
ADDITIVE REPRESENTATION IN SHORT INTERVALS, I:

WARING’S PROBLEM FOR CUBES

J. Brüdern and T. D. Wooley1

1. Introduction. Although available technology frequently fails to establish that
all large integers are represented in some prescribed additive form, there are many
situations in which one is nonetheless able to conclude that almost all such integers
are thus represented. When the numbers that we seek to represent lie in some thin
subsequence of the integers, the existence of such a conclusion might reasonably be
construed as additional evidence in favour of the assertion that all large integers
are represented in the given form. Pursuing this line of enquiry, a sequence of
papers arising from work of the authors joint with Kawada has been devoted to the
investigation of exceptional sets primarily in thin polynomial sequences (see [5], [6],
[7], [8]), and also in certain arithmetic sequences such as the set of prime numbers
(see [9]). On this occasion, we turn our attention to the problem of establishing
strong exceptional set estimates in short intervals, a topic that has already received
much attention in the literature (see especially [1], [10], [14], [15], [17] and [18]).
Although our ideas in this context are quite widely applicable, we concentrate in this
paper on applications to Waring’s problem for cubes. The reader will experience no
difficulty in generalising our results to analogous problems involving higher powers.

Denote by Es(N) the number of natural numbers up to N that cannot be written
as the sum of s cubes of natural numbers. After work of Linnik [16] and Davenport
[11], respectively, it is known that Es(N) � 1 for s ≥ 7, and that Es(N) = o(N)
for s ≥ 4. Indeed, the most recent developments in the circle method permit one
to show that whenever ε is a sufficiently small positive number, then

E4(N)� N37/42−ε, E5(N)� N5/7−ε and E6(N)� N23/42−ε (1.1)

(see Brüdern [4] and Wooley [23], [24] for the first of these estimates, and the
discussion in §1 of Brüdern, Kawada and Wooley [5] for the second and third
estimates). When 4 ≤ s ≤ 6, denote by βs the least non-negative number satisfying
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the property that whenever θ > βs, and η is a sufficiently small positive number,
then one has

Es(N +Nθ)− Es(N)� Nθ−η.

In view of (1.1), it is of course trivial that β4 < 37/42, β5 < 5/7 and β6 < 23/42.
The first non-trivial results concerning exceptional sets for sums of cubes in short

intervals are due to Brüdern and Watt, who established that β4 ≤ 3/4 (see Theorem
2 of [10]). This conclusion was subsequently improved by Kawada [14], who proved
that

β4 ≤ 1585/2169 = 0.730751 . . . . (1.2)

Note that whenever almost all integers in the interval[
N − [N1/3]3, N − [N1/3]3 +M

]
are sums of s cubes of natural numbers, then almost all integers in the interval
[N,N + M ] are sums of s + 1 cubes of natural numbers. It is therefore apparent
that βs ≤ 2

3βs−1 (s = 5, 6), whence, in particular, Kawada’s bound (1.2) leads to
the bounds

β5 < 0.487168 and β6 < 0.324779. (1.3)

Following the development of an auxiliary mean value estimate in §2, we are able to
exploit the ideas underlying papers in our earlier series joint with Kawada in order
to establish, in §3, a conclusion that yields a further improvement in the estimate
for β6 provided in (1.3).

Theorem 1.1. Whenever 17/63 < θ ≤ 1, and η is a sufficiently small positive
number, one has

E6(N +Nθ)− E6(N)� Nθ−η.

In particular, one has
β6 ≤ 17/63 = 0.269841 . . . .

We remark that by incorporating the mean value estimates of Wooley [24] into
the arguments of Brüdern [4] underlying Lemma 3.2 of [5], one would obtain the
slightly sharper upper bound β6 < 0.269674. We are also able to establish a bound
for β5 slightly sharper than that recorded in (1.3). In this instance our improve-
ments are more modest than those embodied in Theorem 1.1, and the associated
methods are considerably more complicated. Following the preparation of an aux-
iliary estimate in §4, we therefore defer the proof of this new bound to §5.

Theorem 1.2. Whenever 10/21 ≤ θ ≤ 1, and η is a sufficiently small positive
number, one has

E5(N +Nθ)− E5(N)� Nθ−η.

In particular, one has
β5 ≤ 10/21 = 0.476190 . . . .
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We turn our attention next to analogues of the above exceptional set problems
in which one seeks to show that the expected asymptotic formula for the number
of representations holds almost always. Denote by Rs(n) the number of represen-
tations of n as the sum of s cubes of natural numbers. A heuristic application of
the circle method suggests that for s ≥ 4, one should have

Rs(n) =
Γ(4/3)s

Γ(s/3)
Ss(n)ns/3−1 + o(ns/3−1), (1.4)

where

Ss(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ar3/q)
)s
e(−na/q), (1.5)

and e(z) denotes e2πiz. It is known that for s ≥ 4, the singular series Ss(n) satisfies
the lower bound Ss(n) � 1 (see, for example, Theorem 4.5 of Vaughan [22]), and
so the relation (1.4) does indeed constitute an asymptotic formula. In order to
measure the frequency with which the expected asymptotic formula (1.4) might

fail, when ψ(τ) is a function of a positive variable τ , we define Ẽs(N ;ψ) to be the
number of integers n with 1 ≤ n ≤ N for which∣∣∣∣Rs(n)− Γ(4/3)s

Γ(s/3)
Ss(n)ns/3−1

∣∣∣∣ > ns/3−1ψ(n)−1. (1.6)

As was essentially pointed out in [7], it follows from work of Vaughan [19], as refined
by Boklan [2], that whenever ψ(τ) is an increasing function growing sufficiently
slowly, then one has

Ẽ4+t(N ;ψ)� N1−t/6(logN)ε−3+t/2ψ(N)2 (0 ≤ t ≤ 3). (1.7)

Moreover, the celebrated work of Vaughan [19] shows, under the same hypotheses

on ψ, that Ẽ8(N ;ψ)� 1. The bound (1.7) has recently been sharpened by Wooley
[25] in the case t = 3 to obtain

Ẽ7(N ;ψ)� N4/9+ε. (1.8)

Developing the ideas from our previous work [7], joint with Kawada, concerning
asymptotic formulae, we establish in §6 a short intervals analogue of the above

bounds for Ẽs(N ;ψ) for 5 ≤ s ≤ 7.

Theorem 1.3. Suppose that ψ(τ) is a function of a positive variable τ , increasing
monotonically to infinity, and satisfying ψ(τ) = O(τ δ) for some sufficiently small
positive number δ. Also, let M and N be large positive numbers with M ≤ N . Then
for 1 ≤ t ≤ 3, and for each positive number ε, one has

Ẽ4+t(N +M ;ψ)−Ẽ4+t(N ;ψ)

� (N (5−t)/6 +MN (1−t)/6)(logN)ε−(7−t)/2ψ(N)2.



4 BRÜDERN AND WOOLEY

Plainly, the conclusion of Theorem 1.3 provides non-trivial estimates for excep-
tional sets of integers of size N , in short intervals of size

N2/3(logN)ε−3, for sums of 5 cubes,

N1/2(logN)ε−5/2, for sums of 6 cubes,

N1/3(logN)ε−2, for sums of 7 cubes.

For sums of 4 cubes, meanwhile, one has the earlier conclusion of Brüdern and Watt
[10] demonstrating that whenever M = Nθ with 5/6 < θ < 1, then one has

Ẽ4(N +M ; (log τ)1/5)− Ẽ4(N ; (log τ)1/5)�M(logN)−1/4.

It is evident that both the latter conclusion, and the estimates stemming from
Theorem 1.3, go beyond what is trivially available via the upper bounds (1.7) and
(1.8). Perhaps it is worth remarking also that the argument used to establish
Theorem 1.3 is easily adapted to show that whenever M = Nθ with θ > 1/6, and
δ is a sufficiently small positive number satisfying 2δ < θ − 1/6, then one has

Ẽ8(N +M ; τ δ)− Ẽ8(N ; τ δ)�MN−δ,

a conclusion that goes beyond that automatically available from the aforementioned
result of Vaughan concerning sums of eight cubes.

Since the basic plan of attack in such problems is described in detail within
our earlier paper [5] joint with Kawada, we avoid discussing details of strategy
at this point. It is sufficient to remark that we encode information concerning
exceptional integers within an exponential sum, and then exploit this exponential
sum explicitly via mean value estimates familiar to those expert in applications
of the circle method. This approach retains the local information concerning the
set of exceptions that is more difficult to exploit via more traditional approaches
involving the use of Bessel’s inequality.

Throughout, the letter ε will denote a sufficiently small positive number. We
take P to be the basic parameter, a large real number depending at most on ε.
We use � and � to denote Vinogradov’s well-known notation, implicit constants
depending at most on ε. Sometimes we make use of vector notation. For example,
the expression (c1, . . . , ct) is abbreviated to c. Also we write [x] for the greatest
integer not exceeding x. In an effort to simplify our analysis, we adopt the following
convention concerning the parameter ε. Whenever ε appears in a statement, we
assert that for each ε > 0 the statement holds for sufficiently large values of the main
parameter. Note that the “value” of ε may consequently change from statement to
statement, and hence also the dependence of implicit constants on ε.

The referees of this paper made numerous careful suggestions, and the authors
gratefully acknowledge the improvements resulting from the revision of the first
version of this manuscript.
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2. An auxiliary mean value estimate. We establish in this section a mean
value estimate crucial to the strength of Theorem 1.1. Before announcing this
bound, we introduce some notation. Let P be a large positive number, and take
M to be a real number with 1 ≤ M ≤ P 1/3. We then write Q = PM−1 and
H = PM−3. Next let N and Z be large positive numbers, and suppose that Z is a
set of integers with Z ⊆ [N,N +Z]. It is convenient to abbreviate card(Z) simply

to Ẑ. Finally, we introduce the exponential sums

f(α) =
∑

P<x≤2P

e(αx3), g(α) =
∑

Q<y≤2Q

e(αy3)

and

K(α) =
∑
n∈Z

e(nα).

Lemma 2.1. Suppose that the parameters M , P , Q, Z, and the quantity Ẑ, satisfy
the inequalities

M3 ≤ Ẑ ≤ Z ≤ min{2P,Q2}.

Then for each positive number ε, one has∫ 1

0

|f(α)g(α)K(α)|2dα� P ε
(

(P + P 1/2H)QẐ + (PQ)1/2(P +H2)1/2Ẑ3/2
)
.

(2.1)

Proof. On considering the underlying diophantine equation, it follows from orthog-
onality that the integral on the left hand side of (2.1) is equal to the number of
solutions of the diophantine equation

x31 − x32 = y31 − y32 + n1 − n2, (2.2)

with P < xi ≤ 2P (i = 1, 2), Q < yj ≤ 2Q (j = 1, 2) and nl ∈ Z (l = 1, 2).
Given any solution x, y, n counted by the latter equation, it is evident from our
hypotheses on Z that

|y31 − y32 + n1 − n2| < (2Q)3 + Z < 9Q3.

Meanwhile, whenever x1 6= x2, one has

9Q3 > |x31 − x32| > 3P 2|x1 − x2|,

and thus |x1 − x2| < 3H. In the latter situation, on substituting z = x1 + x2 and
h = x1 − x2, we deduce from (2.2) that

h(3z2 + h2) = 4(y31 − y32 + n1 − n2),
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wherein 1 ≤ z ≤ 4P and 1 ≤ |h| ≤ 3H. Write

F (α) =
∑

1≤h≤3H

∑
1≤z≤4P

e(αh(3z2 + h2)).

Then on considering the underlying diophantine equations, we conclude thus far
that ∫ 1

0

|f(α)g(α)K(α)|2dα� PI1 + I2, (2.3)

where

I1 =

∫ 1

0

|g(α)K(α)|2dα and I2 =

∫ 1

0

|F (α)g(4α)2K(4α)2|dα. (2.4)

The mean value I1 is easily estimated. By orthogonality, one finds that I1 is
bounded above by the number of integral solutions of the equation

y31 − y32 = n1 − n2,

with Q < yj ≤ 2Q (j = 1, 2) and nl ∈ Z (l = 1, 2). If such a solution were to exist
with y1 6= y2, then one would have

3Q2 < |y31 − y32 | = |n1 − n2| ≤ Z.

Since the latter condition contradicts our hypothesis that Z ≤ Q2, we conclude
that, necessarily, one has y1 = y2 and n1 = n2, whence

I1 � QẐ. (2.5)

We estimate I2 by means of the Hardy-Littlewood method. Define the set of
major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ PQ−3},

with 0 ≤ a ≤ q ≤ P and (a, q) = 1. Also, define the corresponding set of minor
arcs by m = [0, 1) \M. The argument of the proof of Lemma 3.1 of Vaughan [21]
shows that whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |α− a/q| ≤ q−2, then
one has ∑

1≤h≤3H

∣∣∣ ∑
1≤z≤4P

e(αh(3z2 + h2))
∣∣∣2

� P ε
(

P 2H

q +Q3|qα− a|
+ PH + q +Q3|qα− a|

)
.
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By Cauchy’s inequality, therefore, one deduces that under the same hypotheses,
one has

F (α)� P εH1/2

(
P 2H

q +Q3|qα− a|
+ PH + q +Q3|qα− a|

)1/2

. (2.6)

Suppose that α ∈ m. By Dirichlet’s approximation theorem, there exist a ∈ Z and
q ∈ N with 0 ≤ a ≤ q ≤ P−1Q3, (a, q) = 1 and |qα − a| ≤ PQ−3. But α /∈ M, so
that necessarily one has q > P . We therefore conclude from (2.6) that

sup
α∈m
|F (α)| � P εH1/2(PH + P−1Q3 + P )1/2 � P 1/2+εH.

On applying the latter bound in combination with Schwarz’s inequality, and recall-
ing the bound (2.5), we thus deduce from (2.4) that

I2 ≤
(

sup
α∈m
|F (α)|

)
I1 +

∫
M

|F (α)g(4α)2K(4α)2|dα

� P 1/2+εHQẐ + I
1/2
3 I

1/2
4 , (2.7)

where we write

I3 =

∫ 1

0

|F (α)2K(4α)2|dα and I4 =

∫
M

|g(4α)4K(4α)2|dα.

By orthogonality, the mean value I3 is bounded above by the number of integral
solutions of the equation

h1(3z21 + h21)− h2(3z22 + h22) = 4(n1 − n2), (2.8)

with 1 ≤ hi ≤ 3H (i = 1, 2), 1 ≤ zj ≤ 4P (j = 1, 2) and nl ∈ Z (l = 1, 2). Let I5
denote the number of the latter solutions for which

h31 − h32 = 4(n1 − n2), (2.9)

and let I6 denote the corresponding number of solutions for which (2.9) fails to

hold. Consider first any one of the O(H2Ẑ2) possible choices of h and n for which
(2.9) does not hold. On writing ν for the fixed integer 4(n1 − n2) + h32 − h31 6= 0,
we see from (2.8) that 3h1z

2
1 − 3h2z

2
2 = ν. But then the elementary theory of

binary quadratic forms (see, for example, Estermann [12]) shows that the number
of possible choices for z1 and z2 is O(P ε). Thus we find that

I6 � P εH2Ẑ2. (2.10)

Consider next any one of the O(Ẑ2) possible choices for n with n1 6= n2. By an
elementary divisor function estimate, there are O(Hε) possible choices for h1 − h2
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and h21 + h1h2 + h22 satisfying (2.9), whence O(Hε) possible choices for h1 and h2.
Given a fixed such choice of n and h, the equation (2.8) becomes h1z

2
1 = h2z

2
2 ,

whence there are at most 4P possible choices for z. The number of solutions h, z,

n counted by I5 with n1 6= n2 is therefore O(HεPẐ2). Plainly, the corresponding

number with n1 = n2, and consequently also h1 = h2 and z1 = z2, is O(PHẐ).
Then we conclude that

I5 � HεPẐ2 + PHẐ,

whence, on recalling (2.10), we have

I3 � P ε(H2 + P )Ẑ2 + PHẐ. (2.11)

It remains to estimate I4, and this requires some further notation. Write

S(q, a) =

q∑
r=1

e(ar3/q) and v(β;L) =

∫ 2L

L

e(βγ3)dγ. (2.12)

We then define the function g∗(α) for α ∈ [0, 1) by putting

g∗(α) = q−1S(q, 4a)v(4(α− a/q);Q),

when α ∈ M(q, a) ⊆ M, and by setting g∗(α) = 0 otherwise. It follows from
Theorem 4.1 of Vaughan [22] that

sup
α∈M

|g(4α)− g∗(α)| � P 1/2+ε,

and hence we deduce that

I4 �
∫
M

|g(4α)g∗(α)K(4α)|2dα+ P 1+εI1,

where I1 is defined as in (2.4). Write

I7 =

∫
M

|g∗(α)4K(4α)2|dα.

Then on applying Schwarz’s inequality, and recalling the bound (2.5), we obtain

I4 � I
1/2
4 I

1/2
7 + P 1+εQẐ,

whence
I4 � I7 + P 1+εQẐ. (2.13)

But the methods of Chapter 4 of Vaughan [22] suffice to establish that

I7 ≤ K(0)2
∫
M

|g∗(α)|4dα� Q1+εẐ2,

and thus we conclude from (2.13) that

I4 � P 1+εQẐ +Q1+εẐ2. (2.14)

On recalling our hypotheses concerning Ẑ, we find from (2.7), (2.11) and (2.14)
that

I2 � P 1/2+εHQẐ + P ε(P +H2)1/2Ẑ(PQẐ)1/2.

Finally, the upper bound recorded in the statement of the lemma follows on recalling
(2.3) and (2.5).
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3. Sums of six cubes in short intervals. Our objective in this section is the
proof of Theorem 1.1. The skeleton of our argument here follows closely the pattern
established in previous parts of our earlier series of papers joint with Kawada,
though we require some preparation in order to bring our analysis to a successful
conclusion. We consider a large natural number N and a positive number θ with
17/63 < θ ≤ 1, and we write Z = Nθ. Define next Z = Z(N,Z) to be the set of
integers n with N < n ≤ N + Z that cannot be written as the sum of 6 cubes of

natural numbers. It is convenient to abbreviate card(Z(N,Z)) to Ẑ = Ẑ(N,Z).
Write δ = 1

2 (θ − 17/63). We claim that the conclusion of Theorem 1.1 follows

on demonstrating that whenever Z ≤ N1/3, then one has Ẑ = O(ZN−δ/2). For if
Z > N1/3, then we may subdivide the interval (N,N+Z] into at most [ZN−1/3]+1

subintervals (N0, N0 + N
1/3
0 ] of length N

1/3
0 , on each of which we may infer that

Ẑ(N0, N
1/3
0 )� N

1/3−δ/2
0 . But then we have

Ẑ(N,Z)� (ZN−1/3 + 1)N1/3−δ/2 � ZN−δ/2,

and this establishes our earlier claim. The conclusion of Theorem 1.1 follows on
noting that

Ẑ(N,Z) = E6(N + Z)− E6(N).

Henceforth, therefore, we may suppose that θ ≤ 1/3.

We take P = 1
2N

1/3, M = P 1/6, and define Q and H as in §2. It follows that

Z > N17/63 > N1/6+2δ > M3Nδ,

and thus there is no loss of generality in supposing that Ẑ ≥ M3, for otherwise

one has Ẑ < M3 < ZN−δ, and this suffices to establish Theorem 1.1 as before.
In combination with the discussion of the previous paragraph, we may suppose
henceforth that the hypotheses of Lemma 2.1 are satisfied.

In order to make use of recent technology employed in Waring’s problem for
cubes, we recall some generating functions introduced in Brüdern, Kawada and
Wooley [5]. Let η be a sufficiently small positive number depending at most on ε,
and consider a real number R with P η/2 < R ≤ P η. We write

S = P 6/7, Y = P 1/7,

and define the generating functions

fp(α) =
∑

P<x≤2P
p-x

e(αx3), g(α) =
∑

S<y≤2S

e(αy3), h(α) =
∑

z∈A(S,R)

e(αz3),

where

A(S,R) = {z ∈ [1, S] ∩ Z : p|z and p prime ⇒ p ≤ R}.
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Finally, we define the generating function

F(α) =
∑

Y <p≤2Y
p≡2 (mod 3)

fp(α)g(αp3)h(αp3)2,

where the summation is over prime numbers.
We may now begin our proof of Theorem 1.1 in earnest. Recall the definition of

the exponential sums f(α) and g(α) from §2, and write

R(n) =

∫ 1

0

F(α)f(α)g(α)e(−nα)dα. (3.1)

Then it is apparent that whenever n ∈ Z, one has R(n) = 0. Defining the expo-
nential sum K(α) as in §2, we therefore conclude from (3.1) that

∫ 1

0

F(α)f(α)g(α)K(−α)dα =
∑
n∈Z

R(n) = 0. (3.2)

We interpret (3.2) by means of the Hardy-Littlewood method. Write L = (logP )1/100,
and define P to be the union of the intervals

P(q, a) = {α ∈ [0, 1) : |qα− a| ≤ LP−3},

with 0 ≤ a ≤ q ≤ L and (a, q) = 1. We then denote the corresponding set of minor
arcs by p = [0, 1) \P. We have the following lower bound for the contribution of
the major arcs P to the integral R(n).

Lemma 3.1. Suppose that N < n ≤ N + Z. Then one has∫
P

F(α)f(α)g(α)e(−nα)dα�M−1Y S3(log Y )−1.

Proof. By following the argument of the proof of Lemma 2.1 of [5], one finds without
difficulty that for N < n ≤ N + Z, one has∫

P

F(α)f(α)g(α)e(−nα)dα� P−3F(0)f(0)g(0)

� P−3(Y PS3(log Y )−1)PQ.

The presence of the shortened exponential sum g(α) in place of a longer one causes
no difficulties in the implicit analysis. The conclusion of the lemma consequently
follows on recalling that Q = PM−1.
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Employing the lower bound provided by Lemma 3.1 together with the definition
of K(α), we see that∫

P

F(α)f(α)g(α)K(−α)dα�
∑
n∈Z

M−1Y S3(log Y )−1

= ẐM−1Y S3(log Y )−1.

On substituting the latter bound into (3.2), we conclude thus far that∣∣∣∫
p

F(α)f(α)g(α)K(−α)dα
∣∣∣� ẐM−1Y S3(log Y )−1. (3.3)

We now aim to obtain an upper bound for the left hand side of the inequality (3.3),

and thereby obtain an upper bound for Ẑ.
Our next step requires a further Hardy-Littlewood dissection and further nota-

tion. We define the set of major arcs W to be the union of the intervals

W(q, a) = {α ∈ [0, 1) : |qα− a| ≤ P−9/4},

with 0 ≤ a ≤ q ≤ P 3/4 and (a, q) = 1. We then put w = [0, 1) \W. Recall the
notation introduced in (2.12), and define also

S(q, a, p) = S(q, a)− p−1S(q, ap3).

Further, define the functions f∗p(α) and g∗p(α) for α ∈ [0, 1) by putting

f∗p(α) = q−1S(q, a, p)v(α− a/q;P )

and
g∗p(α) = q−1S(q, ap3)v(p3(α− a/q);S),

when α ∈W(q, a) ⊆W, and by setting f∗p(α) = 0 and g∗p(α) = 0 otherwise. Finally,
we write

F1(α) =
∑

Y <p≤2Y
p≡2 (mod 3)

f∗p(α)g∗p(α)h(αp3)2.

The argument of [5] leading to the upper bound (3.13) of that paper reveals that∫
p∩W

|F1(α)f(α)g(α)|dα�M−1Y S3L−1/4(log Y )−1.

On substituting this estimate into (3.3), we find that

ẐM−1Y S3(log Y )−1 �
∫
p∩W

|(F(α)−F1(α))f(α)g(α)K(α)|dα

+

∫
w

|F(α)f(α)g(α)K(α)|dα.
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An application of Schwarz’s inequality consequently yields the bound

ẐM−1Y S3(log Y )−1 � (J
1/2
1 + J

1/2
2 )J

1/2
3 , (3.4)

where

J1 =

∫
W

|F(α)−F1(α)|2dα, J2 =

∫
w

|F(α)|2dα

and

J3 =

∫ 1

0

|f(α)g(α)K(α)|2dα.

But Lemma 3.2 of [5] demonstrates that

J1 � Y 2S6P−19/14 and J2 � Y 2S6P−19/14.

Then on applying Lemma 2.1 in order to estimate J3, and noting that our choice
of parameters ensures that P = H2, we deduce from (3.4) that for any positive
number ε, one has

ẐM−1Y S3(log Y )−1 � Y S3P ε−19/28(PQẐ + PQ1/2Ẑ3/2)1/2. (3.5)

The proof of Theorem 1.1 may now be swiftly completed. We take ε = δ/4, and
recall the definitions of P , M and Q. Then we find from (3.5) that

Ẑ �MQ1/2P 2ε−5/28Ẑ1/2 +MQ1/4P 2ε−5/28Ẑ3/4,

whence

Ẑ �M2QP 4ε−5/14 +M4QP 8ε−5/7

� P 17/21+δ + P 11/14+2δ � N17/63+δ.

Consequently, one has Ẑ � Nθ−δ = ZN−δ, and so the conclusion of Theorem 1.1
follows as before.

4. Differencing via diminishing ranges on minor arcs. A naive application
of Lemma 2.1 in pursuit of the proof of Theorem 1.2 would dictate a choice for the
parameter Z lying beyond that permitted by the hypotheses of the lemma. In such
circumstances, a suitable analogue of Lemma 2.1 relies on a differencing process
restricted to minor arcs, and it is the object of this section to establish such a mean
value estimate. Before proceeding further, we require some notation, and here we
economise by recycling that employed in §2. Let P be a large positive number, take
M = P 5/28, and put Q = PM−1 and H = PM−3. When 1 ≤ X ≤ P , we define
the set of major arcs N(X) to be the union of the intervals

N(q, a;X) = {α ∈ [0, 1) : |qα− a| ≤ XQ−3},

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. We then put

M = N(
√
P ) and m = [0, 1) \M.

Finally, we recall the definitions of the exponential sums f(α), g(α) and K(α) from
the preamble to Lemma 2.1.
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Proposition 4.1. Suppose that the parameters P , H, Z, and the quantity Ẑ,
satisfy

H2 ≤ Ẑ ≤ Z ≤ P 3/2.

Then for each positive number ε, one has∫
m

|f(α)g(α)K(α)|2dα� P ε(PQẐ + PHẐZ1/4 + P−5/4Q2ẐZ). (4.1)

We establish this proposition in several steps, and for ease of reference we sum-
marise these steps in the shape of a sequence of lemmata. On considering the
underlying diophantine equation, it follows from orthogonality that the integral∫ 1

0

|f(α)g(α)K(α)|2dα

is equal to the number of solutions of the diophantine equation (2.2) subject to
the associated conditions. The argument initiating the proof of Lemma 2.1 shows,
moreover, that whenever x, y, n is a solution of the latter equation counted by the
above integral, then |x1 − x2| < 3H. Here we note that H = Q3P−2 = P 13/28.
Write

F (α) =
∑
|h|≤3H

∑
P<x≤2P

P<x+h≤2P

e(αh(3x2 + 3xh+ h2)).

Then on considering the underlying diophantine equations, we may infer from the
above discussion that∫ 1

0

|f(α)g(α)K(α)|2dα =

∫ 1

0

F (α)|g(α)K(α)|2dα. (4.2)

We aim now to show that the major arc contributions on the left and right hand
sides of (4.2) are almost equal. From this one sees that the corresponding minor
arc contributions are likewise almost equal, and since the minor arc contribution
on the right hand side of (4.2) may be bounded above via conventional technology,
we obtain in this way the desired upper bound (4.1). Such a procedure occurs in
work of Vaughan [20] concerning Waring’s problem for sixth powers.

We begin by replacing g(α) by its major arc approximant. First we augment the
notation (2.12) by writing

w(β) =
1

3

∑
Q3<m≤8Q3

m−2/3e(βm).

We now define g∗(α) for α ∈ [0, 1) by putting

g∗(α) = q−1S(q, a)w(α− a/q),

when α ∈ N(q, a;P ) ⊆ N(P ), and by setting g∗(α) = 0 otherwise. Finally, when ω
is a complex-valued measurable function on [0, 1), define

Ξ(ω) =

∫
M

ω(α)|g(α)K(α)|2dα−
∫
M

ω(α)|g∗(α)K(α)|2dα.
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Lemma 4.2. One has Ξ(|f |2)� PQẐ.

Proof. From Theorem 4.1 of Vaughan [22], one finds that

sup
α∈M

|g(α)− g∗(α)| � P 1/4+ε, (4.3)

and hence
Ξ(|f |2)� P 1/2+εT1 + P 1/4+εT2, (4.4)

where

T1 =

∫ 1

0

|f(α)K(α)|2dα and T2 =

∫
M

|f(α)2g∗(α)K(α)2|dα. (4.5)

The estimate T1 � PẐ is immediate from the argument leading to (2.5). In order
to bound T2, we begin by observing that the methods of Chapter 4 of Vaughan [22]

establish that whenever α ∈ N(q, a;
√
P ) ⊆M, then one has

g∗(α)3 � Q3(q +Q3|qα− a|)−1.

On recalling our hypotheses on Ẑ, it therefore follows from Lemma 2 of Brüdern
[3] that ∫

M

|g∗(α)3K(α)2|dα� P ε(P 1/2Ẑ + Ẑ2)� P εẐ2. (4.6)

Observe next that the methods of Chapter 4 of Vaughan [22] also show that when-

ever α ∈ N(q, a;
√
P ) ⊆M, then

f(α)� P (q + P 3|qα− a|)−1/3 + q1/2+ε(1 + P 3|α− a/q|)1/2.
The hypotheses on M ensure that whenever α ∈ N(q, a;

√
P ) ⊆M, then

qε(q + P 3|qα− a|)� P 1/2+εM3 = P 29/28+ε � P 6/5−2ε.

Thus, under the same conditions on α, one has

f(α)3 � P 3(q + P 3|qα− a|)−1,
whence Lemma 2 of Brüdern [3] yields∫

M

|f(α)3K(α)2|dα� P ε(P 1/2Ẑ + Ẑ2)� P εẐ2. (4.7)

Finally, an application of Hölder’s inequality leads from (4.5), via (4.6) and (4.7),
to the upper bound

T2 ≤
(∫

M

|f(α)3K(α)2|dα
)2/3(∫

M

|g∗(α)3K(α)2|dα
)1/3

� P εẐ2. (4.8)

On substituting (4.8) along with our earlier bound for T1 into (4.4), and noting

that our hypotheses ensure that Q� P 3/4+ε and Ẑ � P 3/2, we conclude that

Ξ(|f |2)� P 3/2+εẐ + P 1/4+εẐ2 � PQẐ.

This completes the proof of the lemma.

We next establish a conclusion similar to that of Lemma 4.2 in which |f |2 is
replaced by F .
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Lemma 4.3. One has Ξ(F )� PQẐ.

Proof. In view of (4.3), one has

Ξ(F )� P 1/2+εT3 + P 1/4+εT4, (4.9)

where

T3 =

∫
M

|F (α)K(α)2|dα and T4 =

∫
M

|F (α)g∗(α)K(α)2|dα. (4.10)

It is convenient for future reference to define the function Υ(α) on [0, 1) by taking

Υ(α) = (q +Q3|qα− a|)−1,

when α ∈ N(q, a;H2) ⊆ N(H2), and by setting Υ(α) = 0 otherwise. On isolating
the term in F (α) corresponding to the diagonal contribution with h = 0, it follows
from the argument of the proof of Lemma 3.1 of Vaughan [21] (just as in the
derivation of (2.6) above) that

F (α)� P 1+ε + P 1/2+εH + P 1+εHΥ(α)1/2

� P 1+ε + P 1+εHΥ(α)1/2, (4.11)

uniformly in α ∈ [0, 1). When α ∈M, therefore, one has

F (α)� P 5/4+εHΥ(α),

whence we deduce from Lemma 2 of Brüdern [3] that

T3 � P 5/4+εH

∫
M

Υ(α)|K(α)|2dα� P 5/4+εHQε−3(P 1/2Ẑ + Ẑ2). (4.12)

We have already remarked that when α ∈ M, one has g∗(α) � QΥ(α)1/3, and
thus it follows from (4.11) that whenever α ∈M,

F (α)g∗(α)� P 1+εHQΥ(α)5/6 � HP 13/12+εQΥ(α).

Consequently, again by Lemma 2 of Brüdern [3], we find from (4.10) that

T4 � HP 13/12+εQ

∫
M

Υ(α)|K(α)|2dα� HP 13/12+εQε−2(P 1/2Ẑ + Ẑ2). (4.13)

Finally, on substituting (4.12) and (4.13) into (4.9), and recalling our hypotheses

concerning P , Q and Ẑ, we obtain the upper bound

Ξ(F )� P ε(P 7/4HQ−3 +HP 4/3Q−2)Ẑ2

� P ε(P−1/4 + P 1/3M−1)Ẑ2 � PQẐ.
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This completes the proof of the lemma.

Our next objective is the completion of the singular integrals implicitly associated
with F and |f |2. The dependence on q of the width of our major arcs generates sev-
eral difficulties in this process. For the sake of concision, write Φ(α) = F (α)|K(α)|2.
Also, define the multiplicative function κ(q) on prime powers πl (l ∈ N) by means
of the relations

κ(π3l) = π−l, κ(π3l+1) = 2π−l−1/2 and κ(π3l+2) = π−l−1. (4.14)

We note for future reference that it follows from Lemmata 4.3–4.5 of Vaughan [22]
that whenever q ∈ N and a ∈ Z satisfy (a, q) = 1, then one has q−1S(q, a)� κ(q).
Finally, when Θ is a complex-valued measurable function on [0, 1), we write

Ω(Θ) =
∑

1≤q≤
√
P

q∑
a=1

(a,q)=1

q−2|S(q, a)|2
∫ 1/2

−1/2
|w(β)|2Θ(β + a/q)dβ. (4.15)

Lemma 4.4. One has∫
M

F (α)|g∗(α)K(α)|2dα = Ω(Φ) +O(HP 3/4+εQ−1ẐZ).

Proof. Observe first that whenever 1 ≤ q ≤
√
P and

√
P/(qQ3) < |β| ≤ H2/(qQ3), (4.16)

then the estimate (4.11) shows that

F (β + a/q)� P 1+ε + P 3/4+εH � P 3/4+εH.

It therefore follows from the upper bound w(β) � Q(1 + Q3|β|)−1, provided by
Lemma 6.2 of Vaughan [22], that the estimate

|w(β)2Φ(β + a/q)| � HP 3/4+εQ2(1 +Q3|β|)−1|K(β + a/q)|2 (4.17)

holds throughout the range (4.16). Our hypotheses ensure that H2P−1/2 > P 1/4,

and so whenever q ≤
√
P and |β| > H2/(qQ3), it follows that

|β| > H2P−1/2Q−3 > P 1/4Q−3.

Our earlier estimate for w(β) therefore leads to the bound

|w(β)|2 � Q2(1 +Q3|β|)−2 � Q2P−1/4(1 +Q3|β|)−1,
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and so the upper bound (4.17) now follows, from a trivial estimate for F (α), also
in the range |β| > H2/(qQ3). We thus conclude from (4.15) that∫

M

F (α)|g∗(α)K(α)|2dα− Ω(Φ)� HP 3/4+εQ2Λ(
√
P ), (4.18)

where we write

Λ(U) =
∑

1≤q≤U

κ(q)2
q∑
a=1

(a,q)=1

∫ 1/2

−1/2
(1 +Q3|β|)−1|K(β + a/q)|2dβ. (4.19)

From (4.19), we have

Λ(U) =
∑

1≤q≤U

κ(q)2
∑

n,m∈Z
cq(n−m)

∫ 1/2

−1/2

e(β(n−m))

1 +Q3|β|
dβ,

where

cq(h) =

q∑
a=1

(a,q)=1

e(ah/q)

is Ramanujan’s sum. The standard estimate |cq(h)| ≤ (q, h) implies that

Λ(U)� Qε−3(T5 + T6), (4.20)

where

T5 = Ẑ
∑

1≤q≤U

qκ(q)2 and T6 =
∑

1≤q≤U

κ(q)2
∑

n,m∈Z
n 6=m

(q, n−m). (4.21)

But whenever n,m ∈ Z satisfy n 6= m, one has 1 ≤ |n−m| ≤ Z. Thus we find that∑
n,m∈Z
n 6=m

(q, n−m)� Ẑ
∑

1≤l≤Z

(q, l)� ẐZqε. (4.22)

The relations (4.14) imply, moreover, that∑
1≤q≤U

κ(q)2 �
∏
p≤U

(1 + 4p−1)� (logU)4,

and so we conclude from (4.20)–(4.22) that

Λ(U)� UεQε−3(UẐ + ẐZ). (4.23)

In view of (4.18), therefore, we have the upper bound∫
M

F (α)|g∗(α)K(α)|2dα− Ω(Φ)� HP 3/4+εQ−1(P 1/2Ẑ + ẐZ)

� HP 3/4+εQ−1ẐZ,

and this completes the proof of the lemma.

We also require an analogue of Lemma 4.4 in which F (α) is replaced by |f(α)|2.
We now write Ψ(α) = |f(α)K(α)|2, and recall the notation defined in (4.15).
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Lemma 4.5. One has∫
M

|f(α)g∗(α)K(α)|2dα = Ω(Ψ) +O(HP 3/4+εQ−1ẐZ).

Proof. We begin by observing that the methods of Chapters 4 and 6 of Vaughan
[22] demonstrate that whenever β ∈

[
− 1

2 ,
1
2

]
, and a ∈ Z, q ∈ N satisfy (a, q) = 1,

then
|f(β + a/q)|2 � q−2/3P 2(1 + P 3|β|)−2 + q1+ε(1 + P 3|β|).

Our earlier estimate for w(β) therefore reveals that

|f(β + a/q)w(β)|2 � P 2Q2

1 +Q3|β|
(T7 + T8), (4.24)

where
T7 = q−2/3(1 + P 3|β|)−2(1 +Q3|β|)−1

and
T8 = q1+εP−2(1 + P 3|β|)(1 +Q3|β|)−1.

On considering separately the cases in which |β| ≥ Q−3, and |β| < Q−3, respec-
tively, it is apparent that for all β one has

(1 + P 3|β|)(1 +Q3|β|)−1 � P 3Q−3 = M3.

Consequently, whenever q ≤
√
P , one has

T8 � P ε−3/2M3 = P ε−27/28 � P−11/14,

and if in addition β satisfies |β| ≥
√
P/(qQ3), then

T7 � q−2/3M3(
√
PM3/q)−3 � (

√
P )−2/3M−6 � P−11/14.

Thus we conclude from (4.24) that whenever q ≤
√
P and |β| ≥

√
P/(qQ3), then

|f(β + a/q)w(β)|2 � Q2P 17/14(1 +Q3|β|)−1. (4.25)

On recalling the definition of Ψ(α), it follows from (4.25) that∫
M

|f(α)g∗(α)K(α)|2dα− Ω(Ψ)� Q2P 17/14Λ(
√
P ),

where Λ is defined as in (4.19). The estimate (4.23) consequently leads to the bound∫
M

|f(α)g∗(α)K(α)|2dα− Ω(Ψ)� (Q2P 17/14)Qε−3(P 1/2Ẑ + ẐZ)

� Qε−1P 17/14ẐZ.

The conclusion of the lemma follows on recalling that Q = P 23/28 and H = P 13/28.

The main terms in the expansions established in Lemmata 4.4 and 4.5 are in
fact equal, as we now demonstrate.
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Lemma 4.6. One has Ω(Φ) = Ω(Ψ).

Proof. Write

J(l) =

∫ 1/2

−1/2
|w(β)|2e(βl)dβ,

and note that the definition of w(β) ensures that J(l) = 0 for |l| > 8Q3. It is
convenient also to write

χ(l) = e(la/q)J(l).

Then it follows from the definition of Ψ that∫ 1/2

−1/2
|w(β)|2Ψ(β + a/q)dβ =

∑
P<x,y≤2P

∑
m,n∈Z

χ(x3 − y3 + n−m). (4.26)

Thus, just as in the argument leading to (4.2) above, the condition that J(l) = 0
for |l| > 8Q3 implies that the only values of x and y contributing to the sum in
(4.26) are those with |x− y| < 3H. Following a change of variable, we deduce that∫ 1/2

−1/2
|w(β)|2Ψ(β + a/q)dβ

=
∑
|h|≤3H

∑
P<x≤2P

P<x+h≤2P

∑
m,n∈Z

χ(h(3x2 + 3xh+ h2) + n−m)

=

∫ 1/2

−1/2
|w(β)|2Φ(β + a/q)dβ.

The conclusion of the lemma is now immediate from (4.15).

Collecting together the conclusions of Lemmata 4.4–4.6, we see that∫
M

|f(α)g∗(α)K(α)|2dα−
∫
M

F (α)|g∗(α)K(α)|2dα� HP 3/4+εQ−1ẐZ,

so that in view of Lemmata 4.2 and 4.3, we have∫
M

|f(α)g(α)K(α)|2dα−
∫
M

F (α)|g(α)K(α)|2dα� PQẐ +HP 3/4+εQ−1ẐZ.

Finally, making use now of the relation (4.2), we conclude thus far that∫
m

|f(α)g(α)K(α)|2dα−
∫
m

F (α)|g(α)K(α)|2dα� PQẐ +HP 3/4+εQ−1ẐZ.

(4.27)
Our objective now is to estimate the second integral on the left hand side of (4.27),
and it transpires that a satisfactory bound here delivers the sought after conclusion
of Proposition 4.1.
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Lemma 4.7. One has∫
m

F (α)|g(α)K(α)|2dα� P ε(PQẐ + PHẐZ1/4 + P−5/4Q2ẐZ).

Proof. Write N = N(H2) and n = [0, 1) \N. Then it follows from (4.11) that

sup
α∈n
|F (α)| � P 1+ε.

The argument leading to (2.5) above, moreover, shows on this occasion that∫ 1

0

|g(α)K(α)|2dα� QẐ. (4.28)

Thus we find that∫
n

F (α)|g(α)K(α)|2dα�
(

sup
α∈n
|F (α)|

)∫ 1

0

|g(α)K(α)|2dα

� P 1+εQẐ. (4.29)

Observe next that (4.11) provides the upper bound

F (α)� P 1+εHΥ(α)1/2, (4.30)

valid uniformly for α ∈ N. We deduce from (4.30) that∫
N∩m

F (α)|g(α)K(α)|2dα� P 1+εHT9, (4.31)

where

T9 =

∫
N∩m

Υ(α)1/2|g(α)K(α)|2dα. (4.32)

But Theorem 4.1 of Vaughan [22] demonstrates that for α ∈ N,

|g(α)|1/2 � |g∗(α)|1/2 + P εΥ(α)−1/4. (4.33)

On substituting (4.33) into (4.32), we find that

T9 � T10 + P εT11, (4.34)

where

T10 =

∫
N∩m

Υ(α)1/2|g∗(α)g(α)3|1/2|K(α)|2dα (4.35)

and

T11 =

∫
N∩m

Υ(α)1/4|g(α)|3/2|K(α)|2dα. (4.36)
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But an application of Hölder’s inequality to (4.35) reveals that

T10 ≤ T 3/4
9 T

1/4
12 , (4.37)

where

T12 =

∫
N∩m

Υ(α)1/2|g∗(α)K(α)|2dα. (4.38)

We thus conclude from (4.34) and (4.37) that

T9 � P ε(T11 + T12). (4.39)

From Lemma 2 of Brüdern [3] one has∫
N

Υ(α)|K(α)|2dα� Qε−3(H2Ẑ + Ẑ2)� Qε−3Ẑ2.

By applying Hölder’s inequality to (4.36), and recalling (4.28), we therefore find
that

T11 ≤
(∫

N

Υ(α)|K(α)|2dα
)1/4(∫ 1

0

|g(α)K(α)|2dα
)3/4

� (Qε−3Ẑ2)1/4(QẐ)3/4 � P εẐ5/4. (4.40)

Meanwhile, on noting that Υ(α)� P−1/2 for α ∈ N ∩m, we find from (4.38) that

T12 � P−1/4
∫
N∩m

|g∗(α)K(α)|2dα. (4.41)

But on recalling (4.19) together with the upper bound (4.23), one has∫
N

|g∗(α)K(α)|2dα� Q2Λ(H2)� Qε−1(H2Ẑ + ẐZ)� Qε−1ẐZ.

We therefore conclude from (4.41) that

T12 � P ε−1/4Q−1ẐZ,

so that by collecting together (4.31), (4.39) and (4.40) together with this most
recent upper bound, we infer that∫

N∩m
F (α)|g(α)K(α)|2dα� P 1+εH(ẐZ1/4 + P−1/4Q−1ẐZ).

The conclusion of the lemma follows from this bound together with (4.29).

The conclusion of Proposition 4.1 is now immediate on substituting the estimate
provided by Lemma 4.7 into (4.27).
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5. Sums of five cubes in short intervals. We are now equipped to prove
Theorem 1.2. Let N be a large natural number, write P = 1

2N
1/3, and define M ,

Q and H as in §4. Let δ be a sufficiently small positive number, and put Z = P 10/7.
Define Z = Z(N,Z) to be the set of integers n with N < n ≤ N + Z that cannot
be written as the sum of 5 cubes of natural numbers. We aim to establish that
Ẑ � P 10/7−δ. We may assume without loss, therefore, that Ẑ � P 10/7−δ. As
in the discussion at the beginning of §3, the conclusion of Theorem 1.2 follows in
general from this restricted conclusion for the latter choice of Z. We continue to
make use of the exponential sums f(α) and g(α) from §4, but now introduce the
smooth Weyl sum

t(α) =
∑

x∈A(P,Pη)

e(αx3),

where, as usual, we suppose that η is a sufficiently small positive number. Write

ρ(n) =

∫ 1

0

f(α)2g(α)t(α)2e(−nα)dα. (5.1)

Then whenever n ∈ Z, one has ρ(n) = 0. Defining the exponential sum K(α) as in
§2 (and also, implicitly, as in §4), it follows from (5.1) that∫ 1

0

f(α)2g(α)t(α)2K(−α)dα = 0. (5.2)

We begin with a major arc estimate.

Lemma 5.1. One has∫
M

f(α)2g(α)t(α)2K(−α)dα� PQẐ.

Proof. Write L = (logN)1/100, and define the narrow set of major arcs P as in the
preamble to Lemma 3.1. Also, when 1 ≤ X ≤ P 3/2, let W(X) denote the union of
the intervals

W(q, a;X) = {α ∈ [0, 1) : |qα− a| ≤ XP−3},

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. We then put K(X) = W(2X) \W(X).

The methods of Chapter 4 of Vaughan [22] show that whenever α ∈ N(q, a;
√
P ) ⊆

M, then

g(α)� Q(q +Q3|qα− a|)−1/3 + q1/2+ε � Qq−1/3,

and

f(α)� κ(q)P (1 + P 3|α− a/q|)−1 + qε(q + P 3|qα− a|)1/2

� κ(q)P (1 + P 3|α− a/q|)−1 + P 1/4+εM3/2.
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But whenever α ∈ N(q, a;
√
P ) ⊆M and α ∈ K(X), one necessarily has

q + P 3|qα− a| > X,

and thus it follows, under the same conditions on α, that

f(α)2g(α)�P 1/2+εM3|g(α)|

+ κ(q)2P 2Q(1 + P 3|α− a/q|)−5/3(q + P 3|qα− a|)−1/3

�P 1/2+εM3|g(α)|+ κ(q)2P 2QX−1/3(1 + P 3|α− a/q|)−5/3.

We therefore conclude that∫
M∩K(X)

f(α)2g(α)t(α)2K(−α)dα� T13 + T14, (5.3)

where

T13 = P 1/2+εM3

∫ 1

0

|g(α)t(α)2K(α)|dα, (5.4)

T14 = P 2QX−1/3Ẑ
∑

1≤q≤2X

κ(q)2τ(q), (5.5)

and

τ(q) =

∫ ∞
−∞

q∑
a=1

(a,q)=1

|t(β + a/q)|2(1 + P 3|β|)−5/3dβ.

By Schwarz’s inequality, one has∫ 1

0

|g(α)t(α)2K(α)|dα ≤
(∫ 1

0

|g(α)K(α)|2dα
)1/2(∫ 1

0

|t(α)|4dα
)1/2

. (5.6)

Here, the first integral on the right hand side of (5.6) may be estimated via (4.28),
and the second by means of Hua’s lemma (see, for example, Lemma 2.5 of Vaughan
[22]), and hence we deduce from (5.4) that

T13 � P 1/2+εM3(QẐ)1/2(P 2+ε)1/2 � P 3/2+2εQ1/2M3Ẑ1/2. (5.7)

The expression (5.5), on the other hand, may be estimated via the argument of
the proof of Lemma 3.4 of Brüdern, Kawada and Wooley [5] (see also the proof of
Lemma 3.3 of the latter paper). In this way, one obtains

T14 � (P 2QX−1/3Ẑ)(XεP−1)� PQẐX−1/4. (5.8)

On substituting (5.7) and (5.8) into (5.3), and summing over the values X = 2iL

with X ≤
√
P and i ≥ 0, we may conclude thus far that∫

M\P
f(α)2g(α)t(α)2K(−α)dα� P 3/2+εQ1/2M3Ẑ1/2 + PQẐL−1/4. (5.9)
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The set of major arcs P are sufficiently few and narrow that arguments nowadays
considered routine (see §5 of Vaughan [21]) suffice to establish that for each integer
n with N < n ≤ N + Z, one has∫

P

f(α)2g(α)t(α)2e(−nα)dα� PQ.

It follows that ∫
P

f(α)2g(α)t(α)2K(−α)dα�
∑
n∈Z

PQ = PQẐ.

On recalling (5.9) and noting our hypotheses on H, P , Z and Ẑ, a modest compu-
tation confirms the desired lower bound.

We now return to the identity (5.2). Since [0, 1) is the disjoint union of M and
m, it follows from Lemma 5.1 that∫

m

f(α)2g(α)t(α)2K(−α)dα = −
∫
M

f(α)2g(α)t(α)2K(−α)dα,

whence ∫
m

|f(α)2g(α)t(α)2K(α)|dα� PQẐ. (5.10)

But by Schwarz’s inequality, one has∫
m

|f(α)2g(α)t(α)2K(α)|dα

≤
(∫

m

|f(α)g(α)K(α)|2dα
)1/2(∫ 1

0

|f(α)2t(α)4|dα
)1/2

.
(5.11)

On considering the underlying diophantine equation, it follows from Theorem 1.2
of Wooley [23] that ∫ 1

0

|f(α)2t(α)4|dα� P 13/4−9δ,

provided that we take δ < 10−5. Then on substituting this estimate together with
the conclusion of Proposition 4.1 into (5.11), we find that∫

m

|f(α)2g(α)t(α)2K(α)|dα

� (PQẐ + PHẐZ1/4 + P−5/4Q2ẐZ)1/2(P 13/8−4δ).

Consequently, the lower bound (5.10) implies that

PQẐ � P 17/8−4δQ1/2Ẑ1/2 + P 17/8−4δH1/2Ẑ1/2Z1/8 + P 1−4δQ(ẐZ)1/2.
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On recalling the definitions of the relevant parameters, we thus arrive first at the
estimate

Ẑ � Ẑ1/2(P 5/8−4δM1/2 + P 5/8−4δM−1/2(P 10/7)1/8 + P 5/7−4δ),

and then
Ẑ � (P 5/7−4δ)2 + P 10/7−8δ � P 10/7−8δ.

The relation P � N1/3 consequently leads to the upper bound

Ẑ � N10/21−δ � ZN−δ,

and the conclusion of Theorem 1.2 follows by summing over the blocks discussed
at the start of section 3.

6. The asymptotic formula for sums of cubes. We turn our attention in this
section to the proof of Theorem 1.3. It transpires that the argument here is far
less involved than that of §§2 and 3, and can be modelled closely on the analysis
described in §2 of Brüdern, Kawada and Wooley [7].

Let t be an integer with 1 ≤ t ≤ 3, and write s = 4 + t. Also, let ψ(τ) = ψs(τ)
be a function of the type described in the statement of Theorem 1.3. We consider
large positive numbers M and N with M ≤ N , and define Zs = Zs(N,M) to be
the set of integers n with N < n ≤ N +M for which the lower bound (1.6) holds.
It is convenient to abbreviate card(Zs(N,M)) simply to Zs = Zs(N,M). As in the
discussion of the first paragraph of §3, the conclusion of Theorem 1.3 follows on
demonstrating that whenever M ≤ 1

2N
2/3, then one has

Zs � N (9−s)/6(logN)ε−(11−s)/2ψs(N)2 (5 ≤ s ≤ 7). (6.1)

For if M > 1
2N

2/3, then we may subdivide the interval (N,N + M ] into at most

[2MN−2/3] + 1 subintervals (N0, N0 + 1
2N

2/3
0 ] of length 1

2N
2/3
0 , on each of which

we may apply the bound (6.1). We thus obtain the estimate

Zs(N,M)� (MN−2/3 + 1)N (9−s)/6(logN)ε−(11−s)/2ψs(N)2,

and the conclusion of Theorem 1.3 follows on noting that

Zs(N,M) = Ẽs(N +M ;ψs)− Ẽs(N ;ψs).

We take P = 1
2N

1/3, and define the exponential sums

h(α) =
∑

1≤x≤3P

e(αx3) and h1(α) =
∑

P<y≤3P

e(αy3).

In view of the discussion of the previous paragraph, we may suppose in what follows
that 1 ≤ M ≤ 1

2N
2/3 = 2P 2. Consider an integer n with N < n ≤ N + M , and

suppose that x1, . . . , xs are natural numbers satisfying the equation

n = x31 + · · ·+ x3s.
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It is apparent that one necessarily has

max
1≤i≤s

xi ≥ (n/s)1/3 > (N/8)1/3 = P, (6.2)

as well as
max
1≤i≤s

xi ≤ n1/3 ≤ (2N)1/3 < 3P. (6.3)

By orthogonality, it follows from (6.2) that∫ 1

0

(h(α)− h1(α))se(−nα)dα = 0,

and from (6.3) we see that

Rs(n) =

∫ 1

0

h(α)se(−nα)dα.

On substituting the former into the latter, it follows that

Rs(n) =

∫ 1

0

(h(α)s − (h(α)− h1(α))s) e(−nα)dα

=
s∑
j=1

(−1)j+1

(
s

j

)
Rs,j([0, 1)), (6.4)

where we write

Rs,j(B) =

∫
B

h1(α)jh(α)s−je(−nα)dα. (6.5)

Let M denote the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ P (6N)−1},

with 0 ≤ a ≤ q ≤ P/6 and (a, q) = 1. Also, recall the definition (1.5) of the
singular series Ss(n). Then it follows from the methods underlying the proof of
Theorem 4.4 of Vaughan [22] that there is a positive number ν such that whenever
N < n ≤ N +M , one has

s∑
j=1

(−1)j+1

(
s

j

)
Rs,j(M) =

Γ(4/3)s

Γ(s/3)
Ss(n)ns/3−1 +O(ns/3−1−ν). (6.6)

Since this observation is not quite transparent, we offer some additional explanation.
On following the argument of the proof of Theorem 4.4 of Vaughan [22], one finds
that for 1 ≤ j ≤ s one has

Rs,j(M) = Js,j(n)Ss(n) +O(ns/3−1−ν), (6.7)
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where

Js,j(n) =

∫ ∞
−∞

∫
Bs,j

e(β(γ31 + · · ·+ γ3s − n))dγdβ,

and

Bs,j = [P, 3P ]j × [0, 3P ]s−j .

It follows that
s∑
j=1

(−1)j+1

(
s

j

)
Js,j(n) = J(3P )− J(P ), (6.8)

where we write

J(Q) =

∫ ∞
−∞

∫
[0,Q]s

e(β(γ31 + · · ·+ γ3s − n))dγdβ.

But an application of Fourier’s integral formula, just as in the classical treatment,
reveals that

J(3P ) =
Γ(4/3)s

Γ(s/3)
ns/3−1. (6.9)

Meanwhile, on noting that sP 3 < n, a second application of Fourier’s integral
formula leads to the conclusion that

J(P ) = 0. (6.10)

The desired formula (6.6) now follows from (6.7)–(6.10).

Now write m = [0, 1) \M. Then for n ∈ Zs(N,M), on recalling our implicit
hypothesis that ψs(n) = O(nδ) for some sufficiently small positive number δ, it
follows from (1.6), (6.4) and (6.6) that

∣∣∣ s∑
j=1

(−1)j+1

(
s

j

)
Rs,j(m)

∣∣∣ > 1
2n

s/3−1ψs(n)−1,

whence
s∑
j=1

(
s

j

)
|Rs,j(m)| > 1

2n
s/3−1ψs(n)−1. (6.11)

Define the complex numbers ηs,j(n) by taking ηs,j(n) = 0 for n /∈ Zs(N,M), and
when n ∈ Zs(N,M) by means of the equation

∣∣∣∫
m

h1(α)jh(α)s−je(−nα)dα
∣∣∣ = ηs,j(n)

∫
m

h1(α)jh(α)s−je(−nα)dα.
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Plainly, one has |ηs,j(n)| ≤ 1 for every natural number n. In view of (6.5) and
(6.11), we deduce that

Ns/3−1ψs(N)−1Zs(N,M)

�
s∑
j=1

(
s

j

) ∑
N<n≤N+M

ηs,j(n)

∫
m

h1(α)jh(α)s−je(−nα)dα

=

s∑
j=1

(
s

j

)∫
m

h1(α)jh(α)s−jKs,j(−α)dα,

where
Ks,j(α) =

∑
N<n≤N+M

ηs,j(n)e(nα). (6.12)

Thus we conclude that

Ns/3−1ψs(N)−1Zs(N,M)� max
1≤j≤s

∫
m

|h1(α)jh(α)s−jKs,j(α)|dα. (6.13)

Let J be the index for which the maximum is achieved on the right hand side of
(6.13). Then by applying Hölder’s inequality, one obtains∫

m

|h1(α)Jh(α)s−JKs,J(α)|dα ≤ I1/21 I
(J−1)/(2s−2)
2 I(s−J)/(2s−2)3 , (6.14)

where

I1 =

∫ 1

0

|h1(α)Ks,J(α)|2dα, (6.15)

I2 =

∫
m

|h1(α)|2s−2dα and I3 =

∫
m

|h(α)|2s−2dα.

But on recalling that s = 4 + t, one finds that

I2 ≤
(

sup
α∈m
|h1(α)|

)2t−2 ∫
m

|h1(α)|8dα. (6.16)

The methods of Vaughan [19], as refined by Boklan [2], yield the upper bound∫
m

|h1(α)|8dα� P 5(logP )ε−3,

for any positive number ε. Meanwhile, on combining the refined estimates of Hall
and Tenenbaum [13] for Hooley’s ∆-function with the proof of Lemma 1 of Vaughan
[19], one obtains

sup
α∈m
|h1(α)| � P 3/4(logP )1/4+ε.
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Thus we conclude from (6.16) that

I2 � (P 3/4(logP )1/4+ε)2t−2P 5(logP )ε−3

� P (3s−5)/2(logP )ε+(s−11)/2, (6.17)

and a similar argument shows likewise that

I3 � P (3s−5)/2(logP )ε+(s−11)/2. (6.18)

In order to estimate the mean value (6.15), we begin by noting, from orthogonal-
ity, that it follows from (6.12) that I1 is bounded above by the number of integral
solutions of the equation

y31 − y32 = n1 − n2, (6.19)

with P < yi ≤ 3P (i = 1, 2) and nl ∈ Zs(N,M) (l = 1, 2). But whenever y1 6= y2,
it follows from the latter conditions that

|y31 − y32 | > 3P 2 > M ≥ |n1 − n2|.

We are forced to conclude that the only solutions of the equation (6.19) satisfy
y1 = y2 and n1 = n2, whence

I1 � PZs(N,M). (6.20)

On substituting (6.17), (6.18) and (6.20) into (6.14), we obtain the estimate

max
1≤j≤s

∫
m

|h1(α)jh(α)s−jKs,j(α)|dα

� (PZs)
1/2
(
P (3s−5)/2(logP )ε+(s−11)/2

)1/2
,

whence by (6.13), we have

N (s−3)/3ψs(N)−1Zs � P (3s−3)/4(logP )ε+(s−11)/4Z1/2
s .

On recalling that P = 1
2N

1/3, we therefore conclude that

Zs � P (9−s)/2(logP )ε−(11−s)/2ψs(N)2,

and the desired conclusion (6.1) follows immediately. This completes the proof of
Theorem 1.3.
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9. J. Brüdern, K. Kawada and T. D. Wooley, Additive representation in thin sequences, VI:
representing primes, and related topics, Glasgow Math. J. (to appear).
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