · · ·+ vkẽk) = 0.

Here we note that Qr(v0ẽ0 + · · ·+ vkẽk) is a quadratic form R(v) ∈ F [v0, . . . , vk],
say.

Consider first the situation in which k = 1. Here it is possible that R already
possesses a non-trivial F -rational solution. If such is not the case, we take L to
be the splitting field of the quadratic polynomial R(T, 1), and then observe that
R(v0, v1) trivially possesses a non-trivial zero over the quadratic extension L of F .
In either case, therefore, we find that the lower bound (2.6), with k = 1, suffices
to establish (2.5) for some quadratic extension L of F . The first conclusion of the
lemma now follows immediately, according to our previous discussion.

Suppose next that k = 2, and that F is a field extension of Qp for some prime
p. It is again possible that R already possesses a non-trivial F -rational zero. If
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not, by diagonalising R, we find that there exist linear forms l1, l2, l3 ∈ F [v], and
non-zero elements D, a1, a2, a3 ∈ F , such that

R(v) = D(a1l1(v)2 + a2l2(v)2 + a3l3(v)2).

Plainly, moreover, we may make a choice for D, a, l in which two at least of a1, a2, a3

are valuation units. By relabelling variables, therefore, we may suppose that a1 and
a2 are valuation units. Then on setting L = F (

√
−a2/a1), it is apparent that the

equation

R(v) = D
(
a1

(
l1(v)2 − (

√
−a2/a1l2(v))2

)
+ a3l3(v)2

)
= 0

possesses a non-trivial L-rational solution. Moreover, one has L = F (
√

d) with d
a valuation unit of F . Thus we conclude that in either case here, the lower bound
(2.6), with k = 2, suffices to establish (2.5) for some inert quadratic extension L of
F . The second conclusion of the lemma now follows as before, and this completes
the proof of the lemma.

The procedure for constructing F -rational linear spaces on cubic hypersurfaces
through the use of suitable quadratic extensions of F now follows closely the ar-
gument of §2 of Wooley [21], this itself paralleling earlier work of Lewis [14], and
indeed we suppress the bulk of the details. We begin with some notation. Let K
be a field, and suppose that f(x) ∈ K[x1, . . . , xs] is a cubic form. Then for suitable
coefficients cijk ∈ K, we can write f(x) in the shape

f(x) =
∑

1≤i≤j≤k≤s

cijkxixjxk,

and define the trilinear form T (x,y, z) associated with f by

T (x,y, z) =
∑

1≤i≤j≤k≤s

cijkxiyjzk.

We then define the polar forms f21, f12 and f111 associated with f by

f21 = T (x,x,y) + T (x,y,x) + T (y,x,x), f12(x,y) = f21(y,x),

f111(x,y, z) = T (x,y, z)+T (x, z,y)+T (y, z,x)+T (y,x, z)+T (z,x,y)+T (z,y,x).

Finally, we define γ∗K = supL γL, where the supremum is taken over all quadratic
extensions L of K, and γ0

K = supM γM , where the supremum is taken over all
(inert) quadratic extensions M of K, wherein M = K(

√
d) for some valuation unit

d in K.
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Lemma 2.2. Let m be a positive integer.
(a) Whenever F is a field with characteristic not equal to 2,

γF (1;m) ≤ 1
2m(m + 3) + β∗F (m; γ∗F ).

(b) Suppose that F is a field extension of Qp, for some prime p. Then

γF (1;m) ≤ 1
2m(m + 3) + β0

F (m; γ0
F ).

We remark that the hypothesis on the characteristic of F in the statement of
Lemma 2.2(a) is surely superfluous, and can be deleted by working along the lines
of our geometric sketch in §1.

The proof of Lemma 2.2. Suppose that the conclusion of the lemma holds when
m = n − 1, where n is some positive integer. Write + for either ∗ or 0 in our
notation involving βF and γF . If γ+

F and β+
F (m; γ+

F ) are not both finite, then the
conclusions of the lemma are vacuous, so we may suppose henceforth that both are
finite. We aim to show that whenever s is an integer with

s > 1
2n(n + 3) + β+

F (n; γ+
F ), (2.7)

and f(x) ∈ F [x1, . . . , xs] is a cubic form, then the equation f(x) = 0 possesses a
solution set that contains an F -rational linear space of projective dimension n. The
full conclusion of the lemma will then follow by induction.

Suppose that L is a quadratic extension of F , so that the hypotheses of the
lemma ensure that L = F (

√
d) for some d ∈ F . If f(x) possesses a non-trivial

L-rational zero, then it follows from Lemma 2.1 of Wooley [21] (which is essentially
Lemma D of Lewis [14]) that f(x) possesses a non-trivial F -rational zero. Thus it
follows that γF ≤ γ+

F . But when n = 0 one has β+
F (n; γ+

F ) = γ+
F , and so whenever

(2.7) holds we have s > γ+
F ≥ γF , whence f has a non-trivial F -rational zero. This

establishes the conclusions of the lemma for m = 0.
Suppose next that the conclusions of the lemma hold for m = n − 1, and that

s satisfies (2.7). Then there exist linearly independent zeros v1, . . . ,vn ∈ F s with
the property that for each t1, . . . , tn, the equation

f(t1v1 + · · ·+ tnvn) = 0

holds. We may choose elements e1, . . . , es−n ∈ F s so that the ei and vj together
form a basis for F s. Write x = u1e1 + · · · + us−nes−n, and substitute into the
system

f(x) = f12(vi,x) = f21(vi,x) = f111(vi,vj ,x) = 0 (1 ≤ i, j ≤ n). (2.8)

Then we obtain a system of homogeneous equations in u, one cubic, n quadratic
and (by symmetry) 1

2n(n + 1) linear, all with F -rational coefficients. We seek
to find a quadratic extension L of F , in part (b) of the lemma subject to the
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inertness hypothesis, with the property that the system (2.8) possesses a non-
trivial L-rational solution. Such a solution is necessarily linearly independent of
v1, . . . ,vn. Moreover, on recalling that L = F (

√
d) for some d ∈ F , we find that

the hypotheses of Lemma 2.2 of Wooley [21] are satisfied. Consequently, we deduce
that f possesses an F -rational linear space of zeros of projective dimension n,
thereby establishing the conclusions of the lemma for m = n. The entire conclusion
of the lemma thus follows by induction.

In the linear space spanned by the ei, the system of 1
2n(n + 1) linear equations

vanish on an F -rational subspace of affine dimension s−n− 1
2n(n+1). Let g1, . . . ,gr

be a basis for the latter subspace, write x = y1g1 + · · · + yrgr, and substitute
into (2.8). We now obtain a system of homogeneous equations, one cubic and n
quadratic, with F -rational coefficients, and having r variables. In view of (2.7),
moreover, one has r = s − 1

2n(n + 3) > β+
F (n; γ+

F ). Thus there exists a quadratic
extension L of F (subject to the inertness hypothesis in part (b) of the lemma) with
the property that the aforementioned system of quadratic equations necessarily
vanish on an L-rational subspace of projective dimension γ+

F . Let h0, . . . ,hγ+
F

be
a basis for the latter subspace, write x = z0h0 + · · · + zγ+

F
hγ+

F
, and substitute

into (2.8). Now the system becomes a single homogeneous cubic equation with
L-rational coefficients, and having γ+

F + 1 > γL variables. It follows that this cubic
equation possesses a non-trivial L-rational solution, whence (2.8) likewise possesses
an L-rational solution, linearly independent of v1, . . . ,vn. This establishes the
conclusions of the lemma when m = n, and, as already discussed, the lemma now
follows by induction.

The proofs of Theorems 1 and 2 are now easily completed by making use of
estimates for γF and βF (r; 0) available from the literature. We begin with Theorem
1, and suppose that F is a field extension of Qp for some prime p. We note that
there is no loss of generality in supposing throughout that F is a finite extension
of Qp, since the coefficients of any implicit equations necessarily lie in a finite field
extension, F̃ , and we may work exclusively in F̃ in the ensuing discussion. We
recall first that Lewis [13] has established that whenever F is a field of the above
type, then γF = 9 (see Mordell [16] for a discussion of the lower bound γF ≥ 9,
and Dem’yanov [8] for the case p 6= 3). This conclusion implies, of course, that
γ∗F = 9 and γ0

F = 9. Also, for the same class of fields F , it follows from work of
Dem’yanov [9] that βF (2; 0) = 8 (see also Birch, Lewis and Murphy [3] for a simple
proof of this conclusion). Under the additional hypothesis that the field of residue
classes of F has odd cardinality q with q ≥ 11, work of Schuur [20] (improving on
earlier work of Birch and Lewis [2]) shows that βF (3; 0) = 12. Employing the last
two conclusions together with Theorem 1 of Martin [15], we find that whenever F
is a field extension of Qp for some prime p, then

βF (r; 0) ≤ 2r2 + δr, (2.9)

where δr is 0 or 2 according to whether r is even or odd. With the additional
hypothesis that the field of residue classes of F has odd cardinality q with q ≥ 11,
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we find similarly that
βF (r; 0) ≤ 2r2 − 2r + εr, (2.10)

where εr is 0 or 4 according to whether 3|r or 3 - r.
Substituting (2.9) into Lemma 2.1(a), and then inserting the ensuing conclusion

into the bound provided by Lemma 2.2(a), we deduce that whenever F is a field
extension of Qp for some prime p, then for m ≥ 1,

γF (1;m) ≤ 1
2m(m + 3) + (γ∗F − 1)(m + 1)

+ max{βF (m; 0) , βF (m− 1; 0) + 2m + 1}
≤ 1

2 (m2 + 19m + 16) + max{2m2 + δm , 2m2 − 2m + 3 + δm−1}.

Following a modicum of computation, one finds that γF (1; 2) ≤ 38, and that when
m ≥ 1 and m 6= 2, one has

γF (1;m) ≤ 1
2 (5m2 + 19m + 16 + 2δm).

This completes the proof of part (a) of Theorem 1.
Suppose next that F is a field extension of Qp for some prime p, and that the

field of residue classes of F has odd cardinality q, with q > 3. It follows that any
field extension L of F for which L = F (

√
d), for some valuation unit d of F , satisfies

the property that its field of residue classes has cardinality at least pq ≥ 25. Thus
the hypotheses required to apply (2.10) (with F replaced by L) hold, and we may
conclude from Corollary 2.4 of Leep [11] that there is such a field extension L of F
for which

β0
F (r;m) ≤ βL(r;m) ≤ 2r2 − 2r + εr + m(r + 1).

We substitute the latter upper bound into the conclusion of Lemma 2.2(b), and
thus obtain the estimate

γF (1;m) ≤ 1
2m(m + 3) + β0

F (m; 9) ≤ 1
2 (5m2 + 17m + 18 + 2εm).

The conclusion of part (b) of Theorem 1 follows on noting that the only field
extensions F of Qp excluded by the above hypotheses are those having field of
residue classes of cardinality 2s (s ≥ 1) or 3.

Finally, suppose that F is a field extension of Qp for some prime p, and that the
field of residue classes of F has odd cardinality q, with q ≥ 11. The hypotheses
required to apply (2.10) now hold. We substitute the latter inequality into Lemma
2.1(b), and then insert the consequent upper bound into the conclusion of Lemma
2.2(b), thus obtaining the estimate

γF (1;m) ≤ 1
2m(m + 3) + (γ0

F − 1)(m + 1)

+ max{βF (m; 0) , βF (m− 1; 0) + 3m + 1}
≤ 1

2 (m2 + 19m + 16) + max{2m2 − 2m + εm , 2m2 − 3m + 5 + εm−1}.
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A little computation now leads to the conclusion that when m ≥ 1, one has

γF (1;m) ≤
{ 1

2 (5m2 + 13m + 26 + 2εm−1), when m = 2, 3, 6,
1
2 (5m2 + 15m + 16 + 2εm), otherwise.

The conclusion of part (c) of Theorem 1 follows on noting that the only field exten-
sions F of Qp excluded by the above hypotheses are those having field of residue
classes of cardinality 2s (s ≥ 1), 3, 5, 7 or 9. This completes the proof of Theorem
1.

We now turn to the proof of Theorem 2. Suppose that L is any purely imaginary
field extension of Q. Again, there is no loss of generality in supposing throughout
that L is a finite extension of Q. Then by Corollary 10.4 of Colliot-Thélène, Sansuc
and Swinnerton-Dyer [5], one has βL(2; 0) = 8. In this instance, Theorem 1 of
Martin [15] together with Corollary 2.4 of Leep [11] leads to the upper bound

βL(r;m) ≤ 2r2 + δr + m(r + 1). (2.11)

We recall also that, under the same hypotheses on L, one has the upper bound
γL ≤ 15 from Pleasants [18].

First consider an algebraic extension K of Q, and let f(x) ∈ K[x] be a cubic
form. Let K̃ be the finite field extension of Q containing the coefficients of f . If√
−1 ∈ K̃, then we take d to be any element of K̃ with

√
d 6∈ K̃. Otherwise we

take d = −1. Write L = K̃(
√

d). Then in either case we have
√
−1 ∈ L, and so L

is purely imaginary. Consequently, Theorem 1 of Wooley [21], in combination with
(2.11) and the bound γL ≤ 15, yields

γK(1;m) ≤ 1
2m(m + 3) + βL(m; γL)

≤ 1
2m(m + 3) + 2m2 + δm + 15(m + 1).

The conclusion of part (a) of Theorem 2 follows immediately.
Suppose next that L is a purely imaginary field extension of Q. We now apply

(2.11) (with m = 0) together with Lemma 2.1(a) and Lemma 2.2(a), deducing from
the bound γ∗L ≤ 15 that for m ≥ 1, one has

γL(1;m) ≤ 1
2m(m + 3) + (γ∗L − 1)(m + 1)

+ max{βL(m; 0) , βL(m− 1; 0) + 2m + 1}
≤ 1

2 (m2 + 31m + 28) + max{2m2 + δm , 2m2 − 2m + 3 + δm−1}.

A moment of reflection reveals that γL(1; 2) ≤ 56, and that when m ≥ 1 and m 6= 2,
one has

γL(1;m) ≤ 1
2 (5m2 + 31m + 28 + 2δm).

This completes the proof of part (b) of Theorem 2.
A comment is in order concerning our use of Schuur’s conclusion that whenever

F is a field extension of Qp, for which the field of residue classes has cardinality
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q ≥ 11, then βF (3; 0) = 12. In point of fact, Schuur [20] only explains that such
a conclusion is attainable. The weaker conclusion that βF (3; 0) = 12 for q ≥ 49,
proved in full between the papers of Birch and Lewis [2] and Schuur [20], suffices
to establish the conclusion of Theorem 1(b) with the exception of certain fields F
arising as field extensions of Q2, Q3 and Q5. However, as will be evident from
§3 below, the primary application of these bounds in the proof of Theorem 3 is
unaffected by the exclusion of such fields from Theorem 1(b).

3. Pairs of homogeneous cubic equations. The conclusions of Theorem
3(a),(b), (c) and Theorem 4 follow immediately from Theorems 1 and 2 on noting
that, from the argument of the proof of Lemma 2.2, for example, one has for any
field F ,

γF (2) ≤ γF (1; γF ).

Thus, in view of the aforementioned bound of Lewis [13], it follows that whenever
F is a field extension of Qp, then from Theorem 1(a),

γF (2) ≤ γF (1; 9) ≤ 298.

When, furthermore, the field of residue classes of F has cardinality q > 3, then
from Theorem 1(b),

γF (2) ≤ γF (1; 9) ≤ 288.

Subject to the condition that the field of residue classes of F has cardinality q ≥ 11,
we find from Theorem 1(c) that

γF (2) ≤ γF (1; 9) ≤ 278.

On recalling the work of Pleasants [18], on the other hand, it follows that whenever
K is a field extension of Q, then from Theorem 2(a),

γK(2) ≤ γK(1; 15) ≤ 827.

When, moreover, the field L is purely imaginary, then from Theorem 2(b) one
obtains

γL(2) ≤ γL(1; 15) ≤ 811.

It remains only to establish Theorem 3(d), that is, to estimate γQp(2) when
p = 3 or p ≡ 2 (mod 3). In these circumstances we make use of the diagonalisation
procedures of §3(d) of Wooley [22]. Write φ = φ(Qp) for the smallest positive integer
with the property that whenever s > φ(Qp), then whenever a1, . . . , as ∈ Qp, the
equation

a1x
3
1 + · · ·+ asx

3
s = 0 (3.1)

possesses a non-trivial p-adic solution. From the argument of the proof of Lemma
3.1 of [22], it follows that γQp(2) is bounded above by the least number t satisfying
the property that whenever s > t− φ, then any system of homogeneous equations,
one cubic, 2φ quadratic, and φ(φ + 1) linear, with coefficients in Qp and having s
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variables, necessarily possesses a non-trivial p-adic solution. But as in the argument
of the proof of Lemma 2.2 above, it is straightforward to show that

t ≤ φ(φ + 2) + βQp
(2φ; γQp

),

whence, by the argument leading to (2.11), together with Lewis’ conclusion γQp = 9,
one finds that

γQp
(2) ≤ φ(φ + 2) + 2(2φ)2 + (2φ + 1)γQp

= 9φ2 + 20φ + 9. (3.2)

When p ≡ 2 (mod 3), one has φ = 3 (see, for example, §3 of [22]), and under such
circumstances we conclude that γQp

(2) ≤ 150.
It remains to consider γQ3(2), and here we point out an oversight in §3 of [22],

where it is stated that φ(Q3) = 3. Whenever x satisfies the congruence

x3
1 + 2x3

2 + 4x3
3 + 9x3

4 ≡ 0 (mod 27),

it is apparent that x ≡ 0 (mod 3), and thus we see that the polynomial x3
1 +2x3

2 +
4x3

3 + 9x3
4 has only the trivial 3-adic zero x = 0. In particular, it is clear that

φ(Q3) ≥ 4.
Let a1, . . . , as be non-zero elements of Q3, and consider the diagonal equation

(3.1). On applying the normalisation procedure of Davenport and Lewis [7] to this
equation, with s = 5, we find that the equation (3.1) possesses a non-trivial 3-adic
solution if and only if an associated equation

b1x
3
1 + · · ·+ bsx

3
s = 0 (3.3)

possesses a non-trivial solution, and here we may suppose that bi ∈ Z3 (1 ≤ i ≤ s),
that 3 - bi for 1 ≤ i ≤ ds/3e = 2, and that 32 - bj for 1 ≤ j ≤ d2s/3e = 4. Relabel
variables so that the power of 3 dividing bi increases (not necessarily monotonically)
as i increases. We may suppose, moreover, that b1 = 1. We aim to show that the
congruence

b1x
3
1 + · · ·+ bsx

3
s ≡ 0 (mod 9) (3.4)

possesses a solution with 3 - bixi for some i. From this, a variant of Hensel’s
lemma guarantees the existence of a 3-adic solution. But on noting that bi(−xi)3 ≡
(9− bi)x3

i (mod 9), we see that when the congruence

b1x
3
1 + b2x

3
2 ≡ 0 (mod 9)

fails to possess a non-trivial solution, then we may suppose that (b1, b2) is either
(1, 2) or (1, 4). By multiplying through by 2, moreover, the latter case is subsumed
by the former. But if b1 = 1 and b2 = 2, and the congruence

x3
1 + 2x3

2 + b3x
3
3 ≡ 0 (mod 9)
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fails to possess a solution with 3 - bixi for some i with 1 ≤ i ≤ 3, then b3 cannot
be 3 or 6 modulo 9, and hence there is no loss in supposing that b3 = 4. Next, if
(b1, b2, b3) = (1, 2, 4), and the congruence

x3
1 + 2x3

2 + 4x3
3 + b4x

3
4 ≡ 0 (mod 9)

fails to possess a solution with 3 - bixi for some i with 1 ≤ i ≤ 4, then necessarily
9|b4, and this contradicts our earlier observation that without loss, we have 32 - bj

for 1 ≤ j ≤ 4. Then we are forced to conclude that (3.4) does indeed possess a
solution with 3 - bixi for some i, whence (3.3) possesses a non-trivial 3-adic solution.

The above discussion shows that φ(Q3) = 4, so that in view of (3.2), one finds
that γQ3(2) ≤ 233. This completes the proof of Theorem 3(c).

In view of the above correction to §3 of [22], it may be worth noting that the
conclusion of Lemma 3.1 of [22] should be replaced in the case p = 3 by the upper
bound

v3,r(Q3) ≤ 8r4 + 64
3 r3 + 13r2 + 11

3 r,

where, in the notation of this paper, one has v3,r(Q3) = γQ3(r).
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