
THE QUADRATIC WARING-GOLDBACH PROBLEM

JIANYA LIU, TREVOR D. WOOLEY, AND GANG YU

Abstract

It is conjectured that Lagrange’s theorem of four squares is true for prime variables, i.e. all

positive integers n with n ≡ 4(mod24) are the sum of four squares of primes. In this paper,

the size for the exceptional set in the above conjecture is reduced to O(N
3
8
+ε).
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1. Introduction

The celebrated theorem of Lagrange states that every natural number is the sum of four

integral squares. In 1938, Hua [10] proved that each large integer congruent to 5(mod24) can

be written as the sum of five squares of primes. In view of these results, it is conjectured that

each large integer n ≡ 4(mod24) is a sum of four squares of primes,

n = p21 + p22 + p23 + p24. (1.1)

However, a result of this strength seems out of reach at present, and what we can prove is just

that the conjecture is true for almost all such integers n. More precisely, let E(N) be the number

of all the positive integers n ≡ 4(mod24) not exceeding N which cannot be written as (1.1). In

1938, Hua [10] proved that E(N)� N log−AN for some positive A. The size of E(N) has been

reduced further, see for example, Schwarz [18], Liu and Liu [15], Wooley [22], Liu [14].

In this paper, we improve the hitherto best upper bound for E(N) with the following theorem.

Theorem 1.1. For arbitrary ε > 0, we have

E(N)� N
3
8
+ε. (1.2)

The circle method is applied to prove Theorem 1.1, but here the unit interval is divided into

three types of arcs: the major, the minor, and the intermediate. Now the main difficulty, and

hence our main novelty, arises in controlling the contribution from intermediate arcs, where we

shall combine the idea of [22] together with the pruning technique. We give two approaches

to treat the intermediate arcs: the first one employs the zero-density estimates for Dirichlet

L-functions, while the second a variant of the treatment on major arcs in [14]. These two

approaches are of independent interests, and also would be useful for further study on related

problems.

JYL was supported by The National Science Foundation (Grant No. 10125101).
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The proof of Theorem 1.1 also requires an asymptotic formula (or a lower bound of approx-

imately the expected order of magnitude) on sufficiently large major arcs. Theorem 1.2 of [14]

has satisfied our need.

We conclude this introduction by mentioning other approximations to the conjecture (1.1).

Greaves [7] gave a lower bound for the number of representations of an integer as a sum of two

squares of integers and two squares of primes. Later Shields [19], Plaksin [17], and Kovalchik

[13] obtained, among other things, an asymptotic formula in this problem. Brüdern and Fouvry

[3] proved that every large n ≡ 4(mod24) is the sum of four squares of almost primes, and very

recently Heath-Brown and Tolev [9] have shown that such n is the sum of one square of prime

and three squares of almost primes.

Notation. As usual, ϕ(n), µ(n), and Λ(n) stand for the function of Euler, Möbius, and von

Mangoldt respectively, τ(n) is the divisor function. We use χ mod q and χ0 mod q to denote a

Dirichlet character and the principal character modulo q, and L(s, χ) is the Dirichlet L-function.

For integers a, b, ... we denote by [a, b, ...] their least common multiple. The letter N is a large

integer, and L = logN. And r ∼ R means R < r ≤ 2R. The letter ε denotes a positive constant

which is arbitrarily small, and c a positive constant; they may vary at different occurrences.

2. Outline of the proof

Throughout the paper, we set

P∗ = N
3
20 , P ∗ = N

1
5 , P = N

1
4 . (2.1)

By Dirichlet’s lemma on rational approximations, we have that, for any given N ε � H ≤ N ,

each α ∈
[
P
N , 1 + P

N

]
may be written in the form

α =
a

q
+ λ, |λ| ≤ H

qN
(2.2)

for some integers a, q with 1 ≤ a ≤ q ≤ N
H and (a, q) = 1. We denote by MH(q, a) the set of

α satisfying (2.2), and write M(H) for the union of all MH(q, a) with 1 ≤ a ≤ q ≤ H1−ε and

(a, q) = 1. The major arcs M and minor arcs m are defined as

M = M(P ∗), m = [P/N, 1 + P/N ]\M(P ).

Let K = M(P )\M(P ∗); these are the intermediate arcs. Then we have

[P/N, 1 + P/N ] = M ∪ K ∪m.

The bulk of the paper is devoted to the integral on the intermediate arcs K. In §§3-6, we will

prove the following

Lemma 2.1. Define M = NL−12, and

f(α) =
∑

M<p2≤N

(log p)e(p2α).
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Then we have ∫
K
|f(α)|6dα� N2− 1

8
+ε. (2.3)

Now a proof of Theorem 1.1 is immediate.

Proof of Theorem 1.1. Let Z(N) be the set of integers n with n ≡ 4 (mod 24) and
N
2 < n ≤ N for which the equation (1.1) has no solution in primes p1, ..., p4. Same as [22], we

define

g(α) =
∑

n∈Z(N)

e(nα),

and let Z = Z(N) be the cardinality of Z(N). Then it is clear that

0 =

∫ 1

0
f(α)4g(−α)dα =

∫
M

+

∫
K

+

∫
m
. (2.4)

By Theorem 1.2 of [14], for N
2 ≤ n ≤ N,∫

M
f4(α)e(−nα)dα =

π2

16
S(n)n+O

(
N

logN

)
,

where S(n) is the singular serires satisfing S(n)� 1 for n ≡ 4(mod24). Thus,∫
M
f(α)4g(−α)dα =

∑
n∈Z(N)

∫
M
f(α)4e(−nα)dα� ZN

and consequently (2.4) gives∣∣∣∣∫
m
f(α)4g(−α)dα+

∫
K
f(α)4g(−α)dα

∣∣∣∣� ZN. (2.5)

A simple argument similar to [22], combined with Ghosh’s estimate of f(α) on the minor arcs

[6], shows that ∫
m
f(α)4g(−α)dα� N1− 1

16
+ε(N

1
2Z + Z2)

1
2 . (2.6)

By Lemma 2.1, we also have∫
K
f(α)4g(−α)dα �

(∫
K
|f(α)|6dα

) 1
2
(∫ 1

0
|f(α)g(α)|2

) 1
2

� N1− 1
16

+ε(N
1
2Z + Z2)

1
2 . (2.7)

Therefore, (2.5)-(2.7) together yield

NZ � N1− 1
16

+ε(N
1
2Z + Z2)

1
2 ,

which implies that Z � N
3
8
+ε. Then a dyadic argument establishes Theorem 1.1. �
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To prove Lemma 2.1, we write

K = K1 ∪ K2,

where

K1 = { α; there exist 1 ≤ a ≤ q ≤ P∗, (a, q) = 1, such that P ∗/N < |qα− a| ≤ P/N},

and K2 the complement of K1 in K. Then the left-hand side of (2.3) is∫
K
|f(α)|6dα =

∫
K1

|f(α)|6dα+

∫
K2

|f(α)|6dα.

We may first discard the integral on K1 by the following estimate, which is Lemma 3.3 of [12].

Lemma 2.2. Suppose that α is a real number, and that there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 ≤ q ≤ N
1
2 , and |qα− a| ≤ N−

1
2 .

Then we have

f(α)� N
7
16

+ε +
N

1
2
+ε

q
1
4 (1 +N |α− a/q|)

1
2

.

Lemma 2.2 implies that, on K1,

f(α)� N
7
16

+ε +
N

1
2
+ε

q
1
4 (P ∗/q)

1
2

� N
7
16

+ε,

where we have used the definitions of P∗ and P ∗ in (2.1). Hence,∫
K1

|f(α)|6dα�
(

max
α∈K1

|f(α)|2
)∫ 1

0
|f(α)|4dα� N2− 1

8
+ε.

Thus Lemma 2.1 is a consequence of the following

Lemma 2.3. For K2 defined as above,∫
K2

|f(α)|6dα� N2− 1
8
+ε. (2.8)

In §§3-6, we will give two proofs for Lemma 2.3.

3. An upper bound for f(α)

In this section, we give an upper bound for

S(α) =
∑

M<m2≤N

Λ(m)e(m2α) (3.1)

when α is close to a rational number of large height. Such an upper bound will be employed in

our first proof of Lemma 2.3 in §4.
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Let α = a/q + λ with (a, q) = 1. We note that

S(α) =

q∑
h=1

(r,q)=1

e

(
ah2

q

) ∑
M<m2≤N
m≡h( mod q)

Λ(m)e(m2λ) +O(L2)

=
1

ϕ(q)

∑
χ mod q

C(χ, a)
∑

M<m2≤N

χ(m)Λ(m)e(m2λ) +O(L2), (3.2)

where C(χ, a) is defined by

C(χ, a) =

q∑
h=1

χ̄(h)e

(
ah2

q

)
. (3.3)

For C(χ, a), the estimate of Vinogradov (see e.g. [21], Chap. VI, Problem 14b(α)) states that

C(χ, a)� q
1
2 τ(q). (3.4)

By applying the explicit formula [4]

∑
m≤x

χ(m)Λ(m) = δχx−
∑
|γ|≤T

xρ

ρ
+O

(
x log2(qxT )

T
+ log2(qT )

)

with T = N
1
2 , the inner sum on the right-hand side of (3.2) is

∫ N
1
2

M
1
2

e(λu2)d

{∑
m≤u

χ(m)Λ(m)

}

= δχ

∫ N
1
2

M
1
2

e(λu2)du−
∑
|γ|≤T

∫ N
1
2

M
1
2

uρ−1e(λu2)du+O{L2(1 +N |λ|)}

=
δχ
2

∫ N

M
v−

1
2 e(λv)dv − 1

2

∑
|γ|≤T

∫ N

M
v
ρ
2
−1e(λv)dv +O{L2(1 +N |λ|)}.

Therefore, by Vinogradov’s bound (3.4),

S(α) � q−
1
2
+ε
∑
r|q

∑
χ mod r

∗
∣∣∣∣∣ ∑
|γ|≤T

∫ N

M
v
ρ
2
−1e(λv)dv

∣∣∣∣∣
+q

1
2
+εL2(1 +N |λ|) + q−

1
2
+εN

1
2 . (3.5)

Since

v
ρ
2
−1e(λv) = v

β
2
−1e

(
γ log v

4π
+ λv

)
,
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by the first and second deriviative tests, we have∫ N

M
v
ρ
2
−1e(λv)dv � N

β
2 min

{
1,

1

|γ + 4πλv|
,

1√
|γ|

}

� N
β
2

{
1√
|γ|

if T 1−ε
0 < |γ| ≤ T0,

1
1+|γ| otherwise,

(3.6)

where T0 = 8π PH for q ∼ H. Inserting (3.6) into (3.5), we get

Lemma 3.1. Let α = a/q + λ with (a, q) = 1 and q ∼ H. Let T = N
1
2 and T0 = 8π PH . We

have

S(α)� B(α) +D(α) + E(α), (3.7)

where

B(α) = q−
1
2
+ε
∑
r|q

∑
χ mod r

∗ ∑
T 1−ε
0 <|γ|≤T0

N
β
2√
|γ|
,

D(α) = q−
1
2
+ε
∑
r|q

∑
χ mod r

∗ ∑
|γ|≤T

N
β
2

1 + |γ|
,

and

E(α) = q
1
2
+ε(1 +N |λ|+N

1
2 q−1) + L2.

In exactly the same way, we can establish the following Lemma 3.2, a general result on the

exponential sum

Sk(α) =
∑

M<mk≤N

Λ(n)e(mkα).

In proving Lemma 3.2, we only need to note that, in the general case, Vinogradov’s bound (see

e.g. [21], Chap. VI, Problem 14b(α)) is

q∑
h=1

χ̄(h)e

(
ahk

q

)
� q

1
2 τ c(q),

where c > 0 is a constant depending on k.

Lemma 3.2. Let α be as in Lemma 3.1, and k ≥ 2 an integer. Define T = N
1
k and

T0 = 4kπ PH . Then

Sk(α)� Bk(α) +Dk(α) + Ek(α),

where

Bk(α) = q−
1
2
+ε
∑
r|q

∑
χ mod r

∗ ∑
T 1−ε
0 <|γ|≤T0

N
β
k√
|γ|
,
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Dk(α) = q−
1
2
+ε
∑
r|q

∑
χ mod r

∗ ∑
|γ|≤T

N
β
k

1 + |γ|
,

and

Ek(α) = q
1
2
+ε(1 +N |λ|+N

1
k q−1) + L2.

4. First proof of Lemma 2.3

We will establish ∫
K2

|S(α)|6dα� N2− 1
8
+ε, (4.1)

from which we deduce Lemma 2.3. To this end, we need

Lemma 4.1. For q ≥ 1, χ a Dirichlet character modulo q, and real numbers 1
2 ≤ σ ≤ 1, T ≥ 2,

let N(σ, T, χ) denote the number of zeros ρ = β + iγ of L(s, χ) in the region

σ ≤ β ≤ 1, |γ| ≤ T.

Then we have

N(σ, T, χ)� (qT )A(σ)(1−σ) logc(qT ),

and ∑
q≤H

∑
χ mod q

∗
N(σ, T, χ)� (H2T )A(σ)(1−σ) logc(HT ),

where

A(σ) = min

{
3

2− σ
,
12

5

}
.

Denote by I the left-hand side of (4.1). By definition, for α ∈ K2, there exist 1 ≤ a ≤ q with

(a, q) = 1 such that

α =
a

q
+ λ, P∗ < q ≤ P 1−ε, |λ| ≤ P

qN
; (4.2)

and therefore,

I �
∑

P∗<q≤P 1−ε

q∑
a=1

(a,q)=1

∫ P
qN

− P
qN

∣∣∣∣S (aq + λ

)∣∣∣∣6 dλ. (4.3)
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We simply divide the range of q into dyadic intervals, and apply Lemma 3.1, to get

I � L max
P∗�H�P 1−ε

∑
q∼H

q∑
a=1

(a,q)=1

∫ P
HN

− P
HN

(B4 +D4 + E4)

∣∣∣∣S (aq + λ

)∣∣∣∣2 dλ
= L max

P∗�H�P 1−ε
(IB(H) + ID(H) + IE(H)), say. (4.4)

By the definition of P , we have E(α)� N
1
2
+εq−

1
2 in Lemma 3.1, and consequently,

IE(H)� N2+εH−2
∑
q∼H

q∑
a=1

∫ P
HN

− P
HN

∣∣∣∣S (aq + λ

)∣∣∣∣2 dλ.
The last integral is ∑

n

η(n)e

(
an

q

)∫ P
HN

− P
HN

e(nλ)dλ,

where

η(n) =
∑

M
1
2<n1,n2≤N

1
2

n21−n
2
2=n

Λ(n1)Λ(n2)�
{
N

1
2
+ε if n = 0,

N ε if n 6= 0.

Therefore,

q∑
a=1

∑
n

η(n)e

(
an

q

)∫ P
HN

− P
HN

e(nλ)dλ� P

N
η(0) + q

∑
0<|n|≤N

q|n

η(n)

|n|
� N ε. (4.5)

Consequently,

IE(H)� N2+εH−1. (4.6)

Using (4.5) again, one has

ID(H) �
∑
q∼H

q−2+ε
q∑

a=1

(∑
r|q

∑
χ mod r

∗ ∑
|γ|≤T

N
β
2

|γ|

)4 ∫ P
HN

− P
HN

∣∣∣∣f (aq + λ

)∣∣∣∣2 dλ
� H−2+ε

∑
q

max
R�H

(∑
r|q
r∼R

∑
χ mod r

∗ ∑
|γ|≤T

N
β
2

|γ|

)4

� H−2+ε max
R�H
T1�T

T−41

(∑
r∼R

H

R

∑
χ mod r

∗ ∑
|γ|∼T1

N
β
2

)(
max
r∼R

∑
χ mod r

∗ ∑
|γ|∼T1

N
β
2

)3

.

By Lemma 4.1, we have

T−11 max
r∼R

∑
χ mod r

∗ ∑
|γ|∼T1

N
β
2 � N

σ
2
+εRA(σ)(1−σ)T

A(σ)(1−σ)−1
1 � N

σ
2
+εRA(σ)(1−σ)
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by noticing that A(σ)(1− σ) ≤ 1. Similarly,

T−11

∑
r∼R

∑
χ mod r

∗ ∑
|γ|∼T1

N
β
2 � N

σ
2
+εR2A(σ)(1−σ).

Thus we get

ID(H) � H−1+ε max
σ,R

N2σR5A(σ)(1−σ)−1

� N2+εH−1
(

1 + max
5A(σ)(1−σ)≥1

H5A(σ)(1−σ)−1

N2(1−σ)

)
. (4.7)

Similar to the estimation of ID(H), we have

IB(H) �
∑
q∼H

q−2+ε
q∑

a=1

(∑
r|q

∑
χ mod r

∗ ∑
T 1−ε
0 <|γ|≤T0

N
β
2√
|γ|

)4 ∫ P
HN

− P
HN

∣∣∣∣f (aq + λ

)∣∣∣∣2 dλ
� H−2+ε

∑
q∼H

(∑
r|q

∑
χ mod r

∗ ∑
T 1−ε
0 <|γ|≤T0

N
β
2√
|γ|

)4

� H−2+ε max
R�H

T1−ε
0 �T2�T0

T−22

(∑
r∼R

H

R

∑
χ mod r

∗ ∑
|γ|∼T2

N
β
2

)(
max
r∼R

∑
χ mod

∗ ∑
|γ|∼T2

N
β
2

)3

.

Applying Lemma 4.1 again, we have

IB(H) � max
R,T2

H−2+εT−22 ·N2σ+ε · H
R
· (R2T2)

A(σ)(1−σ) · (RT2)3A(σ)(1−σ)

� N2+ε

H2
max

T 1−ε
0 �T2�T0

T−22

(
(H5T 4

2 )A(σ)

N2

)1−σ

.

Since T 1−ε
0 � T2 � T0, we can replace the T2 above by T0, which causes at most an extra factor

N ε. Therefore,

IB(H) � N2+ε

H2T 2
0

max
σ

(
(H5T 4

0 )A(σ)

N2

)1−σ

� N2+ε

HT 2
0

(
T
4A(σ)
0

N2

)1−σ

+
N2+ε

H2T 2
0

max
5A(σ)(1−σ)≥1

(
(H5T 4

0 )A(σ)

N2

)1−σ

.
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Inserting T0 � P
H � N

1
10 into the right-hand above, and applying A(σ) = 12

5 in the first term,

we have

IB(H)� N2+ε

H
+
N2+ε

P 2
max

5A(σ)(1−σ)≥1

(
P 5A(σ)

N2

)1−σ

. (4.8)

Now, collecting all the estimates (4.6)-(4.8) into (4.4), we have

I � max
P∗�H�P

5A(σ)(1−σ)≥1

(
N2+ε

H
+
N2+ε

H2

(
H5A(σ)

N2

)1−σ)
. (4.9)

The maximum of the first term in (4.9) is trivially bounded by N2+εP∗
−1 � N2− 1

8
+ε. From

now on, we use A(σ) = 3
2−σ . When 11

13 ≤ σ ≤ 1, we have 5A(σ)(1− σ) ≤ 2, and therefore

max
P∗�H�P
11
13≤σ≤1

N2+ε

H2

(
H5A(σ)

N2

)1−σ

� max
11
13
≤σ≤1

N2+ε

P 2
∗

(
P

5A(σ)
∗
N2

)1−σ

� N2+ε

P 2
∗

(
P 15
∗
N2

)1−σ
� N2+ε

P∗
. (4.10)

When 1
2 ≤ σ ≤

11
13 , by noticing that 5A(σ)(1− σ) ≥ 2, we have

max
P∗�H�P
1
2≤σ≤

11
13

N2+ε

H2

(
H5A(σ)

N2

)1−σ

� max
1
2
≤σ≤ 11

13

N2+ε

P 2

(
P

15
2−σ

N2

)1−σ

� N2− 1
8
+ε max

1
2
≤σ≤ 11

13

(
N

15
4(2−σ)−

3
8(1−σ)

N2

)1−σ

� N2− 1
8
+ε, (4.11)

where we have used the fact

max
1
2
≤σ≤ 11

13

(
− 3

8(1− σ)
+

15

4(2− σ)

)
=

3

2
.

Now (4.1) follows from (4.9)-(4.11).

Lemma 2.3 can be deduced from (4.1) by a standard argument. �

5. Second proof of Lemma 2.3

For χ mod q, define C(χ, a) as in (3.3), and C(q, a) = C(χ0, a). If χ1, ..., χ6 are characters

modq, then we write

B(n, q, χ1, ..., χ6) =

q∑
a=1

(a,q)=1

|C(χ1, a)| · · · |C(χ6, a)|.
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We prove the following estimate.

Lemma 5.1. Let χj mod rj with j = 1, ..., 6 be primitive characters, r0 = [r1, ..., r6], and χ0

the principal character modq. Then for any 0 ≤ β ≤ 1,∑
y<q≤x
r0|q

1

ϕ6(q)
B(n, q, χ1χ

0, ..., χ6χ
0)� y−βr−2+β+ε0 log70 x.

Proof. Using Vinogradov’s bound (3.4), we have

B(n, q, χ1χ
0, ..., χ6χ

0)� q4τ6(q),

and consequently,∑
y<q≤x
r0|q

1

ϕ6(q)
B(n, q, χ1χ

0, ..., χ6χ
0) �

∑
y<q≤x
r0|q

τ6(q) log6 q

q2
� log6 x

τ6(r0)

r20

∑
y
r0
<q≤ x

r0

τ6(q)

q2
.

The last sum is

� min(1, r0/y) log64 x ≤ (r0/y)β log64 x,

and this proves the lemma. �

Define

V (λ) =
∑

M<m2≤N

e(m2λ), W (χ, λ) =
∑

M<m2≤N

(Λ(m)χ(m)− δχ)e(m2λ), (5.1)

where δχ = 1 or 0 according as χ is principal or not. Let ξ, η be parameters such that

1/2 + η ≤ ξ, 0 ≤ η ≤ 1/6. (5.2)

For

N θ � H � NΘ (5.3)

where θ and Θ are positive parameters which will be specified later, define

J(g; ξ) =
∑
r≤2H

[g, r]−ξ
∑

χ mod r

∗
max
|λ|≤ P

HN

|W (χ, λ)|,

and

K(g; ξ) =
∑
r≤2H

[g, r]−ξ
∑

χ mod r

∗
(∫ P

HN

− P
HN

|W (χ, λ)|2dλ

) 1
2

.

Our Lemma 2.3 depends on the following three lemmas, which will be proved in §6.

Lemma 5.2. Let η ≤ 1
6 . For H as in (5.3) with

Θ ≤ min

{
1

8− 4ξ
,

1

12− 8ξ
,

1

5− 10η

}
, (5.4)

11



we have

J(g; ξ)� g−ξ+ητ(g)N
1
2Lc.

Lemma 5.3. For H as in (5.3) with

Θ ≤ min

{
1

8− 4ξ
,

1

12− 8ξ

}
, (5.5)

we have

J(1; ξ)� N
1
2Lc.

Lemma 5.4. Let

ξ ≥ 1, η ≥ 1

40θ
. (5.6)

Then

K(g; ξ)� g−ξ+ητ(g)Lc.

Proof of Lemma 2.3. We can rewrite the exponential sum S(α) as (see for example [4],

§26, (2))

S

(
a

q
+ λ

)
=
C(q, a)

ϕ(q)
V (λ) +

1

ϕ(q)

∑
χ mod q

C(χ, a)W (χ, λ) +O(L2),

where V (λ) and W (χ, λ) are as in (5.1). Let χ∗ mod r be the primitive character inducing

χ mod q. Then W (χ, λ)−W (χ∗, λ)� τ(q)L, and therefore, by (3.4),

S

(
a

q
+ λ

)
=
C(q, a)

ϕ(q)
V (λ) +

1

ϕ(q)

∑
χ mod q

C(χ, a)W (χ∗, λ) +O(q
1
2 τ2(q)L2).

Consequently, ∫
K2

|S(α)|6dα � I0 + I6 + P 3+ε, (5.7)

where for j = 0, 6,

Ij =
∑

P∗<q≤P 1−ε

1

ϕ6(q)

q∑
a=1

(a,q)=1

C6−j(q, a)

∫ P
qN

− P
qN

|V (λ)|6−j
{ ∑
χ mod q

|C(χ, a)||W (χ∗, λ)|

}j
dλ.

In view of (2.1), the last term in (5.7) is obviously acceptable. By a standard argument (see

e.g. [15], end of §4), we can prove that, under the condition M = NL−12,

I0 � S(n, P∗)n
2,

12



where

S(n, P∗) :=
∑
q>P∗

B(q, n, χ0, ..., χ0)

ϕ6(q)
�
∑
q>P∗

q4τ6(q)

ϕ6(q)
� P−1+ε∗ ,

by Vinogardov’s bound (3.4). Therefore,

I0 � N2− 1
8
+ε. (5.8)

From now on we concentrate on the integral I6. To this end, we firstly consider

I6(H) =
∑
q∼H

∑
χ1 mod q

· · ·
∑

χ6 mod q

B(n, q, χ1, ..., χ6)

ϕ6(q)

∫ P
HN

− P
HN

|W (χ∗1, λ)| · · · |W (χ∗6, λ)|dλ,

and prove

I6(H)� N2− 1
8
+ε (5.9)

for P∗ � H � P 1−ε. This interval for H will be divided into consecutive smaller ones of the

type (5.3) with θ and Θ specified later.

Clearly, with χ0 being the principal character modulo q and r0 = [r1, ..., r6],

I6(H) �
∑
r1≤2H

· · ·
∑
r6≤2H

∑
χ1 mod r1

∗
· · ·

∑
χ6 mod r6

∗
∫ P

HN

− P
HN

|W (χ1, λ)| · · · |W (χ6, λ)|dλ

×
∑
q∼H
r0|q

|B(n, q, χ1χ
0, ..., χ6χ

0)|
ϕ6(q)

� N−
1
8Lc

∑
r1≤2H

· · ·
∑
r6≤2H

r
−2+ 1

8θ
+ε

0

∑
χ1 mod r1

∗
· · ·

∑
χ6 mod r6

∗

×
∫ P

HN

− P
HN

|W (χ1, λ)| · · · |W (χ6, λ)|dλ,

by (5.3) and Lemma 5.1 with β = 1
8θ . In the last integral, we take out |W (χ1, λ)|, ..., |W (χ4, λ)|,

and then use Cauchy’s inequality, to get

I6(H) � N−
1
8Lc

∑
r1≤2H

∑
χ1 mod r1

∗
max
|λ|≤ P

HN

|W (χ1, λ)|

× · · ·
∑
r4≤2H

∑
χ4 mod r4

∗
max
|λ|≤ P

HN

|W (χ4, λ)|

×
∑
r5≤2H

∑
χ1 mod r5

∗
(∫ P

HN

− P
HN

|W (χ5, λ)|2dλ

) 1
2

×
∑
r6≤2H

r
−2+ 1

8θ
+ε

0

∑
χ6 mod r6

∗
(∫ P

HN

− P
HN

|W (χ6, λ)|2dλ

) 1
2

. (5.10)

13



We will bound the above sums over r6, ..., r1 consecutively.

The first interval P∗ � H � N
3
16 . We will work in the general case that H satisfies (5.3)

with any θ ≥ 3
20 , and finally specify θ = 3

20 . This specification will give Θ = 3
16 . In this way, we

can prove that I6(H)� N2− 1
8
+ε when P∗ � H � N

3
16 .

Define

η1 = η2 =
1

40θ
, η3 = η4 = η5 = 0, (5.11)

and

ξ0 = 2− 1

8θ
− ε, ξj = ξj−1 − ηj − ε. (5.12)

In particular,

ξ1 = 2− 3

20θ
− 2ε, ξ2 = 2− 7

40θ
− 3ε, (5.13)

and clearly ξ0 > ξ1 > ... > ξ5.

We first estimate the above sum over r6 and r5 in (5.10) consecutively by applying Lemma

5.4 twice. Actually, since r0 = [r1, ..., r6] = [[r1, ..., r5], r6], the sum over r6 in (5.10) is

=
∑
r6≤2H

[[r1, ..., r5], r6]
−ξ0

∑
χ6 mod r6

∗
(∫ P

HN

− P
HN

|W (χ6, λ)|2dλ

) 1
2

= K([r1, ..., r5]; ξ0)� [r1, ..., r5]
−ξ1Lc,

and this contributes to the sum over r5 in amount

� Lc
∑
r5≤2H

[r1, ..., r5]
−ξ1

∑
χ5 mod r5

∗
(∫ P

HN

− P
HN

|W (χ5, λ)|2dλ

) 1
2

= LcK([r1, ..., r4]; ξ1)� [r1, ..., r4]
−ξ2Lc;

here Lemma 5.4 is applicable since

ξ0, ξ1 ≥ 1, η1, η2 ≥
1

40θ
.

The contribution of the last quantity [r1, ..., r4]
−ξ2Lc to the sums over r4, r3, r2 can be esti-

mated by applying Lemma 5.2 consecutively three times. Its contribution to the sum over r4

is

� Lc
∑
r4≤2H

[r1, ..., r4]
−ξ2

∑
χ4 mod r4

∗
max
|λ|≤ P

HN

|W (χ4, λ)|

= LcJ([r1, ..., r3]; ξ2)� [r1, ..., r3]
−ξ3N

1
2Lc,

14



which contributes to the sum over r3 in amount

� N
1
2Lc

∑
r3≤2H

[r1, ..., r3]
−ξ3

∑
χ3 mod r3

∗
max
|λ|≤ P

HN

|W (χ3, λ)|

= N
1
2LcJ([r1, r2]; ξ3)� [r1, r2]

−ξ4NLc,

and its contribution to the sum over r2 is

� NLc
∑
r2≤2H

[r1, r2]
−ξ4

∑
χ2 mod r2

∗
max
|λ|≤ P

HN

|W (χ2, λ)|

= NLcJ(r1; ξ4)� r−ξ51 N
3
2Lc.

By Lemma 5.2, the above arguments are valid provided

Θ ≤ min

{
1

8− 4ξ4
,

1

12− 8ξ4
,

1

5− 10η5

}
. (5.14)

Finally, inserting the last quantity r−ξ51 N
3
2Lc into the sum over r1 in (5.10), we can estimate

I6(H) as

I6(H) � N
3
2Lc

∑
r1≤2H

r−ξ51

∑
χ1 mod r1

∗
max
|λ|≤ P

HN

|W (χ1, λ)|

= J(1)N
3
2Lc � N2Lc

by Lemma 5.3 with ξ = ξ5; here Θ should satisfy

Θ ≤ min

{
1

8− 4ξ5
,

1

12− 8ξ5

}
. (5.15)

The above argument holds for all θ ≥ 3
20 . Now we specify θ = 3

20 , so that Θ = 3
16 is acceptable

in (5.14) and (5.15). This proves (5.9) when H is in the first interval.

Other intervals. To prove (5.9) for other intervals for H, we let

η1 = η2 =
1

40θ
, η3 = η4 = η5 =

1

3
− 7

120θ
. (5.16)

Obviously η3 = η4 = η5 > 0 if θ ≥ 3
16 . We still have (5.12), but (5.13) replaced by

ξ1 = 2− 3

20θ
− 2ε, ξ2 = 2− 7

40θ
− 3ε, ..., ξ4 =

4

3
+

1

12θ
− 5ε, ξ5 = 1 +

17

120θ
− 6ε, (5.17)

We follow the treatment of the first interval until (5.15). With (5.16) and (5.17), it is easy to

check that 5 − 10η5 > 8 − 4ξ4 > 12 − 8ξ4 whenever 0 < θ < 11
12 . Therefore now we have (5.14)

replaced by

Θ ≤ 1

5− 10η5
=

1
5
3 + 7

12θ

, (5.18)

15



and (5.15) by

Θ ≤ 1/4. (5.19)

The latter range (5.19) for Θ is actually good enough, so we can concentrate on (5.18).

Inserting θ = 3
16 into (5.18), we get Θ = 9

43 .

Let 9
43 be the new θ, and define the η1, ..., η5 as in (5.16). Then we get a new Θ > θ satisfying

(5.18). Repeating this procedure gives a sequence for Θ, which, by (5.18), converges to the root

Θ∗ of the equation

Θ =
1

5
3 + 7

12Θ

.

Obviously Θ∗ = 1
4 . This proves (5.9) for P∗ � H � P 1−ε, which together with (5.8) and (5.7)

gives (4.1), and hence Lemma 2.3. �

6. Estimation of J and K

Let X
2
5 < Y ≤ X and M1, ...,M10 be positive integers such that

2−10Y ≤M1 · · ·M10 < X, and 2M6, ..., 2M10 ≤ X
1
5 .

For j = 1, ..., 10 define

aj(m) =

 logm, if j = 1,
1, if j = 2, ..., 5,
µ(m), if j = 6, ..., 10,

where µ(n) is the Möbius function. Then we define the functions

fj(s, χ) =
∑
m∼Mj

aj(m)χ(m)

ms

and

F (s, χ) = f1(s, χ) · · · f10(s, χ),

where χ is a Dirichlet character, and s a complex variable. The following hybrid estimate for

F (s, χ) is important in our later argument.

Lemma 6.1. Let ξ and η be as in (5.2).

(i) Let g be a positive integer. Then for any 1 ≤ R ≤ X2 and T > 0,

∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
∫ 2T

T

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt
� g−ξ+ητ(g){Rmax(2−ξ,1−η)T +R

1
2
−ηT

1
2X

3
10 +R−ηX

1
2 } logcX. (6.1)

16



(ii) In the special case g = 1, we have∑
r∼R

r−ξ
∑

χ mod r

∗
∫ 2T

T

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt
� {R2−ξT +R1−ξT

1
2X

3
10 +R−ξX

1
2 } logcX. (6.2)

Proof. (i) We will use the simple property that [g, r](g, r) = gr. Then the left-hand side of

(6.1) is

� g−ξ
∑
d|g
d≤R

(
R

d

)−ξ∑
r∼R
d|r

∑
χ mod r

∗
∫ 2T

T

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt
� g−ξ+ηR−ξ

∑
d|g
d≤R

dξ−η
∑
r∼R
d|r

∑
χ mod r

∗
∫ 2T

T

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt. (6.3)

By Lemma 2.1 in [14], for any 1 ≤ R ≤ X2 and T > 0,∑
r∼R
d|r

∑
χ mod r

∗
∫ 2T

T

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt� {
R2

d
T +

R

d
1
2

T
1
2X

3
10 +X

1
2

}
logcX.

Therefore the quantity in (6.3) can be estimated as

� g−ξ+η

{
R2−ξT

∑
d|g
d≤R

dξ−η−1 +R1−ξT
1
2X

3
10

∑
d|g
d≤R

dξ−η−
1
2 +R−ξX

1
2

∑
d|g
d≤R

dξ−η

}
logcX.

The result in (i) now follows from (5.2) and the estimates∑
d|g
d≤R

dξ−η−1 � Rmax(ξ−η−1,0)τ(g),
∑
d|g
d≤R

dξ−η−
1
2 � Rξ−η−

1
2 τ(g),

∑
d|g
d≤R

dξ−η � Rξ−ητ(g).

(ii) In the special case g = 1, all of the three summations above are bounded by 1, from which

the desired estimate readily follows. �

We will not present in detail the proofs of the Lemmas 5.2-5.4, since they are similar to those

of Lemmas 5.1, 5.2, and 6.1 of [15].

Proof of Lemma 5.2. Lemma 5.2 is a consequence of the estimate∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
max
|λ|≤ P

HN

|W (χ, λ)| � g−ξ+ητ(g)N
1
2Lc, (6.4)

where R ≤ 2H and c > 0 is some constant.

Let T and T0 be as in Lemma 3.1. As in §5 of [15], we apply Heath-Brown’s identity (see

Lemma 1 in [8]), contour integration, and van der Corput’s method. Then (6.4) is a consequence
17



of the following two estimates: For 0 < T1 ≤ T0, we have∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
∫ 2T1

T1

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt� g−ξ+ητ(g)N
1
4 (T1 + 1)

1
2Lc, (6.5)

while for T0 < T2 ≤ T, we have∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
∫ 2T2

T2

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt� g−ξ+ητ(g)N
1
4T2L

c. (6.6)

By Lemma 6.1, the left-hand side of (6.5) is

� g−ξ+ητ(g)N
1
4 (T1 + 1)

1
2Lc{Rmax(2−ξ,1−η)T

1
2
0 N

− 1
4 +R

1
2
−ηN−

1
10 +R−η}.

The quantity within the last braces is, by T0 � P
H ,

� Hmax( 3
2
−ξ, 1

2
−η)N−

1
8 +H

1
2
−ηN−

1
10 +R−η � 1

if H � NΘ with

Θ ≤ min

{
1

12− 8ξ
,

1

5− 10η

}
.

This establishes (6.5).

By Lemma 6.1(i), the left-hand side of (6.6) is

� g−ξ+ητ(g)N
1
4T2L

c{Rmax(2−ξ,1−η)N−
1
4 +R

1
2
−ηN−

1
10 +R−η}.

The quantity within the last braces is

� Hmax(2−ξ,1−η)N−
1
4 +H

1
2
−ηN−

1
10 +R−η � 1

if H � NΘ with Θ satisfying

Θ ≤ min

{
1

8− 4ξ
,

1

4− 4η
,

1

5− 10η

}
.

This establishes (6.6). Note that for η ≤ 1
6 we have 4 − 4η ≤ 5 − 10η. This proves Lemma 3.2

under the condition (5.4). �

Proof of Lemma 5.3. This is similar to the proof of Lemma 5.2, except that here we apply

Lemma 6.1(ii) instead of (i). �

Proof of Lemma 5.4. It suffices to show that

∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
(∫ P

HN

− P
HN

|Ŵ (χ, β)|2dβ

) 1
2

� g−ξ+ητ(g)Lc (6.7)

holds for R� H and some c > 0.
18



As in §6 of [15], we apply Gallagher’s lemma (see [5], Lemma 1) and Heath-Brown’s identity.

Then we see that it suffices to show∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
∫ 2T1

T1

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt� g−ξ+ητ(g)N
1
4Lc (6.8)

holds for R� H and 0 < T1 ≤ T0, and∑
r∼R

[g, r]−ξ
∑

χ mod r

∗
∫ 2T2

T2

∣∣∣∣F (1

2
+ it, χ

)∣∣∣∣ dt� g−ξ+ητ(g)
H

P
N

1
4T2L

c (6.9)

holds for R� H and T0 < T2 ≤ T.
By Lemma 6.1(i), the left-hand side of (6.8) is

� g−ξ+ητ(g)N
1
4Lc{Rmax(2−ξ,1−η)T0N

− 1
4 +R

1
2
−ηT

1
2
0 N

− 1
10 +R−η}.

The quantity within the last braces is, by T0 � P
H ,

� Rmax(2−ξ,1−η) P

H
N−

1
4 +R

1
2
−η
(
P

H

) 1
2

N−
1
10 +R−η

� Hmax(1−ξ,−η)PN−
1
4 +H−ηP

1
2N−

1
10 +R−η

� 1 +H−ηN
1
40 � 1 +H−θηN

1
40 � 1, (6.10)

if H � N θ with θ satisfying (5.6). This establishes (6.8). Applying Lemma 6.1(i) again, we can

bound the left-hand side of (6.9) as

� g−ξ+ητ(g)
H

P
N

1
4T2L

c

{
Rmax(2−ξ,1−η) P

H
N−

1
4 +R

1
2
−ηT

− 1
2

0

P

H
N−

1
10 + 1

}
.

By (6.10), the above quantity within braces is � 1, if H � N θ with θ satisfying (5.6). This

establishes (6.9), and hence Lemma 5.4. �
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