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1. Introduction.

Amongst our opera devoted to additive problems restricted to thin
polynomial sequences (see in particular [3], [4], [5]), the tertiary part is
devoted to estimates for exceptional sets associated with the expected
asymptotic formula for the number of representations of prescribed
type. While such estimates lead directly to lower bounds of the antici-
pated size for likewise restricted moments of the number of representa-
tions, uncertainties concerning integers associated with the exceptional
set prohibit any immediate inference of asymptotic formulae for such
moments. The purpose of this paper is to develop methods that es-
tablish such asymptotic formulae, thereby avoiding the aforementioned
uncertainties.

Continuing the tradition of our previous excursions in this series, we
illustrate our ideas with a discussion of Waring’s problem for cubes.
Denote by Rs(n) the number of representations of n as the sum of s
cubes of positive integers. A heuristic application of the circle method
suggests that for s ≥ 4, one should have the asymptotic formula

(1.1) Rs(n) = Γ(4/3)sΓ(s/3)−1Ss(n)ns/3−1 + o(ns/3−1),

as n→∞, where

Ss(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1S3(q, a)

)s
e(−na/q),

in which we write

S3(q, a) =

q∑
r=1

e(ar3/q),

and e(z) = exp(2πiz). It is useful to recall that when s ≥ 4, the
singular series Ss(n) is known to satisfy the lower bound Ss(n) � 1
(see Theorem 4.5 of Vaughan [13]), whence the relation (1.1) constitutes
an honest asymptotic formula.

The validity of the expected asymptotic formula (1.1) would imply
corresponding formulae for the moments of Rs(n). In particular, one
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expects that for s ≥ 4 and for all positive values of h, one should have
the asymptotic formulae

(1.2)
∑
n≤x

Rs(n)h = C1(s, h)xh(s/3−1)+1 + o(xh(s/3−1)+1),

as x→∞, where the quantity C1(s, h) is defined by the relation

C1(s, h) =
1

h(s/3− 1) + 1

(
Γ(4/3)s

Γ(s/3)

)h
C1(s, h),

in which

C1(s, h) = lim
y→∞

y−1
∑
n≤y

Ss(n)h.

We note that the latter limit does indeed exist, as we establish in
Lemma 1 below for s ≥ 5, the corresponding result for s = 4 following
with a little additional effort. When h = 2, this desired conclusion
is known to hold in all cases, the most difficult situation with s = 4
following from the celebrated work of Vaughan [11] (see Theorem 3
of the latter paper). For larger values of h, such asymptotic formulae
have entered the literature only very recently with work of Brüdern
and Wooley [6]. Here the range of s for which the formula (1.2) holds
becomes more restricted as h increases. Thus, for example, when h = 3
the formula (1.2) is known to hold only for s ≥ 5 (see Theorems 1.1
and 1.2 of [6]).

We now turn to analogues of the formula (1.2) in which the sum-
mation on the left hand side of the relation is restricted to values of
a thin polynomial sequence. It is convenient henceforth to describe a
polynomial φ ∈ Q[t] as being an integral polynomial if, whenever the
parameter t is an integer, then φ(t) is also an integer. In such circum-
stances, we write aφ for the leading coefficient of φ(t), and we write
dφ for the degree of φ. When aφ > 0, the conjectured analogue of the
asymptotic formula (1.2) now becomes

(1.3)
∑
n≤x

Rs(φ(n))h = Cφ(s, h)xdφh(s/3−1)+1 + o(xdφh(s/3−1)+1),

where the quantity Cφ(s, h) is defined by the relation

Cφ(s, h) =
a
h(s/3−1)
φ

dφh(s/3− 1) + 1

(
Γ(4/3)s

Γ(s/3)

)h
Cφ(s, h),

in which

(1.4) Cφ(s, h) = lim
y→∞

y−1
∑
n≤y

Ss(φ(n))h.
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Again, the existence of this limit is assured by Lemma 1 below for
s ≥ 5, and may be established for s = 4 with greater effort. We
remark also that the formula (1.4) may be replaced for integral h by
one more reminiscent of the definition of a conventional singular series.
Thus, for example, one may show that

Cφ(s, 2) =
∞∑
q=1

q∑
a=1

q∑
b=1

(a,b,q)=1

q−2s−1S3(q, a)sS3(q,−b)sSφ(q, b− a),

where

Sφ(q, t) = (dφ!)−1

dφ!q∑
r=1

e(tφ(r)/q).

Our first conclusion provides asymptotic formulae of the type (1.3)
when φ(t) is a quadratic polynomial. We refer the reader to the proof of
this result in §3 for more precise but technical estimates corresponding
to minor arc behaviour alone.

Theorem 1. Suppose that φ(n) is an integral quadratic polynomial with
positive leading coefficient. Then the anticipated asymptotic formula
(1.3) holds (i) when s = 6 and 0 < h ≤ 2, and (ii) when s = 7 and
0 < h ≤ 4.

In view of Vaughan’s work [11] concerning the asymptotic formula
for sums of eight cubes, of course, the formula (1.3) holds for all positive
numbers h when s ≥ 8.

In §3 we also establish a corresponding conclusion for cubic polyno-
mials.

Theorem 2. Suppose that φ(n) is an integral cubic polynomial with
positive leading coefficient. Then the anticipated asymptotic formula
(1.3) holds when s = 7 and 0 < h ≤ 2.

Even in this brief excursion on the topic of asymptotic formulae
for restricted moments, two further examples deserve our attention.
We note first that an analogue of the asymptotic formula (1.3) holds
also in the binary Goldbach problem. Let r(n) denote the number
of representations of the integer n as the sum of two prime numbers,
and let φ(t) be an integral polynomial with positive leading coefficient.
Then it is a simple matter to establish that for each positive number
h, one has

(1.5)
∑
n≤x

r
(
2φ(n)

)h
= Bφ(h)

xdφh+1

(log x)2h
+ o(xdφh+1(log x)−2h),
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where the quantity Bφ(h) is defined by the relation

Bφ(h) =
Bφ(h)

dφh+ 1

(4aφ
d 2
φ

)h∏
p>2

(
1− 1

(p− 1)2

)h
,

in which

Bφ(h) = lim
y→∞

y−1
∑
n≤y

∏
p|φ(n)
p>2

(p− 1

p− 2

)h
.

We note that the existence of the latter limit may be readily confirmed
by means of a routine argument that need not detain us here. Mean-
while, in short, the formula (1.5) follows on observing that the methods
of [2] may be adapted to show that there are at most O(x/ log x) inte-
gers n, with 1 ≤ n ≤ x, for which one has φ(n) > 1 and∣∣∣∣r(2φ(n)

)
− C(φ(n))

2φ(n)

(log 2φ(n))2

∣∣∣∣ > φ(n)

(log φ(n))3
.

Here, we have written C(m) for the familiar Goldbach constant defined
by

C(m) = 2
∏
p>2

(
1− 1

(p− 1)2

)∏
p|m
p>2

(p− 1

p− 2

)
.

But sieve methods establish that whenever φ(n) > 1, one has

r
(
2φ(n)

)
� φ(n)/(log φ(n))2,

whence the latter set of exceptional integers make a negligible contri-
bution to the left hand side of (1.5). Also, the integers n with φ(n) ≤ 1
are trivially negligible. The desired conclusion is then immediate via
partial summation.

Finally, we note that the methods of this paper extend routinely to
arbitrary powers. The following conclusion on sums of kth powers, with
k large, suffices to illustrate the associated ideas. We restrict attention
at this stage to quadratic polynomials for the sake of elegance rather
than for reason of technical obstructions. We write Rs,k(n) for the
number of representations of n as the sum of s positive integral kth
powers.

Theorem 3. Let φ(t) be an integral quadratic polynomial with positive
leading coefficient aφ, and let k be a positive integer with k ≥ 3. For
each positive number h, and every integer s with s ≥ k + 2, define

Aφ(s, h) =
a
h(s/k−1)
φ

2h(s/k − 1) + 1

(
Γ(1 + 1/k)s

Γ(s/k)

)h
Aφ(s, h),
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where

Aφ(s, h) = lim
y→∞

y−1
∑
n≤y

Ss,k(φ(n))h,

and for natural numbers m we write

Ss,k(m) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1Sk(q, a)

)s
e(−ma/q),

in which

Sk(q, a) =

q∑
r=1

e(ark/q).

Then whenever h is a fixed positive number with h ≥ 2, the asymptotic
formula

(1.6)
∑
n≤x

Rs,k(φ(n))h = Aφ(s, h)x2h(s/k−1)+1 + o(x2h(s/k−1)+1)

holds for

s ≥
(

1− 1

2h

)
k2(log k + log log k +O(1)).

Once again, we note that the existence of the limit Aφ(s, h) is assured
by Lemma 1 below for s ≥ k + 2. Finally, we recall that whenever
s ≥ 4k, one has Ss,k(n) � 1 for all integers n (see Theorem 4.6 of
Vaughan [13]), so that Theorem 3 provides a proper asymptotic formula
(1.6).

We refer the reader to our earlier paper [3] for a lengthy discussion
concerning the basic plan of attack on problems associated with excep-
tional sets restricted to thin polynomial sequences. As in our earlier
papers, the key idea is to introduce an exponential sum that encodes
information concerning abnormal deviations from the expected asymp-
totic formula (1.1) within the sequence of integers n under investiga-
tion. Mean value estimates involving this exponential sum may then be
exploited to good effect, the preservation of underlying arithmetic in-
formation representing a critical advantage of our approach over more
traditional applications of Bessel’s inequality.

Throughout, the letter ε will denote a sufficiently small positive num-
ber. We take P to be the basic parameter, a large real number depend-
ing at most on ε, k, s, h, and any coefficients and degrees of implicit
polynomials if necessary. We use � and � to denote Vinogradov’s
well-known notation, implicit constants depending at most on ε, k, s,
h and implicit polynomials. Summations start at 1 unless indicated
otherwise. In an effort to simplify our analysis, we adopt the following
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convention concerning the parameter ε. Whenever ε appears in a state-
ment, we assert that for each ε > 0, the statement holds for sufficiently
large values of the main parameter. Note that the “value” of ε may
consequently change from statement to statement, and hence also the
dependence of implicit constants on ε.

2. Main terms.

No substantial difficulty is involved in computations associated with
the main terms of the formulae that we aim to establish, and here we
dispose of this routine work in a form commonly applicable to all of
our theorems. Thus we begin by adopting the notation employed in
the statement of Theorem 3, except that now we suppose that φ(t) is
an integral polynomial of degree dφ with positive leading coefficient aφ.

For a large real number x, we define

(2.1) P = φ(x)1/k and f(α) =
∑

1≤m≤P

e(αmk),

so that for 1 ≤ n ≤ x, we have

Rs,k(φ(n)) =

∫ 1

0

f(α)se(−φ(n)α)dα.

We then dissect the unit interval [0, 1) in accordance with §4.4 of
Vaughan [13]. Let M denote the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ P 1−k/(2k) },
with 0 ≤ a ≤ q ≤ P/(2k) and (a, q) = 1. The contribution of M to the
last integral is evaluated by Theorem 4.4 of Vaughan [13]. In fact, on
writing

(2.2) m = [0, 1) \M and Rs,k(n; m) =

∫
m

f(α)se(−nα) dα,

it follows from the latter theorem that if s ≥ max{5, k+ 1}, then there
exists a positive real number δ, depending at most on s and k, such
that whenever 1 ≤ φ(n) ≤ φ(x), one has

(2.3) Rs,k(φ(n)) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(φ(n))φ(n)s/k−1

+Rs,k(φ(n); m) +O(φ(x)s/k−1−δ).

Here, we have written Ss,k(m) for the familiar singular series defined
in the statement of Theorem 3 above.

Our theorems follow from suitable information on the minor arc con-
tribution Rs,k(φ(n); m), and we make this clear in the form of Lemma 2
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below. In this context, when h is a positive number and s is an integer
with s ≥ k + 2, we define

Dφ(s, h) =
a
h(s/k−1)
φ

dφh(s/k − 1) + 1

(
Γ(1 + 1/k)s

Γ(s/k)

)h
Dφ(s, h),

where

(2.4) Dφ(s, h) = lim
y→∞

y−1
∑
n≤y

Ss,k(φ(n))h.

In order to confirm the existence of the limit occurring in the definition
of the quantity Dφ(s, h), we must digress from the main path leading
to Lemma 2 below.

Lemma 1. With the notation introduced above, when s ≥ k+ 2 and h
is a positive number, the limit (2.4) exists, and whenever N is a large
positive number, one has∣∣∣∣∣Dφ(s, h)−N−1

∑
n≤N

Ss,k(φ(n))h

∣∣∣∣∣ ≤ (logN)−min{1,h}/(4k).

Moreover, for each positive number θ,∑
n≤N

nθSs,k(φ(n))h =
N θ+1

θ + 1
Dφ(s, h) +O(N θ+1(logN)−min{1,h}/(4k)).

Proof. We first note that for real numbers h, X and Y satisfying h > 0,
X ≥ 0 and X + Y ≥ 0, we have

(X + Y )h −Xh = h

∫ X+Y

X

th−1 dt

≤ h|Y |max{Xh−1, (X + Y )h−1},

provided that the latter expression is defined. When h > 1, we have
(X + Y )h−1 � Xh−1 + |Y |h−1, so

(2.5) (X + Y )h −Xh � |Y |h + |Xh−1Y |.

When 0 < h ≤ 1, we see that if X > 2|Y | > 0, then X + Y > |Y | and

(2.6) (X + Y )h −Xh � |Y |h,

while in circumstances whereinX ≤ 2|Y | or Y = 0, the latter inequality
holds trivially. We note in addition that when X < 0 and X + Y ≥ 0,
one has X + Y ≤ Y and |X| < Y , and thus for h > 0 the trivial
estimate (X + Y )h − Xh � (X + Y )h + |X|h again ensures that the
estimates (2.5) and (2.6) hold.



8

Next we recall some basic features of the analysis of singular series
in Waring’s problem. Define the truncated singular series Ss,k(m;Q)
by

Ss,k(m;Q) =
∑
q≤Q

q∑
a=1

(a,q)=1

(
q−1Sk(q, a)

)s
e(−ma/q).

Also, define the multiplicative function wk(q) by taking

wk(p
uk+v) =

{
kp−u−1/2, when u ≥ 0 and v = 1,

p−u−1, when u ≥ 0 and 2 ≤ v ≤ k,

for prime numbers p, and non-negative integers u and v. Then accord-
ing to Lemma 3 of Vaughan [12], whenever a ∈ Z and q ∈ N satisfy
(a, q) = 1, one has q−1Sk(q, a)� wk(q), whence

Ss,k(m)−Ss,k(m;Q)�
∑
q>Q

qwk(q)
s �

∞∑
q=1

(q/Q)1/(2k)qwk(q)
s.

In view of our definition of wk(q), it follows that when u and v are non-
negative integers, and p is a prime number, then for each exponent s
with s ≥ k + 2, one has

(puk+v)1+1/(2k)wk(p
uk+v)s ≤

{
ksp−u−5/4, when u ≥ 0 and v = 1,

p−u−3/2, when u ≥ 0 and 2 ≤ v ≤ k.

Thus we see that

Ss,k(m)−Ss,k(m;Q)� Q−1/(2k)
∏
p

(
1 +

∞∑
l=1

(pl)1+1/(2k)wk(p
l)s

)
� Q−1/(2k)

∏
p

(
1 + 4ksp−5/4

)
� Q−1/(2k).

Here the product is implicitly restricted to run over prime numbers p.
In particular, since for each integer m one has 0 ≤ Ss,k(m) � 1, it
follows from the estimate (2.5) that when h > 1, one has∑

n≤y

Ss,k(φ(n))h−
∑
n≤y

Ss,k(φ(n);Q)h

�
∑
n≤y

(
Q−1/(2k)|Ss,k(φ(n))|h−1 +Q−h/(2k)

)
� yQ−min{1,h}/(2k),(2.7)

whilst for 0 < h ≤ 1, the concluding estimate follows in the same
manner from (2.6).
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Observe next that as a function of n, it is apparent that(
q−1Sk(q, a)

)s
e(−aφ(n)/q)

is periodic with period dividing dφ!q. Consequently, whenQ is a natural
number, the function

Ss,k(φ(n);Q) =
∑
q≤Q

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−aφ(n)/q)

is a periodic function of n with period dividing dφ!Q!. Write

Ts,k(Q) =
1

dφ!Q!

dφ!Q!∑
n=1

Ss,k(φ(n);Q)h.

Then we see that for y > (dφ!Q!)2, one has∣∣∣∣∣∣
∑
n≤y

Ss,k(φ(n);Q)h − y

dφ!Q!

dφ!Q!∑
n=1

Ss,k(φ(n);Q)h

∣∣∣∣∣∣
�

dφ!Q!∑
n=1

|Ss,k(φ(n);Q)|h � Q!,

whence ∣∣∣∣∣∑
n≤y

Ss,k(φ(n);Q)h − yTs,k(Q)

∣∣∣∣∣� y1/2.

On substituting the latter estimate into (2.7), we find that when Q is
a sufficiently large natural number, and y > (dφ!Q!)2, then

(2.8)

∣∣∣∣∣1y∑
n≤y

Ss,k(φ(n))h − Ts,k(Q)

∣∣∣∣∣ ≤ Q−min{1,h}/(3k).

Given a positive number ε, take Q to be a natural number with
Q > (3/ε)3k/min{1,h}. Then whenever y1 and y2 exceed (dφ!Q!)2, we
deduce from (2.8) that∣∣∣∣∣ 1

y1

∑
n≤y1

Ss,k(φ(n))h − 1

y2

∑
n≤y2

Ss,k(φ(n))h

∣∣∣∣∣ ≤ 2Q−min{1,h}/(3k)

< ε.(2.9)

It follows that the sequence(
1

y

∑
n≤y

Ss,k(φ(n))h

)∞
y=1
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is a Cauchy sequence, and hence has a limit Dφ(s, h), as claimed in the
first assertion of the lemma. Moreover, on taking the limit as y2 →∞
within (2.9), we find that∣∣∣∣∣1y∑

n≤y

Ss,k(φ(n))h −Dφ(s, h)

∣∣∣∣∣ ≤ 2Q−min{1,h}/(3k).

Since we may take Q = [(log y)5/6], we conclude that∣∣∣∣∣1y∑
n≤y

Ss,k(φ(n))h −Dφ(s, h)

∣∣∣∣∣ ≤ (log y)−min{1,h}/(4k),

and this completes the proof of the second assertion of the lemma.
The final assertion of the lemma follows at once from the second via

partial summation.
We next incorporate the singular series average into a mean value

for Rs,k(φ(n)) conditional on suitable control of moments of the minor
arc contribution.

Lemma 2. With the notation introduced above, if s ≥ k + 2 and

(2.10)
∑
n≤x

|Rs,k(φ(n); m)|H = o(xdφH(s/k−1)+1),

for some positive real number H, then for any h with 0 < h ≤ H, one
has ∑

n≤x

Rs,k(φ(n))h = Dφ(s, h)xdφh(s/k−1)+1 + o(xdφh(s/k−1)+1).

Proof. Let c be the least natural number such that whenever n ≥ c,
one has φ(n) ≥ 1. Also, for the sake of concision, write

Ξh =
∑
n≤x

|Rs,k(φ(n); m)|h.

Then, in view of (2.3), we may argue as in (2.5) that when h > 1 we
have

(2.11)
∑
c≤n≤x

Rs,k(φ(n))h −
∑
c≤n≤x

(Γ(1 + 1/k)s

Γ(s/k)
Ss,k(φ(n))φ(n)s/k−1

)h
� Ξh + xdφ(s/k−1)(h−1)Ξ1 + xdφh(s/k−1−δ)+1.

Now, by Hölder’s inequality, we have Ξg � x(1−g/H)Ξ
g/H
H whenever

0 < g ≤ H. So, by our assumption (2.10), we see that if 1 < h ≤ H,
then the right hand side of (2.11) is o(xdφh(s/k−1)+1).
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On the other hand, recalling the final conclusion of Lemma 1, the
second sum on the left hand side of (2.11) is seen to be

Dφ(s, h)xdφh(s/k−1)+1 + o(xdφh(s/k−1)+1).

Hence, the desired conclusion follows immediately from (2.11) when
1 < h ≤ H, as the contribution of natural numbers n < c is obviously
O(1).

When 0 < h ≤ 1, we may proceed as above, but use (2.6) in place of
(2.5). We then get a formula similar to (2.11) without the term involv-
ing Ξ1 on the right hand side, and we again obtain the desired formula
when 0 < h ≤ min{1, H}, appealing to (2.10). We thus complete the
proof of the lemma.

3. Waring’s problem for cubes.

We come to the central part of the paper, and in this section prove
Theorems 1 and 2. Therefore, setting k = 3, we adopt the notation
introduced in the preamble to Lemma 1. Note in particular that now

f(α) =
∑

1≤m≤P

e(αm3).

We first provide useful mean value estimates in certain generality.

Lemma 3. Let (ηn) be a sequence of complex numbers with |ηn| ≤ 1,
let Z be a set of natural numbers, and write Z for the cardinality of Z.
Also let φ be an integral polynomial with degree at least 2, and define

K(α) =
∑
n∈Z

ηne(αφ(n)).

Then, one has∫ 1

0

|f(α)K(α)|2 dα� PZ + P 2(logP )2,(3.1)

as well as ∫ 1

0

|f(α)K(α)|2 dα� PZ + P 4/3+ε + Z2.(3.2)

Proof. The inequality (3.1) is quite similar to (2.15) of [4], but here we
need to handle the divisor function a bit more precisely. By orthog-
onality, the integral estimated in the lemma is bounded above by the
number of solutions of the equation

(3.3) m3
1 −m3

2 = φ(n1)− φ(n2),
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with 1 ≤ m1, m2 ≤ P and n1, n2 ∈ Z. When m1 = m2, this equation
implies either that n1 = n2 or that n1 and n2 are both O(1), whence
the number of solutions of this type is O(PZ). So, on writing U for the
number of solutions in question with m1 > m2, we find by symmetry
that

(3.4)

∫ 1

0

|f(α)K(α)|2 dα� PZ + U.

For solutions counted by U , we put z = m1 +m2 and w = m1−m2.
We then have 1 < z ≤ 2P and 1 ≤ w ≤ P , and the equation turns into

w(3z2 + w2) = 4
(
φ(n1)− φ(n2)

)
.

Since the polynomial on the right hand side is divisible by n1−n2, and
the degree of our polynomial φ is at least two, we see that for each
given pair of integers z and w, there are at most O(τ(w(3z2 + w2)))
choices for n1 and n2 satisfying the latter equation, where τ(n) denotes
the divisor function. Hence we have

(3.5) U �
∑
w≤P

∑
z≤2P

τ(w(3z2 + w2)) ≤
∑
w≤P

τ(w)
∑
z≤2P

τ(3z2 + w2).

In order to estimate the last double sum, we begin by evaluating the
sum

U1(w,X) =
∑
z≤X

(z,w)=1

τ(3z2 + w2),

for a natural number w ≤ X and a parameter X ≥ 2. Plainly we have

U1(w,X) ≤ 2
∑
z≤X

(z,w)=1

∑
d|(3z2+w2)

d≤
√

3z2+w2

1 ≤ 2
∑
d≤2X

∑
z≤X

(z,w)=1
3z2+w2≡0 (mod d)

1.

In the last innermost sum, we sort z according to its residue class
modulo d, noting that in view of the summation conditions, every z
necessarily belongs to a reduced residue class modulo d. Thus we have

(3.6) U1(w,X)�
∑
d≤2X

∑
1≤a≤d
(a,d)=1

3a2≡−w2 (mod d)

∑
z≤X

z≡a (mod d)

1� X
∑
d≤2X

aw(d)

d
,

where, as is apparent, we denote by aw(d) the number of integers a
satisfying 1 ≤ a ≤ d, with (a, d) = 1 and 3a2 ≡ −w2 (mod d).

One may swiftly confirm that aw(d) is multiplicative with respect to
d. So we naturally consider the case where d is a prime power, and
hereafter reserve the letter p to denote a prime. Then we may easily
recognise that aw(pν) = 0 in the following three cases: (i) p = 2 and



13

ν ≥ 3, (ii) p = 3 and ν ≥ 2, (iii) p|w, p 6= 3 and ν ≥ 1. Moreover,
by the standard theory of quadratic residues, when p - w, p > 3 and
ν ≥ 1, we may express aw(pν) using the Legendre symbol as

aw(pν) = 1 +
(−3

p

)
= 1 +

( p
3

)
.

Hence, from (3.6), we derive the estimate

U1(w,X)� X
∏
p≤2X

(
1 +

∞∑
ν=1

aw(pν)

pν

)
� X

∏
p≤2X

p≡1 (mod 3)

(
1 +

2

p

)
.

Since we know that ∑
p≤2X

p≡1 (mod 3)

1

p
=

1

2
log logX +O(1),

we have

U1(w,X)� X exp

(
2

∑
p≤2X

p≡1 (mod 3)

1

p

)
� X logX.

Having acquired the last bound for U1(w,X), we go back to (3.5),
and sort the double sum according to the value of l = (w, z), putting
w = lw′ and z = lz′. Then, recalling in addition a basic estimate for
the mean value of the divisor function, we obtain

U �
∑
l≤P

τ(l)3
∑

w′≤P/l

τ(w′)U1

(
w′,

2P

l

)
� P (logP )

∑
l≤P

τ(l)3

l

∑
w′≤P/l

τ(w′)

� P 2(logP )2
∑
l≤P

τ(l)3

l2
� P 2(logP )2.

The estimate (3.1) now follows at once from (3.4).
To establish (3.2), we estimate U in a different way. Let B(P ) be

the set of natural numbers b with the property that there exist at
least two distinct integers m1 and m2 satisfying b = m3

1 − m3
2, with

1 ≤ m2 < m1 ≤ P . It is a consequence of work of Heath-Brown [9]
that there are at most O(P 4/3+ε) solutions of the diophantine equation
m3

1 − m3
2 = m3

3 − m3
4, subject to 1 ≤ mj ≤ P (1 ≤ j ≤ 4), and for

which m1 6= m2 and (m1,m2) 6= (m3,m4). From this we deduce that
the cardinality of B(P ) is O(P 4/3+ε).
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Now, recalling that the polynomial φ has degree at least two, and
that φ(n1)− φ(n2) is divisible by n1 − n2, one finds via an elementary
estimate for the divisor function that for each b with 1 ≤ b ≤ P 3, there
are O(P ε) integers n1 and n2 satisfying b = φ(n1) − φ(n2). A similar
assertion may be confirmed concerning the equation b = m3

1 − m3
2.

Consequently, the number of solutions of (3.3) with φ(n1) − φ(n2) ∈
B(P ) is O(P 4/3+ε). On the other hand, by the definition of B(P ), for
any n1, n2 ∈ Z with 0 < φ(n1) − φ(n2) 6∈ B(P ), there is at most
one pair of integers m1 and m2 satisfying (3.3). Thus the number of
solutions counted by U with φ(n1)− φ(n2) 6∈ B(P ) cannot exceed Z2.
We may therefore conclude that U � P 4/3+ε+Z2, and in view of (3.4),
we obtain the estimate (3.2). This completes the proof of the lemma.

The proof of Theorem 1. We use the notation introduced in the
preamble to Lemma 1, and set k = 3 and dφ = 2, so that (2.1) yields
P 3/2 � x � P 3/2. We aim to show that for any fixed small positive
number δ, one has

(3.7)
∑
n≤x

|R6,3(φ(n); m)|2 � P 15/2(logP )δ−3/2,

and

(3.8)
∑
n≤x

|R7,3(φ(n); m)|4 � P 35/2(logP )δ−15/2.

On making use of the conclusion of Lemma 2, parts (i) and (ii) of
Theorem 1 follow from the respective bounds (3.7) and (3.8).

For s = 6 or 7, and for n ≤ x, we define the complex numbers ηn by
means of the equation

|Rs,3(φ(n); m)| =
∣∣∣∣∫

m

f(α)se(−αφ(n)) dα

∣∣∣∣
= ηn

∫
m

f(α)se(−αφ(n)) dα,

unless Rs,3(φ(n); m) = 0, in which case we take ηn = 0. Plainly, one
always has |ηn| ≤ 1. Further, for T > 0, we define

Zs(T ) = {n ≤ x : T < |Rs,3(φ(n); m)| ≤ 2T },

write Zs(T ) for the cardinality of Zs(T ), and introduce the function

KT,s(α) =
∑

n∈Zs(T )

ηne(αφ(n)).
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On recalling (2.2), we then have

Zs(T )T �
∑

n∈Zs(T )

|Rs,3(φ(n); m)| =
∫

m

f(α)sKT,s(−α) dα,

from which, by applying Schwarz’s inequality, we infer that

(3.9) Zs(T )T �
(
sup
α∈m
|f(α)|

)s−5
(∫

m

|f(α)|8 dα
)1/2

×
(∫ 1

0

|f(α)KT,s(α)|2 dα
)1/2

.

We next note that by incorporating the bounds for Hooley’s ∆-
function supplied by Hall and Tenenbaum [8] into the proof of Lemma
1 of Vaughan [11], one may confirm the estimate

sup
α∈m
|f(α)| � P 3/4(logP )1/4+ε.

In addition, we recall that Boklan [1] showed that

(3.10)

∫
m

|f(α)|8dα� P 5(logP )ε−3.

Substituting these results into (3.9) together with the estimate (3.1) of
Lemma 3, we find that

Zs(T )T � P 3(s−1)/4Zs(T )1/2(logP )(s−11)/4+ε

+ P (3s−1)/4(logP )(s−7)/4+ε,

whence

(3.11) Zs(T )� P 3(s−1)/2(logP )(s−11)/2+εT−2

+ P (3s−1)/4(logP )(s−7)/4+εT−1.

Using the estimate (3.2) of Lemma 3 in place of (3.1) here, we also
deduce from (3.9) that

Zs(T )T � P 3(s−1)/4Zs(T )1/2(logP )(s−11)/4+ε

+ P 3s/4−7/12+ε + P (3s−5)/4(logP )(s−11)/4+εZs(T ).

Let δ be any fixed positive number, and write

Ts = P (3s−5)/4(logP )(s−11+δ)/4.

Then the final term on the right hand side of the last inequality is
irrelevant in circumstances in which T ≥ Ts, because we may suppose
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that ε is sufficiently small in comparison with δ. Therefore, provided
that T ≥ Ts, we have

(3.12) Zs(T )� P 3(s−1)/2(logP )(s−11)/2+εT−2 + P 3s/4−7/12+εT−1.

Now we concentrate on the proof of part (i) of Theorem 1. First we
appeal to (3.12) with s = 6, and obtain∑

n∈Z6(T )

|R6,3(φ(n); m)|2 � Z6(T )T 2

� P 15/2(logP )ε−5/2 + P 47/12+εT,(3.13)

provided that T ≥ T6 = P 13/4(logP )(δ−5)/4.
Next we derive an upper bound for |R6,3(φ(n); m)|. Recalling (3.10)

and the bound

(3.14)

∫ 1

0

|f(α)|4 dα� P 2

that follows from Hooley [10], an application of Schwarz’s inequality
reveals that

|R6,3(φ(n); m)| ≤
(∫ 1

0

|f(α)|4 dα
)1/2(∫

m

|f(α)|8 dα
)1/2

� P 7/2(logP )ε−3/2.

So Z6(T ) is empty for T ≥ P 7/2. Therefore, putting T = 2lT6 and
summing the inequality (3.13) over integers l for which T6 ≤ T ≤ P 7/2,
we obtain

(3.15)
∑
n≤x

|R6,3(φ(n);m)|≥T6

|R6,3(φ(n); m)|2 � P 15/2(logP )ε−3/2.

To treat the case where T ≤ T6, we use (3.11), and find that∑
n∈Z6(T )

|R6,3(φ(n); m)|2 � Z6(T )T 2

� P 15/2(logP )ε−5/2 + P 17/4(logP )ε−1/4T.

Putting T = 2lT6 again, and summing up the latter inequality this
time for all integers l with 1 ≤ T < T6, we secure the bound

(3.16)
∑
n≤x

2<|R6,3(φ(n);m)|≤T6

|R6,3(φ(n); m)|2 � P 15/2(logP )ε+δ/4−3/2.
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As the terms with |R6,3(φ(n); m)| ≤ 2 are negligible, the desired
bound (3.7) is a consequence of (3.15) and (3.16), and part (i) of The-
orem 1 follows from Lemma 2.

We next turn to part (ii) of Theorem 1. Applying (3.12) with s = 7,
we find that∑

n∈Z7(T )

|R7,3(φ(n); m)|4 � Z7(T )T 4

� P 9(logP )ε−2T 2 + P 14/3+εT 3,(3.17)

provided that T ≥ T7 = P 4(logP )δ/4−1.
We can obtain an upper bound for |R7,3(φ(n); m)| from (3.10) and

(3.14) as before, but here we expend a little effort to establish a slightly
sharper bound. Following Vaughan [11], we define J to be the set
of ordered pairs (m1,m2) such that m1 ≤ P , m2 ≤ P , the greatest
common divisor of m1 and m2 is at most (logP )80, and neither m1 nor
m2 has a prime divisor p with (logP )80 < p ≤ P 1/7. Then, by the
methods of Vaughan [11] (see the argument on pp. 137-138 of [11]), one
obtains ∫

m

∣∣∣∣ ∑∑
m1,m2≤P

(m1,m2) 6∈J

e(αm3
1 − αm3

2)

∣∣∣∣|f(α)|6 dα� P 5(logP )−18.

On combining this bound with (3.10) and (3.14) within an application
of Hölder’s inequality, one finds that∫

m

∣∣∣∣ ∑∑
m1,m2≤P

(m1,m2)6∈J

e(αm3
1 − αm3

2)

∣∣∣∣1/2|f(α)|6 dα

�
(∫ 1

0

|f(α)|4 dα
)1/4(∫

m

|f(α)|8 dα
)1/4

×
(∫

m

∣∣∣∣ ∑∑
m1,m2≤P

(m1,m2)6∈J

e(αm3
1 − αm3

2)

∣∣∣∣|f(α)|6 dα
)1/2

� P 17/4(logP )−9.(3.18)

Next, by appealing to the linear sieve as in the conclusion of the
proof of Theorem B of Vaughan [11], one may see that there are at most
O(P (logP )ε−1) natural numbers up to P without prime divisors in the
interval ((logP )80, P 1/7]. By considering the underlying diophantine
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equation, we deduce from Lemma 2 of Vaughan [11] that∫ 1

0

∣∣∣∣ ∑∑
(m1,m2)∈J

e(αm3
1 − αm3

2)

∣∣∣∣2 dα� P 2(logP )ε−2.

A swift application of Hölder’s inequality therefore leads from (3.10)
to the estimate∫

m

∣∣∣∣ ∑∑
(m1,m2)∈J

e(αm3
1 − αm3

2)

∣∣∣∣1/2|f(α)|6 dα

�
(∫ 1

0

∣∣∣∣ ∑∑
(m1,m2)∈J

e(αm3
1 − αm3

2)

∣∣∣∣2 dα)1/4(∫
m

|f(α)|8 dα
)3/4

� P 17/4(logP )ε−11/4.(3.19)

Since

|f(α)|2 =
∑∑
m1,m2≤P

(m1,m2)6∈J

e(αm3
1 − αm3

2) +
∑∑

(m1,m2)∈J

e(αm3
1 − αm3

2),

it follows from (3.18) and (3.19) that

(3.20) |R7,3(φ(n); m)| ≤
∫

m

|f(α)|7 dα� P 17/4(logP )ε−11/4,

whence Z7(T ) is empty for T ≥ P 17/4(logP )(δ−11)/4. Therefore, putting
T = 2lT7 and summing (3.17) over integers l for which T7 ≤ T ≤
P 17/4(logP )(δ−11)/4, we obtain

(3.21)
∑
n≤x

|R7,3(φ(n);m)|≥T7

|R7,3(φ(n); m)|4 � P 35/2(logP )ε+(δ−15)/2.

For T ≤ T7, we use (3.11) with s = 7, and find that∑
n∈Z7(T )

|R7,3(φ(n); m)|4 � Z7(T )T 4 � P 9T 2
7 + P 5+εT 3

7 � P 17+ε.

It follows easily from this that the contribution of numbers n with
|R7,3(φ(n); m)| ≤ T7 to the left hand side of (3.8) is at most O(P 17+ε).
The upper bound (3.8) now follows from (3.21), and then part (ii) of
Theorem 1 follows by applying Lemma 2. In this way, we complete the
proof of Theorem 1.

The proof of Theorem 2. We adopt the notation employed in the
proof of Theorem 1 above, fixing s = 7, save that φ is now supposed
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to be an integral cubic polynomial. Since φ is cubic in the situation at
hand, it follows from (2.1) that

(3.22) P � x� P.

This change has no effect, in particular, on the argument leading to
(3.12), and we may therefore infer that for T ≥ T7 = P 4(logP )δ/4−1,
one has ∑

n∈Z7(T )

|R7,3(φ(n); m)|2 � Z7(T )T 2

� P 9(logP )ε−2 + P 14/3+εT.

On noting that (3.20) remains valid in the current situation, we may
put T = 2lT7 and sum the last inequality over integers l for which
T7 ≤ T < P 17/4. Thus we deduce that∑

n≤x
|R7,3(φ(n);m)|≥T7

|R7,3(φ(n); m)|2 � P 9(logP )ε−1.

Moreover, in view of (3.22), it is apparent that∑
n≤x

|R7,3(φ(n);m)|≤T7

|R7,3(φ(n); m)|2 � xT 2
7 � P 9(logP )δ/2−2.

Consequently, we find that∑
n≤x

|R7,3(φ(n); m)|2 � P 9(logP )ε−1.

On noting that in the current situation, we have dφ = 3, and recalling
(3.22), the conclusion of Theorem 2 follows from Lemma 2.

4. Waring’s problem for larger exponents.

We close this paper by proving Theorem 3 using an argument similar
to that employed in the preceding section. We again adopt the notation
introduced in the preamble to Lemma 1, but here we suppose that k is a
sufficiently large integer, and set dφ = 2. Thus φ is an integral quadratic
polynomial with positive leading coefficient, so that from (2.1) one has
P k/2 � x � P k/2. By virtue of Lemma 2, the asymptotic formula
(1.6) will follow once we have established an estimate of the shape

(4.1)
∑
n≤x

|Rs,k(φ(n); m)|h � P h(s−k)+k/2−ξ,

for some positive number ξ.
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As before, we define the complex numbers ηn by means of the equa-
tion

|Rs,k(φ(n); m)| =
∣∣∣∣∫

m

f(α)se(−αφ(n)) dα

∣∣∣∣
= ηn

∫
m

f(α)se(−αφ(n)) dα,

unless Rs,k(φ(n); m) = 0, in which case we take ηn = 0. Thus, for each
natural number n, we have |ηn| ≤ 1. Also, for T > 0, we introduce the
set

Z(T ) = {n ≤ x : T < |Rs,k(φ(n); m)| ≤ 2T },
we write Z(T ) for the cardinality of Z(T ), and we define the function

KT (α) =
∑

n∈Z(T )

ηne(αφ(n)).

With these definitions in hand, an application of Hölder’s inequality
reveals that

Z(T )T ≤
∑

n∈Z(T )

|Rs,k(φ(n); m)| =
∫

m

f(α)sKT (−α)dα

�
(∫ 1

0

|KT (α)|2hdα
)1/(2h)(∫

m

|f(α)|2hs/(2h−1)dα

)1−1/(2h)

.(4.2)

In the first part of this series of papers [3], we established an estimate
tantamount to ∫ 1

0

|KT (α)|4dα� Z(T )2P ε

(see (3.16) of [3]). Making use of this inequality and the trivial bound
|KT (α)| ≤ Z(T ), we derive for h ≥ 2 the upper bound

(4.3)

∫ 1

0

|KT (α)|2hdα ≤ Z(T )2h−4

∫ 1

0

|KT (α)|4dα� Z(T )2h−2P ε.

Moreover, one may apply the conclusions of Ford [7] to show that

(4.4)

∫
m

|f(α)|u dα� P u−k−ξ,

for some ξ > 0, provided that u > k2(log k+ log log k+O(1)). Indeed,
by the computation leading to the estimate (4.25) of [4], we see that
provided one has

u > 2k
⌈1

2
k(log k + log log k + 1)

⌉
+ 6k2,
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then (4.4) holds with ξ = (5 log k)−1. Here, as usual, we have written
dXe for the least integer n with n ≥ X. In the application at hand, we
take u = 2hs/(2h− 1). Then for large values of k, the last condition is
satisfied if, for example, one has

(4.5) s ≥
(

1− 1

2h

)
k2(log k + log log k + 8).

We insert the bounds (4.3) and (4.4) into (4.2), and with a modicum
of computation we infer that

Z(T )1/hT � P s−(2h−1)(k+ξ)/(2h)+ε.

From this we deduce that∑
n∈Z(T )

|Rs,k(φ(n); m)|h � Z(T )T h � P sh−kh+k/2−(h−1/2)ξ+ε.

On noting the trivial bound |Rs,k(φ(n); m)| ≤ P s, and observing that
the terms with |Rs,k(φ(n); m)| ≤ 1 are negligible, the desired bound
(4.1) follows for each h ≥ 2, and exponents s satisfying (4.5), on putting
T = 2l, and summing this inequality over integers l with 0 ≤ l ≤
2s logP . Hence, in view of Lemma 2, the conclusion of Theorem 3
follows at once.
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