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The density of integral solutions for
pairs of diagonal cubic equations

Jörg Brüdern and Trevor D. Wooley

Abstract. We investigate the number of integral solutions possessed by a
pair of diagonal cubic equations in a large box. Provided that the number
of variables in the system is at least thirteen, and in addition the number of
variables in any non-trivial linear combination of the underlying forms is at
least seven, we obtain a lower bound for the order of magnitude of the number
of integral solutions consistent with the product of local densities associated
with the system.

1. Introduction

This paper is concerned with the solubility in integers of the equations

(1.1) a1x
3
1 + a2x

3
2 + . . .+ asx

3
s = b1x

3
1 + b2x

3
2 + . . .+ bsx

3
s = 0,

where (ai, bi) ∈ Z2\{0} are fixed coefficients. It is natural to enquire to what extent
the Hasse principle holds for such systems of equations. Cook [C85], refining earlier
work of Davenport and Lewis [DL66], has analysed the local solubility problem
with great care. He showed that when s ≥ 13 and p is a prime number with p 6= 7,
then the system (1.1) necessarily possesses a non-trivial solution in Qp. Here, by
non-trivial solution, we mean any solution that differs from the obvious one in
which xj = 0 for 1 ≤ j ≤ s. No such conclusion can be valid for s ≤ 12, for there
may then be local obstructions for any given set of primes p with p ≡ 1 (mod 3);
see [BW06] for an example that illuminates this observation. The 7-adic case,
moreover, is decidedly different. For s ≤ 15 there may be 7-adic obstructions to
the solubility of the system (1.1), and so it is only when s ≥ 16 that the existence
of non-trivial solutions in Q7 is assured. This much was known to Davenport and
Lewis [DL66].

Were the Hasse principle to hold for systems of the shape (1.1), then in view
of the above discussion concerning the local solubility problem, the existence of
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c© 2007 Jörg Brüdern and Trevor D. Wooley

57
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integer solutions to the equations (1.1) would be decided in Q7 alone whenever
s ≥ 13. Under the more stringent hypothesis s ≥ 14, this was confirmed by the
first author [B90], building upon the efforts of Davenport and Lewis [DL66], Cook
[C72], Vaughan [V77] and Baker and Brüdern [BB88] spanning an interval of
more than twenty years. In a recent collaboration [BW06] we have been able to
add the elusive case s = 13, and may therefore enunciate the following conclusion.

Theorem 1. Suppose that s ≥ 13. Then for any choice of coefficients (aj , bj) ∈
Z2 \{0} (1 ≤ j ≤ s), the simultaneous equations (1.1) possess a non-trivial solution
in rational integers if and only if they admit a non-trivial solution in Q7.

Now let Ns(P ) denote the number of solutions of the system (1.1) in rational
integers x1, . . . , xs satisfying the condition |xj | ≤ P (1 ≤ j ≤ s). When s is large,
a näıve application of the philosophy underlying the circle method suggests that
Ns(P ) should be of order P s−6 in size, but in certain cases this may be false even
in the absence of local obstructions. This phenomenon is explained by the failure of
the Hasse principle for certain diagonal cubic forms in four variables. When s ≥ 10
and b1, . . . , bs ∈ Z \ {0}, for example, the simultaneous equations

(1.2) 5x3
1 + 9x3

2 + 10x3
3 + 12x3

4 = b1x
3
1 + b2x

3
2 + . . .+ bsx

3
s = 0

have non-trivial (and non-singular) solutions in every p-adic field Qp as well as in R,
yet all solutions in rational integers must satisfy the condition xi = 0 (1 ≤ i ≤ 4).
The latter must hold, in fact, independently of the number of variables. For such
examples, therefore, one has Ns(P ) = o(P s−6) when s ≥ 9, whilst for s ≥ 12 one
may show that Ns(P ) is of order P s−7. For more details, we refer the reader to the
discussion surrounding equation (1.2) of [BW06]. This example also shows that
weak approximation may fail for the system (1.1), even when s is large.

In order to measure the extent to which a system (1.1) may resemble the
pathological example (1.2), we introduce the number q0, which we define by

q0 = min
(c,d)∈Z2\{0}

card{1 ≤ j ≤ s : caj + dbj 6= 0}.

This important invariant of the system (1.1) has the property that as q0 becomes
larger, the counting function Ns(P ) behaves more tamely. Note that in the example
(1.2) discussed above one has q0 = 4 whenever s ≥ 8.

Theorem 2. Suppose that s ≥ 13, and that (aj , bj) ∈ Z2 \ {0} (1 ≤ j ≤ s)
satisfy the condition that the system (1.1) admits a non-trivial solution in Q7. Then
whenever q0 ≥ 7, one has Ns(P ) � P s−6.

The conclusion of Theorem 2 was obtained in our recent paper [BW06] for
all cases wherein q0 ≥ s − 5. This much suffices to establish Theorem 1; see §8 of
[BW06] for an account of this deduction. Our main objective in this paper is a
detailed discussion of the cases with 7 ≤ q0 ≤ s−6. We remark that the arguments
of this paper as well as those in [BW06] extend to establish weak approximation for
the system (1.1) when s ≥ 13 and q0 ≥ 7. In the special cases in which s = 13 and
q0 is equal to either 5 or 6, a conditional proof of weak approximation is possible by
invoking recent work of Swinnerton-Dyer [SD01], subject to the as yet unproven
finiteness of the Tate-Shafarevich group for elliptic curves over quadratic fields.
Indeed, equipped with the latter conclusion, for these particular values of q0 one
may relax the condition on s beyond that addressed by Theorem 2. When s = 13
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and q0 ≤ 4, on the other hand, weak approximation fails in general, as we have
already seen in the discussion accompanying the system (1.2).

The critical input into the proof of Theorem 2 is a certain arithmetic variant
of Bessel’s inequality established in [BW06]. We begin in §2 by briefly sketching
the principal ideas underlying this innovation. In §3 we prepare the ground for an
application of the Hardy-Littlewood method, deriving a lower bound for the major
arc contribution in the problem at hand. Some delicate footwork in §4 establishes
a mean value estimate that, in all circumstances save for particularly pathological
situations, leads in §5 to a viable complementary minor arc estimate sufficient to
establish Theorem 2. The latter elusive situations are handled in §6 via an argument
motivated by our recent collaboration [BKW01a] with Kawada, and thereby we
complete the proof of Theorem 2. Finally, in §7, we make some remarks concerning
the extent to which our methods are applicable to systems containing fewer than
13 variables.

Throughout, the letter ε will denote a sufficiently small positive number. We
use � and � to denote Vinogradov’s well-known notation, implicit constants de-
pending at most on ε, unless otherwise indicated. In an effort to simplify our
analysis, we adopt the convention that whenever ε appears in a statement, then we
are implicitly asserting that for each ε > 0 the statement holds for sufficiently large
values of the main parameter. Note that the “value” of ε may consequently change
from statement to statement, and hence also the dependence of implicit constants
on ε. Finally, from time to time we make use of vector notation in order to save
space. Thus, for example, we may abbreviate (c1, . . . , ct) to c.

2. An arithmetic variant of Bessel’s inequality

The major innovation in our earlier paper [BW06] is an arithmetic variant of
Bessel’s inequality that sometimes provides good mean square estimates for Fourier
coefficients averaged over sparse sequences. Since this tool plays a crucial role also
in our current excursion, we briefly sketch the principal ideas. When P and R are
real numbers with 1 ≤ R ≤ P , we define the set of smooth numbers A(P,R) by

A(P,R) = {n ∈ N ∩ [1, P ] : p prime and p|n⇒ p ≤ R}.

The Fourier coefficients that are to be averaged arise in connection with the smooth
cubic Weyl sum h(α) = h(α;P,R), defined by

(2.1) h(α;P,R) =
∑

x∈A(P,R)

e(αx3),

where here and later we write e(z) for exp(2πiz). The sixth moment of this sum
has played an important role in many applications in recent years, and that at hand
is no exception to the rule. Write ξ = (

√
2833− 43)/41. Then as a consequence of

the work of the second author [W00], given any positive number ε, there exists a
positive number η = η(ε) with the property that whenever 1 ≤ R ≤ P η, one has

(2.2)
∫ 1

0

|h(α;P,R)|6 dα� P 3+ξ+ε.

We assume henceforth that whenever R appears in a statement, either implicitly
or explicitly, then 1 ≤ R ≤ P η with η a positive number sufficiently small in the
context of the upper bound (2.2).
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The Fourier coefficients over which we intend to average are now defined by

(2.3) ψ(n) =
∫ 1

0

|h(α)|5e(−nα) dα.

An application of Parseval’s identity in combination with conventional circle method
technology readily shows that

∑
n ψ(n)2 is of order P 7. Rather than average ψ(n) in

mean square over all integers, we instead restrict to the sparse sequence consisting
of differences of two cubes, and establish the bound

(2.4)
∑

1≤x,y≤P

ψ(x3 − y3)2 � P 6+ξ+4ε.

Certain contributions to the sum on the left hand side of (2.4) are easily es-
timated. By Hua’s Lemma (see Lemma 2.5 of [V97]) and a consideration of the
underlying Diophantine equations, one has∫ 1

0

|h(α)|4 dα� P 2+ε.

On applying Schwarz’s inequality to (2.3), we therefore deduce from (2.2) that
the estimate ψ(n) = O(P 5/2+ξ/2+ε) holds uniformly in n. We apply this upper
bound with n = 0 in order to show that the terms with x = y contribute at most
O(P 6+ξ+2ε) to the left hand side of (2.4). The integers x and y with 1 ≤ x, y ≤
P and |ψ(x3 − y3)| ≤ P 2+ξ/2+2ε likewise contribute at most O(P 6+ξ+4ε) within
the summation of (2.4). We estimate the contribution of the remaining Fourier
coefficients by dividing into dyadic intervals. When T is a real number with

(2.5) P 2+ξ/2+2ε ≤ T ≤ P 5/2+ξ/2+2ε,

define Z(T ) to be the set of ordered pairs (x, y) ∈ N2 with

(2.6) 1 ≤ x, y ≤ P, x 6= y and T ≤ |ψ(x3 − y3)| ≤ 2T,

and write Z(T ) for card(Z(T )). Then on incorporating in addition the contributions
of those terms already estimated, a familiar dissection argument now demonstrates
that there is a number T satisfying (2.5) for which

(2.7)
∑

1≤x,y≤P

ψ(x3 − y3)2 � P 6+ξ+4ε + P εT 2Z(T ).

An upper bound for Z(T ) at this point being all that is required to complete
the proof of the estimate (2.4), we set up a mechanism for deriving such an upper
bound that has its origins in work of Brüdern, Kawada and Wooley [BKW01a]
and Wooley [W02]. Let σ(n) denote the sign of the real number ψ(n) defined in
(2.3), with the convention that σ(n) = 0 when ψ(n) = 0, so that ψ(n) = σ(n)|ψ(n)|.
Then on forming the exponential sum

KT (α) =
∑

(x,y)∈Z(T )

σ(x3 − y3)e(α(y3 − x3)),

we find from (2.3) and (2.6) that∫ 1

0

|h(α)|5KT (α) dα ≥ TZ(T ).
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An application of Schwarz’s inequality in combination with the upper bound (2.2)
therefore permits us to infer that

(2.8) TZ(T ) � (P 3+ξ+ε)1/2
(∫ 1

0

|h(α)4KT (α)2|dα
)1/2

.

Next, on applying Weyl’s differencing lemma (see, for example, Lemma 2.3 of
[V97]), one finds that for certain non-negative numbers tl, satisfying tl = O(P ε)
for 0 < |l| ≤ P 3, one has

|h(α)|4 � P 3 + P
∑

0<|l|≤P 3

tle(αl).

Consequently, by orthogonality,∫ 1

0

|h(α)4KT (α)2| dα� P 3

∫ 1

0

|KT (α)|2dα+ P 1+εKT (0)2

� P ε(P 3Z(T ) + PZ(T )2).

Here we have applied the simple fact that when m is a non-zero integer, the number
of solutions of the Diophantine equation m = x3 − y3 with 1 ≤ x, y ≤ P is at most
O(P ε). Since T ≥ P 2+ξ/2+2ε, the upper bound Z(T ) = O(T−2P 6+ξ+2ε) now
follows from the relation (2.8). On substituting the latter estimate into (2.7), the
desired conclusion (2.4) is now immediate.

Note that in the summation on the left hand side of the estimate (2.4), one may
restrict the summation over the integers x and y to any subset of [1, P ]2 without
affecting the right hand side. Thus, on recalling the definition (2.3), we see that we
have proved the special case a = b = c = d = 1 of the following lemma.

Lemma 3. Let a, b, c, d denote non-zero integers. Then for any subset B of
[1, P ] ∩ Z, one has∫ 1

0

∫ 1

0

|h(aα)h(bβ)|5
∣∣∣∑
x∈B

e((cα+ dβ)x3)
∣∣∣2 dα dβ � P 6+ξ+ε.

This lemma is a restatement of Theorem 3 of [BW06]. It transpires that no
great difficulty is encountered when incorporating the coefficients a, b, c, d into the
argument described above; see §3 of [BW06].

We apply Lemma 3 in the cosmetically more general formulation provided by
the following lemma.

Lemma 4. Suppose that ci, di (1 ≤ i ≤ 3) are integers satisfying the condition

(c1d2 − c2d1)(c1d3 − c3d1)(c2d3 − c3d2) 6= 0.

Write λj = cjα+ djβ (j = 1, 2, 3). Then for any subset B of [1, P ] ∩ Z, one has∫ 1

0

∫ 1

0

|h(λ1)h(λ2)|5
∣∣∣∑
x∈B

e(λ3x
3)

∣∣∣2 dα dβ � P 6+ξ+ε.

Proof. The desired conclusion follows immediately from Lemma 3 on making
a change of variable. The reader may care to compare the situation here with that
occurring in the estimation of the integral J3 in the proof of Theorem 4 of [BW06]
(see §4 of the latter). �
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3. Preparation for the circle method

The next three sections of this paper are devoted to the proof of Theorem 2.
In view of the hypotheses of the theorem together with the discussion following its
statement, we may suppose henceforth that s ≥ 13 and 7 ≤ q0 ≤ s − 6. With the
pairs (aj , bj) ∈ Z2 \ {0} (1 ≤ j ≤ s), we associate both the linear forms

(3.1) Λj = ajα+ bjβ (1 ≤ j ≤ s),

and the two linear forms L1(θ) and L2(θ) defined for θ ∈ Rs by

(3.2) L1(θ) =
s∑

j=1

ajθj and L2(θ) =
s∑

j=1

bjθj .

We say that two forms Λi and Λj are equivalent when there exists a non-zero rational
number λ with Λi = λΛj . This notion defines an equivalence relation on the set
{Λ1,Λ2, . . . ,Λs}, and we refer to the number of elements in the equivalence class [Λj ]
containing the form Λj as its multiplicity. Suppose that the s forms Λj (1 ≤ j ≤ s)
fall into T equivalence classes, and that the multiplicities of the representatives of
these classes are R1, . . . , RT . By relabelling variables if necessary, there is no loss
in supposing that R1 ≥ R2 ≥ . . . ≥ RT ≥ 1. Further, by our hypothesis that
7 ≤ q0 ≤ s − 6, it is apparent that for any pair (c, d) ∈ Z2 \ {0}, the linear form
cL1(θ) + dL2(θ) necessarily possesses at least 7 non-zero coefficients, and for some
choice (c, d) ∈ Z2 \{0} this linear form has at most s−6 non-zero coefficients. Thus
we may assume without loss of generality that 6 ≤ R1 ≤ s− 7.

We distinguish three cases according to the number of variables and the ar-
rangement of the multiplicities of the forms. We refer to a system (1.1) as being of
type I when T = 2, as being of type II when T = 3 and R3 = 1, and as being of
type III in the remaining cases wherein T ≥ 3 and s−R1−R2 ≥ 2. The argument
required to address the systems of types I and II is entirely different from that
required for those of type III, and we defer an account of these former situations
to §6 below. Our purpose in the remainder of §3 together with §§4 and 5 is to
establish the conclusion of Theorem 2 for type III systems.

Consider then a type III system (1.1) with s ≥ 13 and 7 ≤ q0 ≤ s − 6, and
consider a fixed subset S of {1, . . . , s} with card(S) = 13. We may suppose that the
13 forms Λj (j ∈ S) fall into t equivalence classes, and that the multiplicities of the
representatives of these classes are r1, . . . , rt. By relabelling variables if necessary,
there is no loss in supposing that r1 ≥ r2 ≥ . . . ≥ rt ≥ 1. The condition R1 ≤ s− 7
ensures that R2 +R3 + · · ·+RT ≥ 7. Thus, on recalling the additional conditions
s ≥ 13, T ≥ 3, R1 ≥ 6 and s − R1 − R2 ≥ 2, it is apparent that we may make a
choice for S in such a manner that t ≥ 3, r1 = 6 and 13 − r1 − r2 ≥ 2. We may
therefore suppose that the profile of multiplicities (r1, r2, . . . , rt) satisfies t ≥ 3,
r1 = 6, r2 ≤ 5 and r2 + r3 + · · ·+ rt = 7. But then, in view of our earlier condition
r1 ≥ r2 ≥ . . . ≥ rt ≥ 1, we find that necessarily rt ≤ 3. We now relabel variables
in the system (1.1), and likewise in (3.1) and (3.2), so that the set S becomes
{1, 2, . . . , 13}, and so that Λ1 becomes a form in the first equivalence class counted
by r1, so that Λ2 becomes a form in the second equivalence class counted by r2,
and Λ13 becomes a form in the tth equivalence class counted by rt.

We next make some simplifying transformations that ease the analysis of the
singular integral, and here we follow the pattern of our earlier work [BW06]. First,
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by taking suitable integral linear combinations of the equations (1.1), we may sup-
pose without loss that

(3.3) b1 = a2 = 0 and bi = 0 (8 ≤ i ≤ 12).

Since we may suppose that a1b2 6= 0, the simultaneous equations

(3.4) L1(θ) = L2(θ) = 0

possess a solution θ with θj 6= 0 (1 ≤ j ≤ s). Applying the substitution xj →
−xj for those indices j with 1 ≤ j ≤ s for which θj < 0, neither the solubility
of the system (1.1), nor the corresponding function Ns(P ), are affected, yet the
transformed linear system associated with (3.4) has a solution θ with θj > 0 (1 ≤
j ≤ s). In addition, the homogeneity of the system (3.4) ensures that a solution
of the latter type may be chosen with θ ∈ (0, 1)s. We now fix this solution θ,
and fix also ε to be a sufficiently small positive number, and η to be a positive
number sufficiently small in the context of Lemmata 3 and 4 with the property
that θ ∈ (η, 1)s.

At this point we are ready to define the generating functions required in our
application of the circle method. In addition to the smooth Weyl sum h(α) defined
in (2.1) we require also the classical Weyl sum

g(α) =
∑

ηP<x≤P

e(αx3).

On defining the generating functions

(3.5) H(α, β) =
12∏

j=2

h(Λj) and G(α, β) =
s∏

j=13

g(Λj),

we now see from orthogonality that

(3.6) Ns(P ) ≥
∫ 1

0

∫ 1

0

g(Λ1)H(α, β)G(α, β) dα dβ.

We apply the circle method to obtain a lower bound for the integral on the right
hand side of (3.6). In this context, we put Q = (logP )1/100, and when a, b ∈ Z and
q ∈ N, we write

N(q, a, b) = {(α, β) ∈ [0, 1)2 : |α− a/q| ≤ QP−3 and |β − b/q| ≤ QP−3}.

We then define the major arcs N of our Hardy-Littlewood dissection to be the union
of the sets N(q, a, b) with 0 ≤ a, b ≤ q ≤ Q and (q, a, b) = 1. The corresponding set
n of minor arcs are defined by n = [0, 1)2 \N.

It transpires that the contribution of the major arcs within the integral on the
right hand side of (3.6) is easily estimated by making use of the work from our
previous paper [BW06].

Lemma 5. Suppose that the system (1.1) is of type III with s ≥ 13 and 7 ≤ q0 ≤
s− 6, and possesses a non-trivial 7-adic solution. Then, in the setting described in
the prequel, one has ∫∫

N

g(Λ1)H(α, β)G(α, β) dα dβ � P s−6.
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Proof. Although the formulation of the statements of Lemmata 12 and 13
of [BW06] may appear more restrictive than our present circumstances permit,
an examination of their proofs will confirm that it is sufficient in fact that the
maximum multiplicity of any of Λ1,Λ2, . . . ,Λ13 is at most six amongst the latter
forms. Such follows already from the hypotheses of the lemma at hand, and thus
the desired conclusion follows in all essentials from the estimate (7.8) of [BW06]
together with the conclusions of Lemmata 12 and 13 of the latter paper. Note that
in [BW06] the generating functions employed differ slightly from those herein,
in that the exponential sums corresponding to the forms Λ13, . . . ,Λs are smooth
Weyl sums rather than the present classical Weyl sums. This deviation, however,
demands at most cosmetic alterations to the argument of §7 of [BW06], and we
spare the reader the details. It should be remarked, though, that it is the reference
to Lemma 13 of [BW06] that calls for the specific construction of the point θ
associated with the equations (3.4). �

4. The auxiliary mean value estimate

The estimate underpinning our earlier work [BW06] takes the shape∫ 1

0

∫ 1

0

|h(Λ1)h(Λ2) . . . h(Λ12)| dα dβ � P 6+ξ+ε,

predicated on the assumption that the maximum multiplicity amongst Λ1, . . . ,Λ12

does not exceed 5. In order to make progress on a viable minor arc treatment
in the present situation, we require an analogue of this estimate that permits the
replacement of a smooth Weyl sum by a corresponding classical Weyl sum. In
preparation for this lemma, we recall an elementary observation from our earlier
work, the proof of which is almost self-evident (see Lemma 5 of [BW06]).

Lemma 6. Let k and N be natural numbers, and suppose that B ⊆ Ck is mea-
surable. Let ωi(z) (0 ≤ i ≤ N) be complex-valued functions of B. Then whenever
the functions |ω0(z)ωj(z)N | (1 ≤ j ≤ N) are integrable on B, one has the upper
bound ∫

B

|ω0(z)ω1(z) . . . ωN (z)| dz ≤ N max
1≤j≤N

∫
B

|ω0(z)ωj(z)N |dz.

It is convenient in what follows to abbreviate, for each index l, the expression
|h(Λl)| simply to hl, and likewise |g(Λl)| to gl and |G(α, β)| to G. Furthermore, we
write

(4.1) G0(α, β) =
s∏

j=14

g(Λj),

with the implicit convention that G0(α, β) is identically 1 when s < 14.

Lemma 7. Suppose that the system (1.1) is of type III with s ≥ 13 and 7 ≤
q0 ≤ s− 6. Then in the setting described in §3, one has∫ 1

0

∫ 1

0

|H(α, β)G(α, β)| dα dβ � P s−7+ξ+ε.

Proof. We begin by making some analytic observations that greatly simplify
the combinatorial details of the argument to come. Write L = {Λ2,Λ3, . . . ,Λ12},
and suppose that the number of equivalence classes in L is u. By relabelling indices
if necessary, we may suppose that u ≥ 3 and that representatives of these classes
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are Λ̃i ∈ L (1 ≤ i ≤ u). For each index i we denote by si the multiplicity of Λ̃i

amongst the elements of the set L. Then according to the discussion of the previous
section, we may suppose that Λ1 ∈ [Λ̃1], that

(4.2) 1 ≤ su ≤ su−1 ≤ . . . ≤ s1 = 5 and s2 + s3 + · · ·+ su = 6,

and further that if Λ13 ∈ [Λ̃i] for some index i with 1 ≤ i ≤ u, then in fact

(4.3) Λ13 ∈ [Λ̃u] and 1 ≤ su ≤ 2.

Next, for a given index i with 2 ≤ i ≤ 12, consider the linear forms Λlj (1 ≤ j ≤
si) equivalent to Λi from the set L. Apply Lemma 6 with N = si, with hlj in
place of ωj (1 ≤ j ≤ N), and with ω0 replaced by the product of those hl with
Λl 6∈ [Λ̃i] (2 ≤ l ≤ 12), multiplied by G(α, β). Then it is apparent that there is
no loss of generality in supposing that Λlj = Λ̃i (1 ≤ j ≤ si). By repeating this
argument for successive equivalence classes, moreover, we find that a suitable choice
of equivalence class representatives Λ̃l (1 ≤ l ≤ u) yields the bound

(4.4)
∫ 1

0

∫ 1

0

|H(α, β)G(α, β)| dα dβ �
∫ 1

0

∫ 1

0

Gh̃s1
1 h̃

s2
2 . . . h̃su

u dα dβ,

where we now take the liberty of abbreviating |h(Λ̃l)| simply to h̃l for each l.
A further simplification is achieved through the use of a device employed in

the proof of Lemma 6 of [BW06]. We begin by considering the situation in which
Λ13 ∈ [Λ̃u]. Let ν be a non-negative integer, and suppose that su−2 = su−1 +ν < 5.
Then we may apply Lemma 6 withN = ν+2, with h̃u−2 in place of ωi (1 ≤ i ≤ ν+1)
and h̃u−1 in place of ωN , and with ω0 set equal to

Gh̃s1
1 h̃

s2
2 . . . h̃

su−3
u−3 h̃

su−2−ν−1
u−2 h̃

su−1−1
u−1 h̃su

u .

Here, and in what follows, we interpret the vanishing of any exponent as indicating
that the associated exponential sum is deleted from the product. In this way
we obtain an upper bound of the shape (4.4) in which the exponents su−2 and
su−1 = su−2 − ν are replaced by su−2 + 1 and su−1 − 1, respectively, or else by
su−2 − ν − 1 and su−1 + ν + 1. By relabelling if necessary, we derive an upper
bound of the shape (4.4), subject to the constraints (4.2) and (4.3), wherein either
the parameter su−1 is reduced, or else the parameter u is reduced. By repeating
this process, therefore, we ultimately arrive at a situation in which u = 3 and
su−1 = 6 − su, and then the constraints (4.2) and (4.3) imply that necessarily
(s1, s2, . . . , su) = (5, 6− s3, s3) with s3 = 1 or 2. When Λ13 6∈ [Λ̃u] we may proceed
likewise, but in the above argument su−1 now plays the rôle of su−2, and su that
of su−1, and with concommitant adjustments to the associated indices throughout.
In this second situation we ultimately arrive at a scenario in which u = 3 and
su−1 = 5, and in these circumstances the constraints (4.2) imply that necessarily
(s1, s2, . . . , su) = (5, 5, 1).

On recalling (4.1) and (4.4), and making use of a trivial inequality for |G0(α, β)|,
we may conclude thus far that

(4.5)
∫ 1

0

∫ 1

0

|H(α, β)G(α, β)| dα dβ � P s−13

∫ 1

0

∫ 1

0

g13h̃
s1
1 h̃

s2
2 h̃

s3
3 dα dβ,
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with (s1, s2, s3) = (5, 5, 1) or (5, 4, 2). We now write

Iij(ψ) =
∫ 1

0

∫ 1

0

h̃5
i h̃

5
jψ

2 dα dβ,

and we observe that an application of Hölder’s inequality yields

(4.6)
∫ 1

0

∫ 1

0

g13h̃
s1
1 h̃

s2
2 h̃

s3
3 dα dβ ≤ I12(g13)ω1I12(h̃3)ω2I13(h̃2)ω3 ,

where

(ω1, ω2, ω3) =

{
(1/2, 1/2, 0), when s3 = 1,
(1/2, 1/6, 1/3), when s3 = 2.

But Lemma 4 is applicable to each of the mean values I12(g13), I12(h̃3) and I13(h̃2),
and so we see from (4.6) that∫ 1

0

∫ 1

0

g13h̃
s1
1 h̃

s2
2 h̃

s3
3 dα dβ � P 6+ξ+ε.

The conclusion of Lemma 7 is now immediate on substituting the latter estimate
into (4.5). �

5. Minor arcs, with some pruning

Equipped with the mean value estimate provided by Lemma 7, an advance
on the minor arc bound complementary to the major arc estimate of Lemma 5 is
feasible by the use of appropriate pruning technology. Here, in certain respects, the
situation is a little more delicate than was the case in our treatment of the analogous
situation in [BW06]. The explanation is to be found in the higher multiplicity of
coefficient ratios permitted in our present discussion, associated with which is a
lower average level of independence amongst the available generating functions.

We begin our account of the minor arcs by defining a set of auxiliary arcs to
be employed in the pruning process. Given a parameter X with 1 ≤ X ≤ P , we
define M(X) to be the set of real numbers α with α ∈ [0, 1) for which there exist
a ∈ Z and q ∈ N satisfying 0 ≤ a ≤ q ≤ X, (a, q) = 1 and |qα − a| ≤ XP−3. We
then define sets of major arcs M = M(P 3/4) and K = M(Q1/4), and write also
m = [0, 1) \M and k = [0, 1) \ K for the corresponding sets of minor arcs.

Given a measurable set B ⊆ R2, define the mean-value J (B) by

(5.1) J (B) =
∫∫

B

|g(a1α)G(α, β)H(α, β)| dα dβ.

Also, put E = {(α, β) ∈ n : α ∈ M}. Then on recalling the enhanced version of
Weyl’s inequality afforded by Lemma 1 of Vaughan [V86], one finds from Lemma 7
that

(5.2)
J (n) � J (E) + sup

α∈m
|g(a1α)|

∫ 1

0

∫ 1

0

|G(α, β)H(α, β)| dα dβ

� J (E) + P s−6−τ ,

wherein we have written

(5.3) τ = (1/4− ξ)/3.
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Our aim now is to show that J (E) = o(P s−6), for then it follows from (5.1) and
(5.2) in combination with the conclusion of Lemma 5 that∫ 1

0

∫ 1

0

g(Λ1)G(α, β)H(α, β) dα dβ = J (n) +
∫∫

N

g(Λ1)G(α, β)H(α, β) dα dβ

� P s−6 + o(P s−6).

The conclusion Ns(P ) � P s−6 is now immediate, and this completes the proof of
Theorem 2 for systems (1.1) of type III.

Before proceeding further, we define

(5.4) H0(α, β) =
7∏

j=2

h(Λj) and H1(α) =
12∏

j=8

h(Λj),

wherein we have implicitly made use of the discussion of §3 leading to (3.3) that
permits us to assume that Λj = ajα (8 ≤ j ≤ 12). Also, given α ∈ M we put
E(α) = {β ∈ [0, 1) : (α, β) ∈ E} and write

(5.5) Θ(α) =
∫

E(α)

|G(α, β)H0(α, β)| dβ.

The relation

(5.6) J (E) =
∫

M

|g(a1α)H1(α)|Θ(α) dα,

then follows from (5.1), and it is from here that we launch our pruning argument.

Lemma 8. One has

sup
α∈[0,1)

Θ(α) � P s−9 and sup
α∈K

Θ(α) � P s−9Q−1/72.

Proof. We divide the set E(α) into pieces on which major arc and minor arc
estimates of various types may be employed so as to estimate the integral defining
Θ(α) in (5.5). Let E1(α) denote the set consisting of those values β in E(α) for which
|g(Λ13)| < P 3/4+τ , where τ is defined as in (5.3), and put E2(α) = E(α) \ E1(α).
Then on applying a trivial estimate for those exponential sums g(Λj) with j ≥ 14,
it follows from (3.5) that

(5.7) sup
β∈E1(α)

|G(α, β)| � P s−49/4+τ .

But the discussion of §3 leading to (3.3) ensures that bj 6= 0 for 2 ≤ j ≤ 7. By
making use of the mean value estimate (2.2), one therefore obtains the estimate∫ 1

0

|h(Λj)|6 dβ =
∫ 1

0

|h(γ)|6 dγ � P 3+ξ+ε (2 ≤ j ≤ 7),

whence an application of Hölder’s inequality leads from (5.4) to the bound

(5.8)
∫ 1

0

|H0(α, β)| dβ ≤
7∏

j=2

(∫ 1

0

|h(Λj)|6 dβ
)1/6

� P 3+ξ+ε.

Consequently, by combining (5.7) and (5.8) we obtain∫
E1(α)

|G(α, β)H0(α, β)| dβ � P s−9+(ξ−1/4)+τ+ε � P s−9−τ .
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When β ∈ E2(α), on the other hand, one has |g(Λ13)| ≥ P 3/4+τ . Applying the
enhanced version of Weyl’s inequality already cited, we find that the latter can
hold only when Λ13 ∈ M (mod 1). If we now define the set F(α) by

F(α) = {β ∈ [0, 1) : (α, β) ∈ n and Λ13 ∈ M (mod 1)},
and apply a trivial estimate once again for g(Λj) (j ≥ 14), then we may summarise
our deliberations thus far with the estimate

(5.9) Θ(α) � P s−9−τ + P s−13

∫
F(α)

|g(Λ13)H0(α, β)| dβ.

A transparent application of Lemma 6 leads from (5.4) to the upper bound∫
F(α)

|g(Λ13)H0(α, β)|dβ � max
2≤j≤7

∫
F(α)

|g(Λ13)h(Λj)6|dβ.

The conclusion of the lemma will therefore follow from (5.9) provided that we
establish for 2 ≤ j ≤ 7 the two estimates

(5.10) sup
α∈[0,1)

∫
F(α)

|g(Λ13)h(Λj)6| dβ � P 4

and

(5.11) sup
α∈K

∫
F(α)

|g(Λ13)h(Λj)6| dβ � P 4Q−1/72.

We henceforth suppose that j is an index with 2 ≤ j ≤ 7, and we begin by
considering the upper bound (5.10). Given α ∈ [0, 1), we make the change of
variable defined by the substitution b13γ = a13α+ b13β. Let M0 be defined by

M0 = {γ ∈ [0, 1) : b13γ ∈ M (mod 1)}.
Then by the periodicity of the integrand modulo 1, the aforementioned change of
variable leads to the upper bound

(5.12)
∫

F(α)

|g(Λ13)h(Λj)6| dβ ≤
(

sup
β∈F(α)

|g(Λ13)|
)1/6

sup
λ∈R

U(λ),

in which we write

(5.13) U(λ) =
∫

M0

|g(b13γ)|5/6|h(bjγ + λ)|6 dγ.

We next examine the first factor on the right hand side of (5.12). Given α ∈ K,
consider a real number β with β ∈ F(α). If it were the case that Λ13 ∈ K (mod 1),
then one would have β = b−1

13 (Λ13 − a13α) ∈ M(Q3/4), whence (α, β) ∈ N (see the
proof of Lemma 10 in §6 of [BW06] for details of a similar argument). But the latter
contradicts the hypothesis β ∈ F(α), in view of the definition of F(α). Thus we
conclude that Λ13 ∈ k (mod 1), and so a standard application of Weyl’s inequality
(see Lemma 2.4 of [V97]) in combination with available major arc estimates (see
Theorem 4.1 and Lemma 4.6 of [V97]) yields the upper bound

(5.14) sup
β∈F(α)

|g(Λ13)| ≤ sup
γ∈k

|g(γ)| � PQ−1/12.

Of course, one has also the trivial upper bound

sup
β∈[0,1)

|g(Λ13)| ≤ P.
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We therefore deduce from (5.12) that

(5.15)
∫

F(α)

|g(Λ13)h(Λj)6| dβ � P 1/6U−1/72 sup
λ∈R

U(λ),

where U = Q when α ∈ K, and otherwise U = 1.
Next, on considering the underlying Diophantine equations, it follows from

Theorem 2 of Vaughan [V86] that for each λ ∈ R, one has the upper bound∫ 1

0

|h(bjγ + λ)|8 dγ � P 5.

Meanwhile, Lemma 9 of [BW06] yields the estimate

sup
λ∈R

∫
M0

|g(b13γ)|5/2|h(bjγ + λ)|2 dγ � P 3/2.

By applying Hölder’s inequality to the integral on the right hand side of (5.13),
therefore, we obtain

U(λ) ≤
(∫ 1

0

|h(bjγ + λ)|8 dγ
)2/3(∫

M0

|g(b13γ)|5/2|h(bjγ + λ)|2 dγ
)1/3

� (P 5)2/3(P 3/2)1/3.

On substituting the latter estimate into (5.15), we may conclude that∫
F(α)

|g(Λ13)h(Λj)6| dβ � P 4U−1/72,

with U defined as in the sequel to (5.15). The estimates (5.10) and (5.11) that
we seek to establish are then immediate, and in view of our earlier discussion this
suffices already to complete the proof of the lemma. �

We now employ the bounds supplied by Lemma 8 to prune the integral on the
right hand side of (5.6), making use also of an argument similar to that used in the
proof of this lemma. Applying these estimates within the aforementioned equation,
we obtain the bound

(5.16) J (E) � P s−9K(k ∩M) + P s−9Q−1/72K(K),

where we write

(5.17) K(B) =
∫

B

|g(a1α)H1(α)| dα.

But in view of (5.4), when B ⊆ M, an application of Hölder’s inequality to (5.17)
yields

(5.18) K(B) ≤
12∏

j=8

((
sup
α∈B

|g(a1α)|
)1/58

L14/29
1,j L15/29

2,j

)1/5

,

where for 8 ≤ j ≤ 12 we put

L1,j =
∫

M

|g(a1α)|57/28|h(ajα)|2 dα

and

L2,j =
∫ 1

0

|h(ajα)|39/5 dα.
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The integral L1,j may be estimated by applying Lemma 9 of [BW06], and L2,j via
Theorem 2 of Brüdern and Wooley [BW01]. Thus we have

(5.19) L1,j � P 29/28 and L2,j � P 24/5 (8 ≤ j ≤ 12).

But as in the argument leading to the estimate (5.14) in the proof of Lemma 8, one
has also

(5.20) sup
α∈k

|g(a1α)| � PQ−1/12.

Thus, on making use in addition of the trivial estimate |g(a1α)| ≤ P valid uniformly
in α, and substituting this and the estimates (5.19) and (5.20) into (5.18), we
conclude that

K(k ∩M) � P 3Q−1/696 and K(K) � P 3.

In this way, we deduce from (5.16) that J (E) � P s−6Q−1/696. The estimate
J (n) � P s−6Q−1/696 is now confirmed by (5.2), so that by the discussion following
that equation, we arrive at the desired lower bound Ns(P ) � P s−6 for the systems
(1.1) of type III under consideration. This completes the proof of Theorem 2 for
the latter systems, and so we may turn our attention in the next section to systems
of types I and II.

6. An exceptional approach to systems of types I and II

Systems of type II split into two almost separate diagonal cubic equations
linked by a single variable. Here we may apply the main ideas from our recent
collaboration with Kawada [BKW01a] in order to show that this linked cubic
variable is almost always simultaneously as often as expected equal both to the
first and to the second residual diagonal cubic. A lower bound for Ns(P ) of the
desired strength follows with ease. Although systems of type I are accessible in a
straightforward fashion to the modern theory of cubic smooth Weyl sums (see, for
example, [V89] and [W00]), we are able to avoid detailed discussion by appealing
to the main result underpinning the analysis of type II systems.

In preparation for the statement of the basic estimate of this section, we require
some notation. When t is a natural number, and c1, . . . , ct are natural numbers, let
Rt(m; c) denote the number of positive integral solutions of the equation

(6.1) c1x
3
1 + c2x

3
2 + · · ·+ ctx

3
t = m.

In addition, let η be a positive number with (c1 + c2)η < 1/4 sufficiently small in
the context of the estimate (2.2), and put ν = 16(c1 + c2)η. Finally, recall from
(5.3) that τ = (1/4− ξ)/3 > 10−4.

Theorem 9. Suppose that t is a natural number with t ≥ 6, and let c1, . . . , ct
be natural numbers satisfying (c1, . . . , ct) = 1. Then for each natural number d
there is a positive number ∆, depending at most on c and d, with the property that
the set Et(P ), defined by

Et(P ) = {n ∈ N : νPd−1/3 < n ≤ Pd−1/3 and Rt(dn3; c) < ∆P t−3},
has at most P 1−τ elements.

We note that the conclusion of the theorem for t ≥ 7 is essentially classical,
and indeed one may establish that card(Et(P )) = O(1) under the latter hypothesis.
It is, however, painless to add these additional cases to the primary case t = 6,
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and this permits economies later in this section. Much improvement is possible in
the estimate for card(Et(P )) even when t = 6 (see Brüdern, Kawada and Wooley
[BKW01a] for the ideas necessary to save a relatively large power of P ). Here we
briefly sketch a proof of Theorem 9 that employs a straightforward approach to the
problem.

Proof. Let B ⊆ [0, 1) be a measurable set, and consider a natural number m.
If we define the Fourier coefficient Υt(m;B) by

(6.2) Υt(m;B) =
∫

B

g(c1α)g(c2α)h(c3α)h(c4α) . . . h(ctα)e(−mα) dα,

then it follows from orthogonality that for each m ∈ N, one has

(6.3) Υt(m; [0, 1)) ≤ Rt(m; c).

Recall the definition of the sets of major arcs M and minor arcs m from §5. We ob-
serve that the methods of Wooley [W00] apply to provide the mean value estimate

(6.4)
∫ 1

0

|g(ciα)2h(cjα)4| dα� P 3+ξ+ε (i = 1, 2 and 3 ≤ j ≤ t).

In addition, whenever u is a real number with u ≥ 7.7, it follows from Theorem 2
of Brüdern and Wooley [BW01] that

(6.5)
∫ 1

0

|h(cjα)|u dα� Pu−3 (3 ≤ j ≤ t).

Finally, we define the singular series

St(m) =
∞∑

q=1

q−t

q∑
a=1

(a,q)=1

S1(q, a)S2(q, a) . . . St(q, a)e(−ma/q),

where we write

Si(q, a) =
q∑

r=1

e(ciar3/q) (1 ≤ i ≤ t).

Then in view of (6.5), the presence of two classical Weyl sums within the integral
on the right hand side of (6.2) permits the use of the argument applied by Vaughan
in §5 of [V89] so as to establish that when τ is a positive number sufficiently small
in terms of η, one has

Υt(m;M) = Ct(η;m)St(m)mt/3−1 +O(P t−3(logP )−τ ),

where Ct(η;m) is a non-negative number related to the singular integral. When
ν3P 3 < m ≤ P 3, it follows from Lemma 8.5 of [W91] (see also Lemma 5.4 of
[V89]) that Ct(η;m) � 1, in which the implicit constant depends at most on t,
c and η. The methods of Chapter 4 of [V97] (see, in particular, Theorem 4.5)
show that St(m) � 1 uniformly in m, with an implicit constant depending at most
on t and c. Here it may be worth remarking that a homogenised version of the
representation problem (6.1) defines a diagonal cubic equation in t+1 ≥ 7 variables.
Non-singular p-adic solutions of the latter equation are guaranteed by the work of
Lewis [L57], and the coprimality of the coefficients c1, c2, . . . , ct ensures that a p-
adic solution of the homogenised equation may be found in which the homogenising
variable is equal to 1. Thus the existence of non-singular p-adic solutions for the
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equation (6.1) is assured, and it is this observation that permits us to conclude that
St(m) � 1.

Our discussion thus far permits us to conclude that when ∆ is a positive number
sufficiently small in terms of t, c and η, then for each m ∈ (ν3P 3, P 3] one has
Υt(m;M) > 2∆P t−3. But Υt(m; [0, 1)) = Υt(m;M) + Υt(m;m), and so it follows
from (6.2) and (6.3) that for each n ∈ Et(P ), one has

(6.6) |Υt(dn3;m)| > ∆P t−3.

When n ∈ Et(P ), we now define σn via the relation |Υt(dn3;m)| = σnΥt(dn3;m),
and then put

Kt(α) =
∑

n∈Et(P )

σne(−dn3α).

Here, in the event that Υt(dn3;m) = 0, we put σn = 0. Consequently, on abbrevi-
ating card(Et(P )) to Et, we find that by summing the relation (6.6) over n ∈ Et(P ),
one obtains

(6.7) Et∆P t−3 <

∫
m

g(c1α)g(c2α)h(c3α)h(c4α) . . . h(ctα)Kt(α) dα.

An application of Lemma 6 within (6.7) reveals that

Et∆P t−3 � max
i=1,2

max
3≤j≤t

∫
m

|g(ciα)2h(cjα)t−2Kt(α)| dα.

On making a trivial estimate for h(cjα) in case t > 6, we find by applying Schwarz’s
inequality that there are indices i ∈ {1, 2} and j ∈ {3, 4, . . . , t} for which

Et∆P t−3 �
(

sup
α∈m

|g(ciα)|
)
P t−6T 1/2

1 T 1/2
2 ,

where we write

T1 =
∫ 1

0

|g(ciα)2h(cjα)4| dα and T2 =
∫ 1

0

|h(cjα)4Kt(α)2| dα.

The first of the latter integrals can plainly be estimated via (6.4), and a consid-
eration of the underlying Diophantine equation reveals that the second may be
estimated in similar fashion. Thus, on making use of the enhanced version of
Weyl’s inequality (Lemma 1 of [V86]) by now familiar to the reader, we arrive at
the estimate

Et∆P t−3 � (P 3/4+ε)(P t−6)(P 3+ξ+ε) � P t−2−2τ+2ε.

The upper bound Et ≤ P 1−τ now follows whenever P is sufficiently large in terms
of t, c, η, ∆ and τ . This completes the proof of the theorem. �

We may now complete the proof of Theorem 2 for systems of type II. From
the discussion in §3, we may suppose that s ≥ 13, that 7 ≤ q0 ≤ s − 6, and that
amongst the forms Λi (1 ≤ i ≤ s) there are precisely 3 equivalence classes, one of
which has multiplicity 1. By taking suitable linear combinations of the equations
(1.1), and by relabelling the variables if necessary, it thus suffices to consider the
pair of equations

(6.8)
a1x

3
1 + · · ·+ arx

3
r = d1x

3
s,

br+1x
3
r+1 + · · ·+ bs−1x

3
s−1 = d2x

3
s,

where we have written d1 = −as and d2 = −bs, both of which we may suppose to
be non-zero. We may apply the substitution xj → −xj whenever necessary so as to
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ensure that all of the coefficients in the system (6.8) are positive. Next write A and
B for the greatest common divisors of a1, . . . , ar and br+1, . . . , bs−1 respectively.
On replacing xs by ABy, with a new variable y, we may cancel a factor A from
the coefficients of the first equation, and likewise B from the second. There is
consequently no loss in assuming that A = B = 1 for the system (6.8).

In view of the discussion of §3, the hypotheses s ≥ 13 and 7 ≤ q0 ≤ s − 6
permit us to assume that in the system (6.8), one has r ≥ 6 and s− r ≥ 7. Let ∆
be a positive number sufficiently small in terms of ai (1 ≤ i ≤ r), bj (r + 1 ≤ j ≤
s − 1), and d1, d2. Also, put d = min{d1, d2}, D = max{d1, d2}, and recall that
ν = 16(c1+c2)η. Note here that by taking η sufficiently small in terms of d, we may
suppose without loss that νd−1/3 < 1

2D
−1/3. Then as a consequence of Theorem 9,

for all but at most P 1−τ of the integers xs with νPd−1/3 < xs ≤ PD−1/3 one has
Rr(d1x

3
s;a) ≥ ∆P r−3, and likewise for all but at most P 1−τ of the same integers

xs one has Rs−r−1(d2x
3
s;b) ≥ ∆P s−r−4. Thus we see that

Ns(P ) ≥
∑

1≤xs≤P

Rr(d1x
3
s;a)Rs−r−1(d2x

3
s;b)

� (P − 2P 1−τ )(P r−3)(P s−r−4).

The bound Ns(P ) � P s−6 that we sought in order to confirm Theorem 2 for type
II systems is now apparent.

The only remaining situations to consider concern type I systems with s ≥ 13
and 7 ≤ q0 ≤ s− 6. Here the simultaneous equations take the shape

(6.9)
a1x

3
1 + · · ·+ ar−1x

3
r−1 = d1x

3
r,

br+1x
3
r+1 + · · ·+ bs−1x

3
s−1 = d2x

3
s,

with r ≥ 7 and s − r ≥ 7. As in the discussion of type II systems, one may make
changes of variable so as to ensure that (a1, . . . , ar−1) = 1 and (br+1, . . . , bs−1) = 1,
and in addition that all of the coefficients in the system (6.9) are positive. But as
a direct consequence of Theorem 9, in a manner similar to that described in the
previous paragraph, one obtains

Ns(P ) ≥
∑

1≤xr≤P

∑
1≤xs≤P

Rr−1(d1x
3
r;a)Rs−r−1(d2x

3
s;b)

� (P − P 1−τ )2(P r−4)(P s−r−4) � P s−6.

This confirms the lower bound Ns(P ) � P s−6 for type I systems, and thus the
proof of Theorem 2 is complete in all cases.

7. Asymptotic lower bounds for systems of smaller dimension

Although our methods are certainly not applicable to general systems of the
shape (1.1) containing 12 or fewer variables, we are nonetheless able to generalise
the approach described in the previous section so as to handle systems containing at
most 3 distinct coefficient ratios. We sketch below the ideas required to establish
such conclusions, leaving the reader to verify the details as time permits. It is
appropriate in future investigations of pairs of cubic equations, therefore, to restrict
attention to systems containing four or more coefficient ratios.

Theorem 10. Suppose that s ≥ 11, and that (aj , bj) ∈ Z2 \ {0} (1 ≤ j ≤ s)
satisfy the condition that the system (1.1) admits a non-trivial solution in Qp for
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every prime number p. Suppose in addition that the number of equivalence classes
amongst the forms Λj = ajα+bjβ (1 ≤ j ≤ s) is at most 3. Then whenever q0 ≥ 7,
one has Ns(P ) � P s−6.

We note that the hypothesis q0 ≥ 7 by itself ensures that there must be at
least 3 equivalence classes amongst the forms Λj (1 ≤ j ≤ s) when 8 ≤ s ≤
12, and at least 4 equivalence classes when 8 ≤ s ≤ 10. The discussion in the
introduction, moreover, explains why it is that the hypothesis q0 ≥ 7 must be
imposed, at least until such time as the current state of knowledge concerning
the density of rational solutions to (single) diagonal cubic equations in six or fewer
variables dramatically improves. The class of simultaneous diagonal cubic equations
addressed by Theorem 10 is therefore as broad as it is possible to address given
the restriction that there be at most three distinct equivalence classes amongst the
forms Λj (1 ≤ j ≤ s). In addition, we note that although, when s ≤ 12, one
may have p-adic obstructions to the solubility of the system (1.1) for any prime
number p with p ≡ 1 (mod 3), for each fixed system with s ≥ 4 and q0 ≥ 3 such
an obstruction must come from at worst a finite set of primes determined by the
coefficients a,b.

We now sketch the proof of Theorem 10. When s ≥ 13, of course, the desired
conclusion follows already from that of Theorem 2. We suppose henceforth, there-
fore, that s is equal to either 11 or 12. Next, in view of the discussion of §3, we
may take suitable linear combinations of the equations and relabel variables so as
to transform the system (1.1) to the shape

(7.1)
l∑

i=1

λix
3
i =

m∑
j=1

µjy
3
j =

n∑
k=1

νkz
3
k,

with λi, µj , νk ∈ Z \ {0} (1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n), wherein

(7.2) l ≥ m ≥ n, l +m+ n = s, l + n ≥ 7 and m+ n ≥ 7.

By applying the substitution xi → −xi, yj → −yj and zk → −zk wherever nec-
essary, moreover, it is apparent that we may assume without loss that all of the
coefficients in the system (7.1) are positive. In this way we conclude that

(7.3) Ns(P ) ≥
∑

1≤N≤P 3

Rl(N ;λ)Rm(N ;µ)Rn(N ;ν).

Finally, we note that the only possible triples (l,m, n) permitted by the constraints
(7.2) are (5, 5, 2), (5, 4, 3) and (4, 4, 4) when s = 12, and (4, 4, 3) when s = 11. We
consider these four triples (l,m, n) in turn. Throughout, we write τ for a sufficiently
small positive number.

We consider first the triple of multiplicities (5, 5, 2). Let (ν1, ν2) ∈ N2, and
denote by X the multiset of integers {ν1z3

1 + ν2z
3
2 : z1, z2 ∈ A(P, P η)}. Consider

a 5-tuple ξ of natural numbers, and denote by X(P ; ξ) the multiset of integers
N ∈ X ∩ [ 12P

3, P 3] for which the equation ξ1u
3
1 + · · · + ξ5u

3
5 = N possesses a p-

adic solution u for each prime p. It follows from the hypotheses of the statement
of the theorem that the multiset X(P ;λ;µ) = X(P ;λ) ∩ X(P ;µ) is non-empty.
Indeed, by considering a suitable arithmetic progression determined only by λ, µ
and ν, a simple counting argument establishes that card(X(P ;λ;µ)) � P 2. Then
by the methods of [BKW01a] (see also the discussion following the statement
of Theorem 1.2 of [BKW01b]), one has the lower bound R5(N ;λ) � P 2 for
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each N ∈ X(P ;λ;µ) with at most O(P 2−τ ) possible exceptions. Similarly, one has
R5(N ;µ) � P 2 for each N ∈ X(P ;λ;µ) with at most O(P 2−τ ) possible exceptions.
Thus we see that for systems with coefficient ratio multiplicity profile (5, 5, 2), one
has the lower bound

(7.4)
N12(P ) ≥

∑
N∈X(P ;λ;µ)

R5(N ;λ)R5(N ;µ)

� (P 2 − 2P 2−τ )(P 2)2 � P 6.

Consider next the triple of multiplicities (5, 4, 3). Let (ν1, ν2, ν3) ∈ N3, and
take τ > 0 as before. We now denote by Y the multiset of integers

{ν1z3
1 + ν2z

3
2 + ν3z

3
3 : z1, z2, z3 ∈ A(P, P η)}.

Consider a v-tuple ξ of natural numbers with v ≥ 4, and denote by Yv(P ; ξ) the
multiset of integers N ∈ Y∩ [ 12P

3, P 3] for which the equation ξ1u3
1 + · · ·+ξvu3

v = N
possesses a p-adic solution u for each prime p. The hypotheses of the statement
of the theorem ensure that the multiset Y(P ;λ;µ) = Y5(P ;λ) ∩Y4(P ;µ) is non-
empty. Indeed, again by considering a suitable arithmetic progression determined
only by λ, µ and ν, one may show that card(Y(P ;λ;µ)) � P 3. When s ≥ 4,
the methods of [BKW01a] may on this occasion be applied to establish the lower
bound R5(N ;λ) � P 2 for each N ∈ Y(P ;λ;µ), with at most O(P 3−τ ) possible
exceptions. Likewise, one obtains the lower bound R4(N ;µ) � P for each N ∈
Y(P ;λ;µ), with at most O(P 3−τ ) possible exceptions. Thus we find that for
systems with coefficient ratio multiplicity profile (5, 4, 3), one has the lower bound

(7.5)
N12(P ) ≥

∑
N∈Y(P ;λ;µ)

R5(N ;λ)R4(N ;µ)

� (P 3 − 2P 3−τ )(P 2)(P ) � P 6.

The triple of multiplicities (4, 4, 3) may plainly be analysed in essentially the same
manner, so that

(7.6)
N11(P ) ≥

∑
N∈Y(P ;λ;µ)

R4(N ;λ)R4(N ;µ)

� (P 3 − 2P 3−τ )(P )2 � P 5.

An inspection of the cases listed in the aftermath of equation (7.3) reveals
that it is only the multiplicity triple (4, 4, 4) that remains to be tackled. But here
conventional exceptional set technology in combination with available estimates
for cubic Weyl sums may be applied. Consider a 4-tuple ξ of natural numbers,
and denote by Z(P ; ξ) the set of integers N ∈ [ 12P

3, P 3] for which the equation
ξ1u

3
1 + · · · + ξ4u

3
4 = N possesses a p-adic solution u for each prime p. It follows

from the hypotheses of the statement of the theorem that the set

Z(P ;λ;µ;ν) = Z(P ;λ) ∩ Z(P ;µ) ∩ Z(P ;ν)

is non-empty. But the estimates of Vaughan [V86] permit one to prove that
the lower bound R4(N ;λ) � P holds for each N ∈ Z(P ;λ;µ;ν) with at most
O(P 3(logP )−τ ) possible exceptions, and likewise when R4(N ;λ) is replaced by
R4(N ;µ) or R4(N ;ν). Thus, for systems with coefficient ratio multiplicity profile
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(4, 4, 4), one arrives at the lower bound

(7.7)
N12(P ) ≥

∑
N∈Z(λ;µ;ν)

R4(N ;λ)R4(N ;µ)R4(N ;ν)

� (P 3 − 3P 3(logP )−τ )(P )3 � P 6.

On collecting together (7.4), (7.5), (7.6) and (7.7), the proof of the theorem is
complete.
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[BW01] J. Brüdern & T. D. Wooley – “On Waring’s problem for cubes and smooth Weyl
sums”, Proc. London Math. Soc. (3) 82 (2001), no. 1, p. 89–109.

[BW06] , “The Hasse principle for pairs of diagonal cubic forms”, Ann. of Math., to
appear.

[C72] R. J. Cook – “Pairs of additive equations”, Michigan Math. J. 19 (1972), p. 325–331.
[C85] , “Pairs of additive congruences: cubic congruences”, Mathematika 32 (1985),

no. 2, p. 286–300 (1986).
[DL66] H. Davenport & D. J. Lewis – “Cubic equations of additive type”, Philos. Trans.

Roy. Soc. London Ser. A 261 (1966), p. 97–136.
[L57] D. J. Lewis – “Cubic congruences”, Michigan Math. J. 4 (1957), p. 85–95.

[SD01] P. Swinnerton-Dyer – “The solubility of diagonal cubic surfaces”, Ann. Sci. École
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