
A LIGHT-WEIGHT VERSION OF WARING’S PROBLEM

Trevor D. Wooley

Abstract. An asymptotic formula is established for the number of representations
of a large integer as the sum of kth powers of natural numbers, in which each represen-

tation is counted with a homogeneous weight that de-emphasises the large solutions.

Such an asymptotic formula necessarily fails when this weight is excessively light.

1. Introduction. Investigations concerning the asymptotic formula in Waring’s
problem have played a central role in the development of the circle method since
its inception by Hardy and Littlewood in the early part of the twentieth century.
From this classical asymptotic relation, it is relatively straightforward to obtain
a formula for the number of representations of a natural number, as the sum of
a fixed number of kth powers of positive integers, in which each representation is
counted with a weight that increases with the size of the integers involved in the
representation. In such heavy-weight versions of Waring’s problem, the larger, more
typical, representations dominate, and it is these representations that the circle
method most readily detects. In contrast, the light-weight versions of Waring’s
problem, in which representations are counted with a weight that decreases with the
size of the integers occurring in the representation, pose some technical difficulties
that have apparently deterred investigation. A particular case of the light-weight
problem plays a fundamental role in work of Van Vu [5], and is resolved in essence in
recent work of the author [7]. Since this light-weight version of Waring’s problem lies
well within the grasp of modern methods, our purpose in this paper is to establish
and promote the asymptotic formulae associated with this circle of problems.

We begin with some notation. When s and k are positive integers, and ! is a
real number, we define

Rs,k(n;!) =
∑

x1,...,xs∈ℕ
xk
1+⋅⋅⋅+x

k
s=n

(x1 . . . xs)
!. (1.1)
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We write s(k) for the least positive integer s with the property that whenever u ⩾ s,
one has for each " > 0 the upper bound∫ 1

0

∣∣∣ ∑
1⩽x⩽P

e(�xk)
∣∣∣2ud�≪" P

2u−k+", (1.2)

where, as usual, we write e(z) for e2�iz. We note for future reference that work of
Hua [3] and Heath-Brown [2], respectively, establishes that s(k) ⩽ 2k−1 (k ⩾ 2)
and s(k) ⩽ 7

162k (k ⩾ 6). By employing modern versions of Vinogradov’s mean
value theorem (see Wooley [6]) together with work of Ford [1], moreover, one finds
that for larger k one has

s(k) ⩽ 1
2k

2(log k + log log k +O(1)).

Finally, when s and k are natural numbers, we define the usual singular series
Ss(n) = Ss,k(n) associated with n by

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))se(−na/q), (1.3)

where

S(q, a) =

q∑
r=1

e(ark/q). (1.4)

On considering the diagonal contribution underlying the mean value in (1.2), it is
apparent that s(k) satisfies the lower bound s(k) ⩾ k. The methods of Chapters
2 and 4 of Vaughan [4] then show that whenever s ⩾ 2s(k) + 1, one has 0 ⩽
Ss,k(n)≪ 1. Subject to the additional condition that, whenever k is a power of 2
with k ⩾ 4, then one has s ⩾ 4k, moreover, the aforementioned methods show also
that Ss,k(n)≫ 1 uniformly in n.

Theorem 1.1. Let s and k be natural numbers with s ⩾ 2s(k) + 1, and let � be
any real number with

� <

(
s− 2s(k)

s(s− 1)

)(
k

2s(k)

)
.

Then there is a positive number � , depending at most on s, k and �, such that
whenever ! is a real number with ! ⩾ −1 + k/s− �, one has

Rs,k(n;!) =
Γ((1 + !)/k)s

Γ(s(1 + !)/k)
k−sSs,k(n)n(1+!)s/k−1 +O(n(1+!)s/k−1−� ). (1.5)

The special case of Theorem 1.1 in which ! = 0 yields the classical asymptotic
formula in Waring’s problem, namely∑

x1,...,xs∈ℕ
xk
1+⋅⋅⋅+x

k
s=n

1 =
Γ(1 + 1/k)s

Γ(s/k)
(Ss,k(n) + o(1))ns/k−1,
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valid for s > 2s(k). Meanwhile, the case in which ! = −1 + k/s is that central to
the discussions of [5] and [7]. Here, again for s > 2s(k), one obtains the pleasingly
simple formula ∑

x1,...,xs∈ℕ
xk
1+⋅⋅⋅+x

k
s=n

(x1 . . . xs)
−1+k/s = k−sΓ(1/s)sSs,k(n) + o(1).

It is worth noting that the formula (1.5) is established by Theorem 1.1 even for
values of ! with −1 + k/s > ! ⩾ −1 + k/s − �, wherein Rs,k(n;!) ≍ n−� with
� = 1− (1 + !)s/k > 0. When k is large, and s is large enough in terms of k, the
conclusion of Theorem 1.1 yields a permissible value for � given by

�−1 = (1 + o(1))sk log k. (1.6)

Some sort of constraint on � is certainly necessary, for the obvious representation
of the integer n = mk + s− 1 as the sum of s kth powers already yields the lower
bound

Rs,k(n;!)≫ n!/k,

and this exceeds the main term in (1.5) whenever ! < (k−s)/(s−1). It follows that
the conclusion of Theorem 1.1 cannot be valid for all natural numbers n whenever

� >
s− k
s(s− 1)

,

though, of course, a far wider range of validity may be anticipated for almost all
integers n. The latter constraint implies, for sufficiently large s, that any permissible
value of � must satisfy �−1 > (1 + o(1))s. If one is satisfied with a lower bound
for Rs,k(n;!) of the order of magnitude predicted by Theorem 1.1, then the use
of smooth numbers leads to an acceptable value of � satisfying the relation �−1 =
(1 + o(1))s log k in place of (1.6). We leave this as an exercise using the methods
of [7]. Thus we see that our methods fall short of the obvious constraints on � by
a factor of k log k, and log k, in these respective problems. On the other hand, the
widely held conjecture that (1.2) holds with u = k would yield �−1 = (2 + o(1))s
in place of (1.6), and this would be close to best possible. Finally, on making the
trivial observation that, when s > t ⩾ 2s(k) + 1, the validity of the conclusion of
Theorem 1.1 implies that

Rs,k(n;!)≪ n(1+!)s/k−1,

while at the same time

Rs,k(n;!) ⩾ Rt,k(n− (s− t);!)≫ n(1+!)t/k−1,

it is apparent that when ! < −1, then (1.5) fails for every sufficiently large integer
n.
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Our proof of Theorem 1.1 is based on a neoclassical application of the Hardy-
Littlewood method paralleling the argument underlying our treatment (see Wooley
[7]) of Vu’s thin basis theorem in Waring’s problem. In section 2 we provide some
auxiliary mean value estimates required in our treatment of the minor arcs. Our
slightly unconventional generating functions may be analysed via partial summa-
tion, and in this way the completion of the treatment of the minor arcs in section 2
may be reduced essentially to the familiar classical approach. The major arc treat-
ment, which we discuss in section 3, is more or less routine, although the analysis
of the singular integral requires enough work to be deferred to section 4. Here, for
example, the convergence properties of the singular series become rather delicate
in the situations wherein ! < −1 + k/s.

Throughout, the letter " will denote a sufficiently small positive number, and P
will be a large real number. We use ≪ and ≫ to denote Vinogradov’s notation. In
an effort to simplify our account, whenever " appears in a statement, we assert that
the statement holds for every positive number ". The “value” of " may consequently
change from statement to statement.

2. The treatment of the minor arcs. In order to describe the application of
the Hardy-Littlewood method that underlies the proof of Theorem 1.1, we begin
by recording some notation. Let s and k be positive integers with s ⩾ 2s(k) + 1,
let � be a small positive number, and put

� =

(
s− 2s(k)

s(s− 1)

)(
k

2s(k)

)
− �.

Also, let ! be a real number with ! ⩾ −1 + k/s − �. We put w = (1 + !)/k, and
consider the analogue of (1.1) provided by

R̃s,k(n;w) =
∑

x1,...,xs∈ℕ
xk
1+⋅⋅⋅+x

k
s=n

(x1 . . . xs)
−1+kw.

The conclusion of Theorem 1.1 then follows from the asymptotic formula

R̃s,k(n;w) =
Γ(w)s

Γ(sw)
k−sSs,k(n)nsw−1 +O(nsw−1−� ),

valid for some positive number � = �(s, k), which we now seek to establish.
We consider a large natural number n, write P = n1/k and P1 = (n/s)1/k, and

then define the exponential sums

fw(�) =
∑

P1⩽x⩽P

x−1+kwe(�xk) and gw(�) =
∑

1⩽x⩽P

x−1+kwe(�xk).

Observe that whenever
xk1 + ⋅ ⋅ ⋅+ xks = n,
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with xi ∈ ℕ (1 ⩽ i ⩽ s), then necessarily one has

max
1⩽i⩽s

xi ⩾ (n/s)1/k = P1 and max
1⩽i⩽s

xi ⩽ n1/k = P. (2.1)

By orthogonality, it follows from (2.1) that∫ 1

0

(gw(�)− fw(�))se(−n�)d� = 0,

and likewise we see that

R̃s,k(n;w) =

∫ 1

0

gw(�)se(−n�)d�.

On substituting the former relation into the latter, it follows that

R̃s,k(n;w) =

∫ 1

0

(gw(�)s − (gw(�)− fw(�))s) e(−n�)d�

=
s∑
j=1

(−1)j+1

(
s

j

)
ℛs,j([0, 1)), (2.2)

where we write

ℛs,j(B) =

∫
B

fw(�)jgw(�)s−je(−n�)d�. (2.3)

For the task at hand it suffices to make use of a Hardy-Littlewood dissection
that does not yield the sharpest available error terms. It is convenient to put
w̃ = min{1/8, w/6}, and then to write L = P w̃. Let M denote the union of the
intervals

M(q, a) = {� ∈ [0, 1) : ∣�− a/q∣ ⩽ Ln−1},

with 0 ⩽ a ⩽ q ⩽ L and (a, q) = 1, and put m = [0, 1) ∖M. We begin with an
analogue of Weyl’s inequality for the exponential sum fw(�). In this context, it is
convenient to write �(k) = 21−kw̃.

Lemma 2.1. For each positive number ", one has

sup
�∈m
∣fw(�)∣ ≪ P kw−�(k)+".

Proof. Write

F (�; t) =
∑

1⩽x⩽t

e(�xk).

Then an application of the classical version of Weyl’s inequality (see, for example,
Lemma 2.4 of [4]) shows that whenever P1 − 1 ⩽ t ⩽ P , one has

sup
�∈m
∣F (�; t)∣ ≪ t1+"L−2

1−k

≪ t1−�(k)+".
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Applying Riemann-Stieltjes integration followed by integration by parts, we find
that

fw(�) =

∫ P+

P1−
t−1+kwdF (�; t)

= P−1+kwF (�;P )− P−1+kw1 F (�;P1−) +

∫ P

P1

(1− kw)t−2+kwF (�; t)dt.

It follows that whenever � ∈ m, one has

∣fw(�)∣ ≪ P kw−�(k)+" +

∫ P

P1

t−1+kw−�(k)+"dt,

and the conclusion of the lemma now follows immediately.

Next we turn to mean value estimates relevant to the estimation of the minor
arcs. It is here that we make use of the hypothesis (1.2), which we may assume to
be valid for u ⩾ s(k).

Lemma 2.2. Suppose that t ⩾ 2u ⩾ 2s(k) and " > 0. Then one has∫ 1

0

∣fw(�)∣td�≪ ntw−1+" and

∫ 1

0

∣gw(�)∣td�≪ nmax{tw−1,0}+".

Proof. From orthogonality, it follows that the mean value∫ 1

0

∣fw(�)∣2ud�

is equal to the number of integral solutions of the equation

xk1 + ⋅ ⋅ ⋅+ xku = xku+1 + ⋅ ⋅ ⋅+ xk2u,

with P1 ⩽ xi ⩽ P (1 ⩽ i ⩽ 2u), and with each solution x being counted with
weight

(x1x2 . . . x2u)−1+kw ≪ (P 2u)−1+kw.

Consequently, again employing orthogonality, it follows by considering the number
of solutions of the underlying diophantine equations that∫ 1

0

∣fw(�)∣2ud�≪ (P 2u)−1+kw
∫ 1

0

∣F (�;P )∣2ud�.

Thus, on making use of the trivial estimate

∣fw(�)∣ ⩽ ∣fw(0)∣ ⩽
∑

1⩽x⩽P

x−1+kw ≪ P kw,
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we obtain the upper bound∫ 1

0

∣fw(�)∣td�≪ (P kw)t−2u(P 2u)−1+kw
∫ 1

0

∣F (�;P )∣2ud�.

In view of (1.2) and the definition of s(k), therefore, we deduce that∫ 1

0

∣fw(�)∣td�≪ (P ktw−2u)(P 2u−k+")≪ (P k)tw−1+".

The first assertion of the lemma follows on recalling that P = n1/k.
Next write

ℎw(�;Q) =
∑

Q/2<x⩽Q

x−1+kwe(�xk).

Then by the same argument as in the previous paragraph, mutatis mutandis, one
obtains the upper bound∫ 1

0

∣ℎw(�;Q)∣td�≪ (Qk)tw−1+".

But it is apparent that

gw(�) =

∞∑
j=0
2j⩽P

ℎw(�; 2−jP ),

and so it follows from Hölder’s inequality that∫ 1

0

∣gw(�)∣td�≪ (logP )t max
1⩽Q⩽P

∫ 1

0

∣ℎw(�;Q)∣td�

≪ (logP )t max
1⩽Q⩽P

(Qk)tw−1+".

The second conclusion of the lemma now follows immediately.

At this point we record the minor arc estimate stemming from Lemmata 2.1 and
2.2.

Lemma 2.3. Suppose that s ⩾ 2s(k) + 1. Then for 1 ⩽ j ⩽ s, one has

ℛs,j(m)≪ nsw−1−� ,

for some positive number � = �(s, k, �).

Proof. For the sake of convenience, write u = s(k). Then on applying Hölder’s
inequality to (2.3), we obtain the upper bound

ℛs,j(m) ⩽
(∫

m

∣fw(�)∣sd�
)j/s(∫ 1

0

∣gw(�)∣sd�
)1−j/s

. (2.4)
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It follows from Lemmata 2.1 and 2.2 that∫
m

∣fw(�)∣sd� ⩽
(

sup
�∈m
∣fw(�)∣

)s−2u ∫ 1

0

∣fw(�)∣2ud�

≪ (nw−�(k)/k+")s−2un2uw−1+"

≪ nsw−1−�(k)/k+s". (2.5)

Meanwhile, the bound ∫ 1

0

∣gw(�)∣sd�≪ nmax{sw−1,0}+" (2.6)

is already immediate from Lemma 2.2. On substituting (2.5) and (2.6) into (2.4),
it follows that whenever w ⩾ 1/s one has

ℛs,j(m)≪ nsw−1−(j/s)�(k)/k+",

and this establishes the desired conclusion in the case currently under consideration.
When 1/s − �/k ⩽ w < 1/s, meanwhile, we proceed differently. Note first that

our hypotheses on � ensure that

1− (s− 1)w ⩽ 1/s+ (s− 1)�/k < 1/(2u),

where we again write u = s(k). Let � = 1 − (s − 1)w. Then on applying Hölder’s
inequality once again to (2.3), we obtain on this occasion the upper bound

ℛs,j(m) ⩽
(

sup
�∈m
∣fw(�)∣

)1−2u�
Υ�

1Υ
(j−1)w
2 Υ

(s−j)w
3 , (2.7)

where

Υ1 =

∫ 1

0

∣fw(�)∣2ud�, Υ2 =

∫ 1

0

∣fw(�)∣1/wd�, Υ3 =

∫ 1

0

∣gw(�)∣1/wd�.

Now 1/w > s > 2s(k), and so it follows from Lemma 2.2 that Υ2 ≪ n" and
Υ3 ≪ n". Similarly, one finds that Υ1 ≪ n2uw−1+". Then on recalling Lemma 2.1,
and assembling these estimates within (2.7), we find that

ℛs,j(m)≪ n"(nw−�(k)/k)1−2u�(n2uw−1)�

≪ nw−�+�,

where � = " − (1 − 2u�)�(k)/k < 0. But w − � = sw − 1, and so we conclude in
this final case that

ℛs,j(m)≪ nsw−1−� ,

for some positive number � = �(s, k, �), thereby completing the proof of the lemma.
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3. The major arc analysis. We are able to economise in our discussion of the
major arcs by appealing to the analysis of section 3 of [7]. In this context, when
a ∈ ℤ, q ∈ ℕ and � ∈ ℝ, we define S(q, a) via (1.4), and write

uw(�) =

∫ P

P1

−1+kwe(�k)d and vw(�) =

∫ P

0

−1+kwe(�k)d. (3.1)

Lemma 3.1. Suppose that w is a positive number. Then whenever a ∈ ℤ, q ∈ ℕ
and � ∈ ℝ, one has

fw(� + a/q)− q−1S(q, a)uw(�)≪ qP−1+kw(1 + P k∣�∣),
and

gw(� + a/q)− q−1S(q, a)vw(�)≪ q max
1⩽Q⩽P

Q−1+kw(1 +Qk∣�∣).

Proof. The first estimate of the lemma is essentially the conclusion of Lemma 3.5
of [7], while the second follows from the same methods.

Next define the functions f∗w(�) and g∗w(�) for � ∈ [0, 1) by putting

f∗w(�) = q−1S(q, a)uw(�− a/q) and g∗w(�) = q−1S(q, a)vw(�− a/q),
when � ∈ M(q, a) ⊆ M, and by taking f∗w(�) = 0 and g∗w(�) = 0 otherwise. We
then write

ℛ∗s,j(B) =

∫
B

f∗w(�)jg∗w(�)s−je(−n�)d�. (3.2)

Lemma 3.2. For 1 ⩽ j ⩽ s, one has

ℛs,j(M)−ℛ∗s,j(M)≪ nsw−1−w̃/k.

Proof. It follows from Lemma 3.1 and the definition of M that, uniformly for � ∈
M(q, a) ⊆M, one has

fw(�)− f∗w(�)≪ LP−1+kw(1 + LP kn−1)≪ P kwL−4,

and likewise

gw(�)− g∗w(�)≪ L max
1⩽Q⩽P

Q−1+kw(1 + LQkn−1)

≪ max{L2, P kwL−4} ≪ P kwL−4.

On making use of the trivial estimates fw(�)≪ P kw and gw(�)≪ P kw, therefore,
we may conclude that the estimate

fw(�)jgw(�)s−j − f∗w(�)jg∗w(�)s−j ≪ (P kwL−4)(P kw)s−1 ≪ nswL−4

holds uniformly for � ∈ M. But the measure of the set of arcs M is plainly
O(L3n−1), and thus we deduce from (2.3) and (3.2) that

ℛs,j(M)−ℛ∗s,j(M)≪
∫
M

nswL−4d�≪ nsw−1L−1.

The conclusion of the lemma is now immediate.

We recall at this point the natural estimates for the auxiliary functions defined
in (3.1).
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Lemma 3.3. For every real number �, one has

uw(�)≪ P kw(1 + P k∣�∣)−1 and vw(�)≪ P kw(1 + P k∣�∣)−min{1,w}.

Proof. The claimed estimates follow by applying partial integration (compare the
proof of Lemma 3.8 of [7]).

Define next the singular integral

Js,j(n;w) =

∫ ∞
−∞

uw(�)jvw(�)s−je(−�n)d�. (3.3)

Lemma 3.4. When 1 ⩽ j ⩽ s and w ⩾ 1/s−�/k, the singular integral Js,j(n;w) is
absolutely convergent, and satisfies the upper bound Js,j(n;w)≪ nsw−1. Moreover,
one has

Js,j(n;w)−
∫
∣�∣⩽Ln−1

uw(�)jvw(�)s−je(−�n)d� ≪ nsw−1−w̃/(2k). (3.4)

Proof. In view of the conclusion of Lemma 3.3, one has∫ ∞
−∞
∣uw(�)jvw(�)s−j ∣d� ≪ (P kw)s

∫ ∞
−∞

(1 + P k∣�∣)−j−(s−j)min{1,w}d�

≪ nsw
∫ ∞
0

(1 + n�)−1−(s−1)min{1,w}d�. (3.5)

It therefore follows from (3.3) that the singular integral Js,j(n;w) is absolutely
convergent, and satisfies Js,j(n;w) ≪ nsw−1. In like manner, one finds that the
expression on the left hand side of (3.4) is of order

(P kw)s
∫ ∞
Ln−1

(1 + n�)−1−(s−1)min{1,w}d� ≪ nsw−1L−(s−1)min{1,w}.

The final conclusion of the lemma therefore follows on recalling our hypothesis that
w ⩾ 1/s− �/k.

Notice in the above argument the critical role played by the removal of the range
0 <  ⩽ P1 from the variable implicit in uw(�). When w ⩽ 1/s, the integral on the
right hand side of (3.5) would otherwise be the divergent integral∫ ∞

0

(1 + n�)−swd�.

The next step in the analysis is the introduction of the truncated singular series

Ss(n;Q) =
∑

1⩽q⩽Q

q∑
a=1

(a,q)=1

(q−1S(q, a))se(−na/q).
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As is familiar in the theory of Waring’s problem, the truncated singular series
Ss(n;Q) differs from the completed singular series, which we define via (1.3), by
an amount inconsequential to our argument. Thus, since we may suppose that
s ⩾ 2s(k) + 1 ⩾ 2k + 1, the methods of Chapters 2 and 4 of [4] demonstrate that

Ss(n)−Ss(n;L)≪ L−1/k ≪ n−w̃/(k
2), (3.6)

and, furthermore, that 0 ⩽ Ss(n)≪ 1 uniformly in n. Moreover, unless k is a power
of 2 exceeding 2, the condition s ⩾ 2s(k) + 1 suffices to ensure that Ss(n) ≫ 1
uniformly in n. When k = 2m with m ⩾ 2, meanwhile, the same conclusion holds
whenever s ⩾ 4k, and also when 2s(k) + 1 ⩽ s ⩽ 4k provided that n ≡ r (mod 4k)
for some integer r satisfying 1 ⩽ r ⩽ s.

Lemma 3.5. One has

ℛ∗s,j(M) = Ss(n)Js,j(n;w) +O(nsw−1−w̃/(k
2)).

Proof. On recalling (3.2) and the definitions of f∗w(�) and g∗w(�), one finds that

ℛ∗s,j(M) = Ss(n;L)

∫
∣�∣⩽Ln−1

uw(�)jvw(�)s−je(−�n)d�.

Consequently, on making use of (3.6) and the associated discussion, together with
the conclusion of Lemma 3.4, one obtains

ℛ∗s,j(M) = (Ss(n) +O(n−w̃/(k
2)))(Js,j(n;w) +O(nsw−1−w̃/(2k)))

= Ss(n)Js,j(n;w) +O(nsw−1−w̃/(k
2)),

and this suffices to establish the lemma.

We summarise the discussion of this section and the last in the form of a lemma.
In preparation for this lemma, we define the combined singular integral

Js(n;w) =
s∑
j=1

(−1)j+1

(
s

j

)
Js,j(n;w).

Lemma 3.6. Whenever w ⩾ 1/s− �/k, one has

R̃s,k(n;w) = Ss(n)Js(n;w) +O(nsw−1−� ),

for a positive number � = �(s, k, �).

Proof. By combining Lemmata 2.3, 3.2 and 3.5, one finds that there is a positive
number � = �(s, k, �) such that, for 1 ⩽ j ⩽ s, one has

ℛs,j([0, 1)) = ℛs,j(m) +ℛs,j(M)

= ℛ∗s,j(M) +O(nsw−1−� )

= Ss(n)Js,j(n;w) +O(nsw−1−� ).

The desired conclusion now follows from (2.2) by summing over j with weight
(−1)j+1

(
s
j

)
.
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4. The singular integral. The marginal convergence of the singular integral in
the situation w ⩽ 1/s forces us to exercise more care than would be usual in our
account. We begin by recalling that the integral Js,j(n;w) is absolutely convergent,
so that on writing ℬs,j = (P1, P )j × (0, P )s−j , we see that

Js,j(n;w) = lim
T→∞

∫
ℬs,j

∫ T

−T
(1 . . . s)

−1+kwe(�(k1 + ⋅ ⋅ ⋅+ ks − n))d�d.

Consequently, by making the change of variables � = n� and vi = ki /n (1 ⩽ i ⩽ s),
we deduce that

Js,j(n;w) = k−snsw−1 lim
t→∞

∫
Cs,j

∫ t

−t
(v1 . . . vs)

w−1e(�(v1 + ⋅ ⋅ ⋅+ vs − 1))d�dv,

where Cs,j = (s−1, 1)j × (0, 1)s−j . Making the change of variable (v1, . . . , vs) →
(v1, . . . , vs−1, V ), where V = v1 + ⋅ ⋅ ⋅+ vs, we thus obtain

Js,j(n;w) = k−snsw−1 lim
t→∞

∫ s

0

�(V )
sin(2�t(V − 1))

�(V − 1)
dV,

where

�(V ) =

∫
Ds,j(V )

(v1 . . . vs−1)w−1(V − v1 − ⋅ ⋅ ⋅ − vs−1)w−1dv1 . . . dvs−1,

and Ds,j(V ) denotes the subset of ℝs−1 constrained by the inequalities

s−1 < vi < 1 (1 ⩽ i ⩽ j), 0 < vl < 1 (j + 1 ⩽ l ⩽ s− 1),

and {
V − 1 < v1 + ⋅ ⋅ ⋅+ vs−1 < V, when j ∕= s,

V − 1 < v1 + ⋅ ⋅ ⋅+ vs−1 < V − 1/s, when j = s.

Our hypothesis that w ⩾ 1/s − �/k, combined with the condition v1 > s−1,
ensures that �(V ) is a function of bounded variation, and so it follows from Fourier’s
integral theorem that

lim
t→∞

∫ s

0

�(V )
sin(2�t(V − 1))

�(V − 1)
dV = �(1).

Consequently, we may conclude that

Js,j(n;w) = k−snsw−1
∫
Ds,j(1)

(v1 . . . vs−1)w−1(1− v1− ⋅ ⋅ ⋅ − vs−1)w−1dv1 . . . dvs−1,

whence

Js,j(n;w) = k−snsw−1
∫
ℰs,j

(v1 . . . vs)
w−1dℰs,j ,
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where ℰs,j denotes the surface defined by v1+ ⋅ ⋅ ⋅+vs = 1 subject to v ∈ (s−1, 1)j×
(0, 1)s−j . It therefore follows that

Js(n;w) =

s∑
j=1

(−1)j+1

(
s

j

)
Js,j(n;w) = k−snsw−1ℐ,

where

ℐ =

∫
S

(v1 . . . vs)
w−1dS,

and S denotes the surface defined by v1+⋅ ⋅ ⋅+vs = 1 subject to v ∈ (0, 1)s∖(0, s−1)s.
But no point in (0, s−1)s satisfies v1 + ⋅ ⋅ ⋅+ vs = 1, and thus we conclude that

ℐ =

∫
A

(v1 . . . vs−1)w−1(1− v1 − ⋅ ⋅ ⋅ − vs−1)w−1dv1 . . . dvs−1,

where A denotes the subset of (0, 1)s−1 subject to the constraint that whenever
(v1, . . . , vs−1) ∈ A, then one has 0 < v1 + ⋅ ⋅ ⋅ + vs−1 < 1. In this way, a familiar
inductive argument employing the Beta-function

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx =
Γ(p)Γ(q)

Γ(p+ q)

provides the formula
ℐ = Γ(w)s/Γ(sw).

It is now apparent that

Js(n;w) = k−sΓ(w)sΓ(sw)−1nsw−1,

and this, in combination with the conclusion of Lemma 3.6, yields the desired
conclusion embodied in Theorem 1.1.
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