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1. Introduction. Consider a system of diagonal equations

s∑
j=1

aijx
k
j = 0 (1 6 i 6 r), (1.1)

satisfying the property that the (fixed) integral coefficient matrix (aij) contains no singular r × r
submatrix. A recent note of the authors [3] establishes that whenever k > 3 and s > (3r + 1)2k−2,
then the expected asymptotic formula holds for the number N(P ) of integral solutions x of (1.1) with
|xi| 6 P (1 6 i 6 s). To be precise, as P →∞ one has

N(P ) = v∞

(∏
p

vp

)
P s−rk + o(P s−rk), (1.2)

where v∞ is the area of the manifold defined by (1.1) in the box [−1, 1]s, and

vp = lim
h→∞

ph(r−s)card
{
x ∈ (Z/phZ)s :

s∑
j=1

aijx
k
j ≡ 0 (mod ph) (1 6 i 6 r)

}
.

In this note we concentrate on the situation wherein r = 2, providing an alternate derivation of this
conclusion in which weaker conditions are imposed on the coefficient matrix. Moreover, when k > 6,
the constraint on the number s of variables is also relaxed.

Henceforth we fix r to be 2, and we rewrite the system (1.1) in the form

a1x
k
1 + · · ·+ asx

k
s = b1x

k
1 + · · ·+ bsx

k
s = 0, (1.3)

drawing the obvious correspondence between the coefficient matrix (aij) and the s-tuples a,b. The
ordered pairs (ai, bi) (1 6 i 6 s) determine s points on the projective line, of which l, say, are distinct.
We may suppose that the respective multiplicities m1, . . . ,ml of these points satisfy m1 > m2 > . . . >
ml > 1 and m1 + · · ·+ml = s. It is convenient to refer to the l-tuple (m1, . . . ,ml) as the profile of the
pair of equations (1.3).

Theorem 1.1. Let the profile of the system (1.3) be (m1, . . . ,ml).
(i) Suppose that k > 3 and s > 7

42k, and that the profile satisfies m1 6 s− 2k and m1 +m2 6 s− 2k−2.
Then the asymptotic formula (1.2) holds.

(ii) Suppose that k > 6 and s > 13
8 2k, and that the profile satisfies m1 6 s− 15

162k and m1+m2 6 s−2k−2.
Then the asymptotic formula (1.2) holds.

The first conclusion of Theorem 1.1 has the same strength as the principal conclusion of [3], although
the hypotheses on the profile of the pair of equations are now explicitly weaker than are required in
[3]. The second conclusion of Theorem 1.1, on the other hand, represents an improvement on this
earlier work in so far as the condition s > 7

42k is now replaced by s > 13
8 2k for k > 6. When k > 9

or thereabouts, Vinogradov’s methods may be applied to provide sharper bounds still. These results
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should also be compared with the earlier work of Cook [5], in the refined form that follows from an
educated application of Vaughan’s mean value estimates [9], [10] associated with the asymptotic formula
in Waring’s problem. This work shows that whenever k > 3 and s > 2k+1, and the profile (m1, . . . ,ml)
of the system (1.3) satisfies the condition m1 6 s − 2k, then the asymptotic formula (1.2) holds. By
considering equations containing disjoint sets of variables, it is apparent that the latter hypothesis on
m1 cannot be relaxed without first establishing the validity of the expected asymptotic formula for
a single diagonal equation in fewer than 2k variables. For the moment, at least, the latter objective
remains beyond reach for k 6 5.

Our strategy for proving Theorem 1.1 involves relating a mean value of exponential sums with a
mean square of certain Fourier coefficients, wherein the summation is over a potentially restricted set.
This method is related to that occurring in recent work of the authors on paucity problems (see [4]).
The principal conclusion of this discussion is recorded in Theorem 2.2 below. The application of this
new mean value estimate to establish Theorem 1.1 is routine, and summarily executed in §3.

Throughout, the letter ε will denote a sufficiently small positive number, and P will be a large real
number. We use � and � to denote Vinogradov’s notation. In an effort to simplify our account,
whenever ε appears in a statement, we assert that the statement holds for every positive number ε.
The “value” of ε may consequently change from statement to statement.

2. An auxiliary mean value estimate. The purpose of this section is to provide an estimate for a
certain mean value of exponential sums that may be thought of as a restricted mean square of Fourier
coefficients. When P is a large positive number, put

f(γ) =
∑
|x|6P

e(γxk),

where, as usual, we write e(z) for e2πiz. We consider a non-negative function F in L2([0, 1)), extended
in the natural way to a periodic function on R with period 1, and satisfying the condition that F (γ) =
F (−γ) for each γ ∈ R. When B ⊆ [0, 1), we then write

R(n;B) =

∫
B

F (γ)e(−nγ) dγ,

and we abbreviate R(n; [0, 1)) simply to R(n). Also, when a is a non-zero integer, we denote by ρa(n)
the number of representations of the integer n in the shape

a
2k−3∑
i=1

(xki − yki ) = n,

with |xi|, |yi| 6 P (1 6 i 6 2k−3).

Lemma 2.1. Suppose that a is a non-zero integer. Then whenever k > 3 and B ⊆ [0, 1), one has

∑
n∈Z

ρa(n)|R(n;B)|2 � P 2k−2−1
(∫

B

F (γ) dγ

)2

+ P 2k−2−k+1+ε

∫
B

F (γ)2 dγ. (2.1)

Proof. We begin by noting that

∑
n∈Z

ρa(n)|R(n;B)|2 =
∑
n∈Z

ρa(n)

∫
B

∫
B

F (α)F (−β)e(n(β − α)) dα dβ

=

∫
B

∫
B

F (α)F (−β)|f(a(β − α))|2
k−2

dα dβ. (2.2)

Next, as a consequence of the Weyl differencing lemma (see, for example, Lemma 2.3 of [11]), one has

|f(ξ)|2
k−2

� P 2k−2−1 + P 2k−2−k+1
∑

0<|h|6k!(2P )k

che(hξ),
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where the integers ch satisfy ch = O(|h|ε). On substituting this upper bound into the right hand side
of (2.2), we find that

∑
n∈Z

ρa(n)|R(n;B)|2 � P 2k−2−1
(∫

B

F (γ) dγ

)2

+ P 2k−2−k+1I, (2.3)

where

I =
∑

0<|h|6k!(2P )k

ch

∫
B

∫
B

F (α)F (−β)e(a(β − α)h) dα dβ.

But in view of the above-cited bound for ch, one has

I �
∑

0<|h|6k!(2P )k

|h|ε|R(ah;B)|2.

Then it follows from Bessel’s inequality that

I � P ε
∑
n∈Z
|R(n;B)|2 6 P ε

∫
B

F (γ)2 dγ.

The conclusion (2.1) of the lemma now follows on recalling (2.3).

We extract from Lemma 2.1 the two consequences recorded in the following theorem. In this context,
we write Λi = aiα+ biβ (1 6 i 6 s).

Theorem 2.2. Suppose that Λu, Λv and Λw are pairwise linearly independent linear forms in α and
β.

(i) When k > 3, one has ∫ 1

0

∫ 1

0

|f(Λu)3f(Λv)
3f(Λw)|2

k−2

dα dβ � P
7
4 2

k−2k+ε.

(ii) When k > 6, one has∫ 1

0

∫ 1

0

|f(Λu)11f(Λv)
11f(Λw)4|2

k−4

dα dβ � P
13
8 2k−2k+ε.

Proof. We observe first that on considering the underlying diophantine system, and taking linear com-
binations of the relevant equations, the respective bounds of the theorem follow whenever they can be
established in the special case Λu = aα, Λv = bβ, Λw = cα+dβ, for non-zero integers a, b, c, d. We may
assume without loss, moreover, that (a, c) = (b, d) = 1. Let Ts(n) denote the number of representations
of the integer n in the form

n =
s∑
i=1

(xki − yki ),

with |xi|, |yi| 6 P (1 6 i 6 s). Then in the special case under consideration, again making use of the
underlying diophantine equations, we find that whenever r, t ∈ N one has∫ 1

0

∫ 1

0

|f(Λu)rf(Λv)
rf(Λw)t|2 dα dβ = Ξ,

where
Ξ =

∑
n1,n2,n3∈Z
an1=cn3
bn2=dn3

Tr(n1)Tr(n2)Tt(n3).

On writing [a, b] for the least common multiple of a and b, it therefore follows that

Ξ =
∑
n∈Z

[a,b]|n

Tr(cn/a)Tr(dn/b)Tt(n).



4 J. BRÜDERN AND T. D. WOOLEY

On applying Cauchy’s inequality, we may conclude that

Ξ 6 Ξ(a, c)1/2Ξ(b, d)1/2,

where we write
Ξ(g, h) =

∑
n∈Z
g|n

Tr(hn/g)2Tt(n) =
∑
m∈Z

Tr(hm)2Tt(gm).

But when (g, h) = 1, on considering the underlying diophantine equations, one finds that

Ξ(g, h) =

∫ 1

0

∫ 1

0

|f(gα)rf(gβ)rf(h(α+ β))t|2 dα dβ.

In view of this discussion, it suffices to establish the special case of the theorem in which Λu = gα,
Λv = gβ, Λw = h(α+ β), wherein g and h are non-zero integers with (g, h) = 1.

Next we define a Hardy-Littlewood dissection. We take M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 q−1P 1−k},

with 0 6 a 6 q 6 P and (a, q) = 1, and put m = [0, 1) \ M. We then apply Lemma 2.1 with
F (γ) = |f(gγ)|2r, for appropriate choices of r, and note that∑

n∈Z
ρh(n)|R(n)|2 �

∑
n∈Z

ρh(n)|R(n;m)|2 +
∑
n∈Z

ρh(n)|R(n;M)|2. (2.4)

For the first part of the theorem we suppose that k > 3 and take r = 3 · 2k−3. Here it is useful to
recall that, from Hua’s lemma (see Lemma 2.5 of [11]) in combination with Schwarz’s inequality, one
has ∫ 1

0

|f(gγ)|2r dγ 6

(∫ 1

0

|f(γ)|2
k

dγ

)1/2(∫ 1

0

|f(γ)|2
k−1

dγ

)1/2

� P 2r−k+1/2+ε. (2.5)

Also, again applying Hua’s lemma, but now in combination with Weyl’s inequality (see Lemma 2.4 of
[11]),

∫
m

|f(gγ)|4r dγ 6

(
sup
γ∈m
|f(gγ)|

)2k−1 ∫ 1

0

|f(gγ)|2
k

dγ

� P ε(P 1−21−k

)2
k−1

P 2k−k � P 4r−k−1+ε. (2.6)

In this way, it follows from Lemma 2.1 that

∑
n∈Z

ρh(n)|R(n;m)|2 � P 2k−2−1
(∫

m

|f(gγ)|2r dγ

)2

+ P 2k−2−k+1+ε

∫
m

|f(gγ)|4r dγ

� P 4r+2k−2−2k+ε. (2.7)

The contribution arising from the major arcs is easily controlled. Indeed, the methods of Chapter 4
of [11] establish that R(n;M) � P 2r−k+ε whenever 2r > max{4, k + 1}, as we may assume. Thus we
find that ∑

n∈Z
ρh(n)|R(n;M)|2 � (P 2r−k+ε)2

∑
n∈Z

ρh(n)� P 4r+2k−2−2k+2ε. (2.8)

On substituting (2.7) and (2.8) into (2.4), we conclude that∑
n∈Z

ρh(n)|R(n)|2 � P 4r+2k−2−2k+ε,

and the desired conclusion in part (i) follows on applying the relation (2.2), with B = [0, 1), and making
a change of variables.
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The proof of the second part of the theorem follows in like manner, but makes use of Heath-Brown’s
mean value estimate ∫ 1

0

|f(γ)| 78 2
k

dγ � P
7
8 2

k−k+ε (2.9)

(see [8]) in place of Hua’s lemma at suitable points of the argument. We now take r = 11 · 2k−5, and
note that by Hua’s lemma together with (2.9), an application of Schwarz’s inequality yields the estimate∫ 1

0

|f(gγ)|2r dγ 6

(∫ 1

0

|f(γ)| 78 2
k

dγ

)1/2(∫ 1

0

|f(γ)|2
k−1

dγ

)1/2

� P ε(P
7
8 2

k−k)1/2(P 2k−1−k+1)1/2.

Thus the estimate (2.5) remains valid, and one may confirm the upper bound (2.6) in these circumstances
by noting that we now have∫

m

|f(gγ)|4r dγ 6

(
sup
γ∈m
|f(gγ)|

)2k−1 ∫ 1

0

|f(γ)| 78 2
k

dγ

� P ε(P 1−21−k

)2
k−1

(P
7
8 2

k−k).

The upper bounds (2.7) and (2.8) now follow just as in the argument applied to establish the first part
of the theorem, and in this way the desired conclusion follows as before.

3. Application of the Hardy-Littlewood method. With the mean value estimates embodied in
Theorem 2.2 now at our disposal, the proof of Theorem 1.1 is in principle routine. The only difficulties
that arise are generated by the possibility that in the profile m of the pair of equations (1.3), the
parameter m1 might be unpleasantly large. Before proceeding further, we define the Hardy-Littlewood
dissection underpinning our analysis. We take δ = 1/100, and define the set of major arcs N to be the
union of the boxes

N(q, a, b) = {(α, β) ∈ [0, 1)2 : |qα− a| 6 P δ−k, |qβ − b| 6 P δ−k}, (3.1)

with 0 6 a, b 6 q 6 P δ and (q, a, b) = 1. We then define the corresponding set of minor arcs n by
putting n = [0, 1)2 \N. When B ⊆ [0, 1)2 is measureable, it is convenient henceforth to write

N(P ;B) =

∫∫
B

f(Λ1) . . . f(Λs) dα dβ.

Here we assume implicitly that s > 7
42k when 3 6 k 6 5, that s > 13

8 2k when k > 6, and that the
profile of the implicit pair of equations satisfies the conditions of the statement of Theorem 1.1.

We begin by observing that standard methods based on work of Davenport and Lewis [6], [7] (see
also Brüdern and Cook [2]) easily establish the asymptotic formula

N(P ;N) = v∞

(∏
p

vp

)
P s−2k + o(P s−2k), (3.2)

where the local factors v$ are defined as in the introduction. Since N(P ) = N(P ; [0, 1)2), it now remains
to demonstrate that the contribution of the minor arcs n to N(P ) is o(P s−2k). In order to facilitate our
argument at this point, we introduce an auxiliary one dimensional Hardy-Littlewood dissection. We
put τ = 10−3, and define the auxiliary major arcs P to be the union of the intervals

P(q, a) = {α ∈ [0, 1) : |qα− a| 6 P τ−k},

with 0 6 a 6 q 6 P τ and (a, q) = 1. We also put p = [0, 1) \P.
Define the parameter t to be 3 · 2k−2 when 3 6 k 6 5, and to be 11 · 2k−4 when k > 6. Also, write

r for 2k−2. Then by making repeated use of the elementary inequality |z1 . . . zn| 6 |z1|n + · · · + |zn|n,
one finds that our hypotheses on the profile of the system (1.3) suffice to ensure that

|f(Λ1) . . . f(Λs)| �
∑
u,v,w

|f(Λu)s−t−rf(Λv)
tf(Λw)r|,
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where the summation runs over all triples (u, v, w) with 1 6 u, v, w 6 s for which the points (aj , bj)
(j = u, v, w) are all distinct on P1. It therefore follows that there is a choice of (u, v, w) satisfying the
latter condition for which

N(P ; n)�
∫∫

n

|f(Λu)s−t−rf(Λv)
tf(Λw)r|dα dβ. (3.3)

We estimate this integral by dividing the minor arcs into three sets, namely

n1 = {(α, β) ∈ n : Λu ∈ p (mod 1)},

n2 = {(α, β) ∈ n : Λu ∈ P (mod 1) and Λv ∈ p (mod 1)},

n3 = {(α, β) ∈ n : Λu ∈ P (mod 1) and Λv ∈ P (mod 1)}.

We first consider the contribution of the set n1 within (3.3). It follows from Weyl’s inequality (see
Lemma 2.4 of [11]) that

sup
(α,β)∈n1

|f(Λu)| 6 sup
γ∈p
|f(γ)| � P 1−τ21−k+ε.

Then in view of Theorem 2.2, one has

N(P ; n1) 6
(

sup
(α,β)∈n1

|f(Λu)|
)s−2t−r ∫ 1

0

∫ 1

0

|f(Λu)tf(Λv)
tf(Λw)r|dα dβ

� P ε(P 1−τ21−k

)s−2t−r(P 2t+r−2k) = o(P s−2k). (3.4)

Next we consider the contribution of the set n2 within (3.3). Here we note that the methods of
Chapter 4 of [11] show that whenever σ > k + 2, then one has∫

P

|f(γ)|σ dγ � Pσ−k. (3.5)

Also, it follows from the methods underlying Theorem A of Vaughan [10] (when k = 4, 5) and Lemma
F of section 4 of Boklan [1] (when k = 3; see Vaughan [9] for an earlier, slightly weaker conclusion) that
for 3 6 k 6 5, one has∫

p

|f(γ)|r+t dγ � P r+t−k(logP )ε−2 and

∫ 1

0

|f(γ)|r+t dγ � P r+t−k.

When k > 6, on the other hand, the same conclusions follow by combining Weyl’s inequality with
Heath-Brown’s mean value estimate (2.9), and in the case of the second inequality, also the use of (3.5)
with σ = r + t. In any case, therefore, it follows from Hölder’s inequality that

N(P ; n2) 6
(

sup
(α,β)∈n2

|f(Λu)|
)s−2t−r

J t/(r+t)v Jr/(r+t)w , (3.6)

where

Jz =

∫∫
n2

|f(Λu)tf(Λz)
r+t|dα dβ (z = v, w).

But when (α, β) ∈ n2, one has Λu ∈ P (mod 1) and Λv ∈ p (mod 1), and thus a change of variables
reveals that

Jv �
(∫

P

|f(γ1)|t dγ1

)(∫
p

|f(γ2)|r+t dγ2

)
� (P t−k)(P r+t−k(logP )ε−2).

Meanwhile, in similar fashion, one obtains the bound

Jw �
(∫

P

|f(γ1)|t dγ1

)(∫ 1

0

|f(γ2)|r+t dγ2

)
� (P t−k)(P r+t−k).
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On substituting these estimates into (3.6), therefore, and applying a trivial estimate for |f(Λu)|, we
may conclude that

N(P ; n2)� (P s−2t−r)(P r+2t−2k(logP )ε−1) = o(P s−2k). (3.7)

Finally, we consider the contribution of the set n3 within (3.3), and it is here that we discover the
joker in the pack. Suppose that (α, β) ∈ n3, and write (α1, α2) for the ordered pair in [0, 1)2 for which
(Λu,Λv) ≡ (α1, α2) (mod 1). Then for i = 1, 2, there exist ri ∈ Z and qi ∈ N with

0 6 ri 6 qi 6 P τ , (ri, qi) = 1 and |qiαi − ri| 6 P τ−k. (3.8)

By taking suitable linear combinations, the final inequality of (3.8) may be employed to isolate α and
β. Write

q′ = (aubv − avbu)q1q2, a′ = bvr1q2 − bur2q1, b′ = aur2q1 − avr1q2,

and then put ω = ν(q′, a′, b′), where ν is the sign of q′. Next define q = q′/ω, a∗ = a′/ω, b∗ = b′/ω, and
take (a, b) to be the unique ordered pair in [0, q)2 with (a∗, b∗) ≡ (a, b) (mod q). Then we find in this
way that 0 6 a, b 6 q � P 2τ , (a, b, q) = 1,

|qα− a| � P 2τ−k and |qβ − b| � P 2τ−k.

Here, the implicit constants depend at most on (aj , bj) for j = u, v. But since 2τ < δ, and we may
suppose that P is sufficiently large, an inspection of (3.1) forces us to conclude that (α, β) ∈ N, and
this contradicts our assumption that (α, β) ∈ n3 ⊆ n. Thus we see that n3 = ∅, so that necessarily

N(P ; n3) = 0. (3.9)

Finally, on combining the estimates (3.4), (3.7) and (3.9), we see that

N(P ; n) 6 N(P ; n1) +N(P ; n2) +N(P ; n3) = o(P s−2k).

In combination with the asymptotic formula (3.2), we thus deduce that

N(P ) = N(P ;N) +N(P ; n) ∼ v∞
(∏
p

vp

)
P s−2k + o(P s−2k),

and this completes the proof of Theorem 1.1.
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