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Recent developments in the theory of diophantine inequalities and the

Davenport-Heilbronn method are discussed and then directed toward specific
inequalities of definite character. Special emphasis is on the value-distribution

of diagonal forms near thin test sequences.

1. Theme and results

1.1. Diophantine inequalities

The focus of our attention in this survey article is the distribution of the

values of the diagonal form

�1x
k
1 + �2x

k
2 + ⋅ ⋅ ⋅+ �sx

k
s , (1.1)

as x1, . . . , xs range over ℤ or an interesting subset thereof; here s ≥ 2 and

k ≥ 1 are given integers and �1, . . . , �s are non-zero real numbers. Our

goal is twofold. In one direction we wish to emphasise recent developments

in the analytic theory of diophantine inequalities, in another discuss the

potential of methods developed in earlier papers of this series pertaining
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to this circle of ideas. Some basic principles are also readdressed herein, so

that the paper should introduce the uninitiated reader to the subject.

When the polynomial (1.1) is a real multiple of a form with integer

coefficients, its values are discrete and can be studied by classical methods

as well as the techniques developed in this series. The complementary case,

in which (1.1) is not a multiple of a rational form, arises when at least one of

the ratios �1/�j (2 ≤ j ≤ s) is irrational, and by renumbering the variables,

we shall from now on suppose that �1/�2 is irrational. In this situation, and

when s ≥ k+1, one expects that the values of (1.1) are dense on the real line

unless k is even and all �j have the same sign. In the latter case, one might

hope that the gaps between these values shrink to zero as they approach

infinity. When k = 1, this is classical territory as long as the variables xj are

allowed to vary over the integers, but, for example, much less is known about

the distribution of �1p1 + �2p2 when p1, p2 denote primes. When k = 2, an

affirmative theorem is available for indefinite quadratic forms from the work

of Margulis [28] (see also [19]), and also for the definite case when s ≥ 5.

This was shown by Götze [25], following the pivotal contribution by Bentkus

and Götze [2]. Their work may be viewed as a formidable refinement of a

Fourier transform method developed by Davenport and Heilbronn [17]. This

very general method is a variant for diophantine inequalities of the famous

circle method of Hardy and Littlewood that delivered enormous insight into

the labyrinth of diophantine equations during the last century. Davenport

and Heilbronn themselves studied the indefinite case k = 2 of (1.1) and

showed that the values taken at integer points are dense on the real line.

Their pioneering paper was the igniting spark for much work on related

questions. It would take us too far afield to sketch the development of the

subject at large, so instead we follow a fruitful tradition in additive number

theory, where new ideas have often been tested on Waring’s problem for

cubes or on Goldbach’s problem. Thus, we now concentrate on the case

k = 3 in (1.1), and later move on to the value distribution of �1p1 + �2p2,

although the methods that we develop apply in a much wider context.

1.2. Additive cubic forms

We discuss a slightly narrower problem from now on, by enforcing a kind of

definiteness. Let �1, . . . , �s denote positive real numbers, to be considered

as fixed once and for all. For 0 < � ≤ 1 and � > 0, let �s(�, �) be the

number of solutions of the inequality

∣�1x
3
1 + �2x

3
2 + ⋅ ⋅ ⋅+ �sx

3
s − �∣ < � (1.2)
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in natural numbers xj . Note that for any solution counted here one has

xj ≪ �1/3. In accordance with our earlier remarks, we still expect the gaps

among large values of �1x
3
1 + �2x

3
2 + ⋅ ⋅ ⋅+ �sx

3
s to shrink to zero provided

that s ≥ 4 and �1/�2 is irrational. One anticipates that �s(�, �) should be

large when � is fixed and � is large. The work of Freeman [21], [22] applies to

this problem, and so does the refinement by Wooley [44], and it is implicit

in the latter that for � fixed, one has

�7(�, �)≫ �4/3, �8(�, �) = c�5/3(1 + o(1)). (1.3)

Here c is a certain positive constant depending only on � and the coefficients

�j . Freeman and Wooley consider in detail a different scenario: � is fixed,

one counts solutions of (1.2) in integers xj with ∣xj ∣ ≤ X, and examines

the growth for X → ∞. Little change is necessary to derive the “definite”

versions (1.3) by the arguments of Wooley [44], but older routines based on

the original work of Davenport and Heilbronn [17] do not apply. Instead

one would find only that (1.2) has infinitely many solutions in integers xj .

Thus far, the situation is in direct correspondence to what is known

when the cubic form in (1.2) is a multiple of a rational form. Focusing

on this case temporarily, when � is sufficiently small, the inequality (1.2)

reduces to an equation. Hence there is no loss in assuming here that all �j
are natural numbers, and that the equation is

�1x
3
1 + �2x

3
2 + ⋅ ⋅ ⋅+ �sx

3
s = �. (1.4)

Let �s(�) denote the number of its solutions with xj ∈ ℕ. The methods

of Vaughan [33], [34] provide the lower bound �7(�) ≫ S7(�)�4/3, and

the asymptotic formula �8(�) = CS8(�)�5/3(1 + o(1)), where Ss(�) is the

singular series associated with (1.4), and C is a positive constant depending

only on the �j . Similar formulae are expected when s ≥ 4, and are at least

implicitly known on average. In fact, the envisaged formula for �4(�) holds

for all but O(N(logN)"−3) of the natural numbers � not exceeding N .

This much follows from the work of Vaughan [33] and Boklan [3]. For an

analogue in the irrational case, one must first address the question of how

one should average over the now real number �. One could choose a discrete

sequence of test points that are suitably spaced, and then count how often

an asymptotic formula for �4(�, �) fails. Alternatively, one may estimate

the measure of all such real � ∈ [1, N ]. Only very recently Parsell and

Wooley [31] proved that this measure is o(N). As an illustration of the

averaging process, we improve their estimate when �1/�2 is an algebraic

irrational. The result, which we deduce as a consequence of Theorem 2.2

in §2.3 below, fully reflects the current state of knowledge for forms with
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integer coefficients, but it appears difficult to do equally well under the sole

assumption that �1/�2 is irrational.

Theorem 1.1. Let �1, �2, �3, �4 denote positive real numbers with �1/�2

irrational and algebraic. Then, whenever (logN)−3 < � ≤ 1, one has∫ N

0

∣∣∣∣∣�4(�, �)−
2Γ( 4

3 )3��1/3

(�1�2�3�4)1/3

∣∣∣∣∣
2

d� ≪ �3/2N5/3(logN)"−3/2.

Previous articles within this series exposed methods for testing the con-

jectural behaviour of counting functions such as �s(�) when � varies over

a thin sequence, for example the values of a polynomial. A typical result is

contained in Theorem 1.1 of III∗ that we now recall. It will be convenient

to describe a polynomial � ∈ ℝ[t] of degree d ≥ 1 as a positive polynomial

if its leading coefficient is positive. If � ∈ ℚ[t] and �(n) is integral for all

n ∈ ℤ, then � is an integral polynomial. Let rs(n) be the number of positive

solutions of n = x3
1 + x3

2 + . . .+ x3
s. Then, for any 0 < � ≤ 1

2 , the inequality

∣r6(�)− Γ( 4
3 )6S6(�)�∣ > �(log �)−�

can hold for no more than O(N(logN)2�−5/2+") of the values � = �(n)

with n ≤ N assumed by a positive integral quadratic polynomial �. There

is no difficulty in extending this to forms with positive integral coefficients.

Our primary concern in the later chapters of this paper is to describe

methods that allow one to derive similar results in the context of diophan-

tine inequalities. Later we will comment on some of the difficulties that

arise, and we shall find the desired generalisation not as straightforward as

one might hope. A conclusion for �6(�, �) of strength comparable to the

aforementioned theorem on r6(�) is contained in the next result, the proof

of which may be found in §5.2.

Theorem 1.2. Let � denote a positive integral quadratic polynomial, and

let �1, . . . , �6 denote positive real numbers with �1/�2 irrational. Also, let

0 < � ≤ 1. Then there exists a function �(�), with �(�) = o(1) as � → ∞,

such that the inequality

∣�6(�, �)− 2Γ( 4
3 )6(�1 ⋅ ⋅ ⋅�6)−1/3��∣ > ��(�)

holds for at most O(N(logN)"−5/2) of the positive values � = �(n) with

1 ≤ n ≤ N .

∗Here and later we refer to our papers “Additive representation in thin sequences” by
their numeral within the series, I–VII. Hence, III refers to [9], for example.
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One might object that although it is rather natural to average over the

values of an integral polynomial in the case of diophantine equations, this

is not adequate for inequalities, and one should take the values of a real

polynomial as test points, or even a monotone sequence with a certain rate

of growth. In principle, our methods still apply in this wider context, but

some techniques such as certain divisor estimates do no longer have their

full impact on the problem at hand, and the ensuing results are sometimes

considerably weaker. We illustrate this in §§6.2 and 6.3 with an analysis of

following example.

Theorem 1.3. Let � denote a positive quadratic polynomial, and let

�1, . . . , �6 denote positive real numbers for which �1/�2 is irrational. Fix

0 < � ≤ 1. Then, there exists a real number c > 0 such that, for all but

O(N23/27) of the integers n ∈ [1, N ], one has �6(�, �(n)) ≥ c�(n).

We have not been able to establish the expected asymptotic formula

almost always when � is not an integral polynomial. Theorem 1.3 should

also be compared with Theorem 1.1 of I where the exceptional set is shown

to be O(N19/28) when �6(�, �) is replaced by r6(�).

Similar results for forms in five variables are not yet available. This ap-

plies even to the simplest examples in the rational case: it is not known

whether almost all squares are the sum of five positive cubes. In such situa-

tions our methods can sometimes be turned toward a lower bound estimate.

The idea is discussed in detail in IV, and then used to show that when � is

a positive integral quadratic polynomial, then amongst the integers n with

1 ≤ n ≤ N , the equation �(n) = x3
1 + . . . + x3

5 has solutions with xj ∈ ℕ
for at least N129/136 values of n (see Theorem 1.1 of IV). In §6.4 we prove

a result of similar flavour.

Theorem 1.4. Let � denote a positive quadratic polynomial, and let

�1, . . . , �5 be positive real numbers with �1/�2 irrational. Fix 0 < � ≤ 1.

Then �5(�, �(n)) ≥ 1 for at least N3/4 natural numbers n ∈ [1, N ].

Cubic forms in seven variables, in the rational case, have also been

discussed in III and VII, although only in the context of sums of cubes.

Moments of rs(n) over polynomial sequences are one of the objectives in

VII, and in particular, Theorem 1 of VII contains an asymptotic formula

for the sum ∑
n≤N

r7(�(n))2
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when � is a positive integral quadratic polynomial. The result coincides with

the formula that arises from summing the leading term in the anticipated

asymptotic expansion of r7(�). Similarly, under the assumptions of Theorem

1.3 (suitably adapted to the current context with seven variables), one can

derive an asymptotic formula for∑
n≤N

�7(�, �(n))2.

It suffices to follow the pattern laid out in VII, but the argument is simpler

in the absence of a singular series, and we spare the reader any detail.

1.3. Linear forms in primes

We now turn to the value distribution of the binary form �1p1 + �2p2 with

positive coefficients �1, �2 and large prime variables p1, p2. When �1/�2 is

rational, we may as well suppose that �1, �2 ∈ ℕ, and one then wishes to

solve �1p1 + �2p2 = n for a given natural number n. A necessary condition

is that �1x1 + �2x2 ≡ n mod 2�1�2 has a solution in integers x1, x2 both

coprime to 2�1�2 (the congruence condition). It is at least implicit in the

work of Montgomery and Vaughan [29] and of Liu and Tsang [27] that the

number of natural numbers n ≤ N which satisfy the congruence condition,

but have no representation in the form n = �1p1 + �2p2, does not exceed

O(N1−�), for some � > 0. Pintz has recently announced that one may

take any � < 1
3 here, at least when �1 = �2 = 1. A result of comparable

strength is available for the irrational case �1/�2 ∕∈ ℚ when this ratio is

algebraic. This was observed by Brüdern, Cook and Perelli [6]. We illustrate

the underlying idea in the second half of §2.3 with a related result. For

0 < � ≤ 1 and � > 0, let �(�, �) denote the number of prime solutions to

∣�1p1 + �2p2 − �∣ < �, (1.5)

with each solution p1, p2 counted with weight (log p1)(log p2).

Theorem 1.5. Let �1, �2 denote positive real numbers such that �1/�2 is

an algebraic irrational. Then, for any A ≥ 1, the set of real numbers � with

1 ≤ � ≤ N , for which ∣∣∣�(�, �)− 2��

�1�2

∣∣∣ > ��

(logN)A
, (1.6)

has measure O(�−1N2/3+"), uniformly in 0 < � ≤ 1.
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For comparison, Parsell [30] works under the weaker hypothesis that

�1/�2 is irrational, and obtains a result that is essentially equivalent to∫ N

0

∣∣∣�(�, �)− 2��

�1�2

∣∣∣2 d� = o(N3). (1.7)

Our method also gives a proof of (1.7), as well as an improvement when

�1/�2 is algebraic, but not by a power of N . Limitations arise from our cur-

rent knowledge concerning the zeros of the Riemann zeta function. Thus,

when �1/�2 is algebraic, one may apply the methods described below to con-

firm that the integral on the left hand side of (1.7) is O(N3 exp(−c
√

logN))

for some c > 0, and with only moderate extra effort one obtains a saving

that corresponds to the sharpest one currently known in the error term for

the prime number theorem.

Next, we investigate averages over polynomial sequences. Theorem 1

of II asserts that there is a constant � > 0 such that, for any positive

integral polynomial � of degree d, the number of even values of �(n) with

1 ≤ n ≤ N that are not the sum of two primes does not exceed O(N1−�/d).

In the irrational case we require �1/�2 to be algebraic, and the conclusion

is decidedly weaker. In §5.6 we sketch a proof of the following result.

Theorem 1.6. Let �1, �2 denote positive real numbers such that �1/�2 is

an algebraic irrational. Fix 0 < � ≤ 1 and A ≥ 1. Let � denote a positive

polynomial of degree d, and let E�(N) denote the number of integers n with

1 ≤ n ≤ N for which the inequality (1.6) holds with � = �(n). Then, there

is an absolute constant � > 0 such that

E�(N)≪ N1−�/(d log d).

In the absence of the hypothesis that �1/�2 be algebraic, it seems

difficult to establish a quantitative bound for E�(N), but proving that

E�(N) = o(N) is straightforward. In chapter 4 we average over even thin-

ner sets. Brüdern and Perelli [15] have a corresponding result on Goldbach’s

problem.

Theorem 1.7. Let �1, �2 denote positive real numbers such that �1/�2 is

an algebraic irrational. Fix 0 < � ≤ 1 and A ≥ 1. Let 1 <  < 3
2 , and write

�(t) = exp((log t)). Let E�(N) be the number of natural numbers n with

1 ≤ n ≤ N for which the inequality (1.6) holds with � = �(n). Then, there

is a � > 0 such that

E�(N)≪ N exp(−�(logN)3−2).
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1.4. Further applications

Various other examples of averages over thin sequences can be found in

I–VI, and one may extend most of them to diophantine inequalities along

the lines indicated above. We single out two results from V and VI that

concern the form (1.1) when the degree k is large. Theorem 1.5 of V shows

that whenever s ≥ 1
2k log k + O(k log log k) and � is a quadratic, positive

and integral polynomial, then for almost all n ∈ ℕ the number �(n) is the

sum of s positive k-th powers. This may be somewhat surprising, because

one cannot do substantially better in the seemingly simpler problem in

which the quadratic polynomial �(n) is replaced by a linear one; the lower

bound on s required here is again of the type s ≥ 1
2k log k +O(k log log k).

This much is implicit in the work of Wooley [40].

Now suppose that �1x
k
1 + . . .+ �sx

k
s is an irrational form with positive

coefficients, and let 0 < � ≤ 1 and � > 0. Let �k,s(�, �) denote the number

of solutions of the inequality

∣�1x
k
1 + �2x

k
2 + . . .+ �sx

k
s − �∣ < �

in positive integers xj (whence �3,s = �s in the notation of §1.2). One

can now combine the methods used to prove Theorem 1.2 in this paper

with the strategy explained in V to confirm that whenever � is a positive

integral quadratic polynomial and � is fixed, then for almost all n, one has

�k,s(�, �(n)) > 0, provided only that s ≥ 1
2k log k+O(k log log k). This is a

proper analogue of the aforementioned result on Waring’s problem. For a

general real polynomial, as we discover in §6.7, the problem is more difficult.

Theorem 1.8. Let �1, . . . , �s be positive real numbers, and suppose that

�1/�2 is irrational. Let 0 < � ≤ 1. Let � be a positive quadratic polynomial.

Then there is a number s0(k), with s0(k) = 3
4k log k + O(k log log k), such

that whenever s ≥ s0(k), then for almost all n one has �k,s(�, �(n)) > 0.

Similar conclusions can be obtained when � is a polynomial of degree

d ≥ 3, by a method akin to that used to establish Theorem 1.6.

One may also ask whether the form (1.1) takes values near an arithmetic

sequence, such as the primes. This theme was discussed in VI, and we derive

in §6.8 an analogue of Theorem 1 from that paper.

Theorem 1.9. Suppose that all Dirichlet L-functions satisfy the Riemann

hypothesis. Let �j be as in Theorem 1.8, and suppose that s ≥ 8
3k+2. Then,

the integer parts of �1x
k
1 + �2x

k
2 + . . .+ �sx

k
s are prime infinitely often for

natural numbers xj.
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1.5. A related diophantine inequality

A polynomial � ∈ ℝ[t] is described as irrational if it is not a real multiple of

an integral polynomial. It is in this case that our results are usually rather

weaker than their equation counterparts in other papers of this series; for

integral polynomials we experienced little difficulty in extending our ideas

for averaging over polynomial values to diophantine inequalities. In part,

this is due to the available estimates for the number of solutions of such

inequalities as ∣∣∣ t∑
j=1

(�(nj)− �(mj))
∣∣∣ < 1, (1.8)

in natural numbers nj ,mj ≤ N . These differ substantially according to

whether � is integral or irrational. Auxiliary bounds of this type are also

relevant for a class of diophantine inequalities recently discussed by Freeman

[24]. He considers a set of s non-zero positive polynomials

�j(t) =

d∑
l=1

�jlt
l (1 ≤ j ≤ s)

without constant terms, and of degree at most d. Suppose that at least one

of the ratios �jl/�km is irrational. The number ��(�, �) of solutions of

∣�1(x1) + . . .+ �s(xs)− �∣ < �, (1.9)

in positive integers, generalises the counter �k,s(�, �) in a natural way. Free-

man’s result is that there is a number s0(d), with s0(d) ∼ 4d log d, and such

that for fixed � > 0 and large � one has ��(�, �) ≥ 1 (see Theorem 2 of [24]).

Our investigation of (1.8) in §5.5 implies the following result, which we es-

tablish in chapter 7.

Theorem 1.10. For any d ∈ ℕ, there exists a number s1(d) with s1(d) ∼
2d2 log d and the following property. When �1, . . . , �s are polynomials of

respective degrees d1, . . . , ds at most d subject to the conditions described in

the preceding paragraph, then

��(�, �) = c(�)��D−1 + o(�D−1),

in which D = d−1
1 + . . .+ d−1

s and

c(�) =
2Γ(1 + d−1

1 ) . . .Γ(1 + d−1
s )

Γ(D)�
1/d1
1 . . . �

1/ds
s

.
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Under the current stipulations on �, the inequality (1.9) implies an

upper bound on xj , whence the problem remains “definite”. Freeman [24]

also considers a cognate “indefinite” problem, and the corresponding ana-

logue of Theorem 1.10 follows mutatis mutandis. These results are the first

recorded instances of asymptotic formulae for ��(�, �).

The individual chapters of this memoir are equipped with sections that

describe the methods used herein in greater detail than would be possi-

ble at this point. The next chapter is intended as an introduction to the

Davenport-Heilbronn method. Emphasis is on newer techniques that yield

asymptotic formulae. In particular, we discuss a central contribution from

the work of Bentkus and Götze [2] and of Freeman [21]. Rather than follow-

ing their line of thought, we describe their device as an interference estimate

for certain major arcs (Theorems 2.7 and 2.8). This yields an independent

approach to asymptotic formulae for diophantine inequalities. In chapter

3, the work of chapter 2 is then illustrated with proofs for Theorems 1.1

and 1.5. A classical use of Plancherel’s identity suffices here. In chapter 4,

a discrete mean square approach is explained within a proof of Theorem

1.7. In chapter 5 we discuss the averaging tools from earlier papers in this

series, that are then used to establish Theorems 1.2 and 1.6. Along the way,

new mean value estimates for certain Weyl sums are obtained in §§5.4–5.5.

The next chapter combines the ideas from chapter 5 with mean values of

smooth Weyl sums, and also describes a lower bound method that was in-

troduced in IV. The final chapter is an appendix on the problem described

in Theorem 1.10.

The notation used in this memoir is standard, or otherwise explained

at the appropriate stage of the proceedings. We write e(�) = exp(2�i�).

The distance of a real number � to the nearest integer is ∥�∥. The integer

part of � is [�], and ⌈�⌉ is the smallest integer n with n ≥ �. We apply

the following convention concerning the letter ". Whenever " occurs in a

statement, it is asserted that this statement is true for all real " > 0, but

constants implicit in Landau or Vinogradov symbols may depend on the

actual value of ".

2. The Fourier transform method

2.1. Some classical integrals

We begin with a review of the Fourier transform method, as pioneered

by Davenport and Heilbronn. The scene is set up to cover more recent

developments which yield asymptotic formulae, not only accidental lower
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bounds. Before we can embark on details, a few classical integral formulae

are required that we now collect.

The Fourier transform of an integrable function w : ℝ→ ℂ is

ŵ(x) =

∫ ∞
−∞

w(y)e(−xy) dy, (2.1)

and for any positive real number �, the functions

w�(x) = �
( sin��x

��x

)2

, ŵ�(x) = max
(

0, 1− ∣x∣
�

)
(2.2)

are Fourier transforms of each other. Note that w and ŵ are non-negative.

One can use (2.2) to construct a continuous approximation to the indicator

function of an interval. When � > 0 and � > 0, define W�,� : ℝ→ [0, 1] by

W�,�(x) =

⎧⎨⎩
1, for ∣x∣ ≤ �,
1− (∣x∣ − �)/�, for � < ∣x∣ < � + �,

0, for ∣x∣ ≥ � + �.

By (2.2), one has

W�,�(x) =
(

1 +
�

�

)
ŵ�+�(x)− �

�
ŵ� (x). (2.3)

Before we return to diophantine inequalities, we apply the function

w�(x), given by (2.2), to define a measure d�x on ℝ with the property

that for any bounded continuous function  : ℝ→ ℂ and a measurable set

ℬ, one has ∫
ℬ
 (x) d�x =

∫
ℬ
 (x)w�(x) dx. (2.4)

We omit explicit mention of the range of integration when ℬ = ℝ. This

convenient notation avoids repeated occurences of the kernel w� in most of

the many integrals to follow.

2.2. Counting solutions of diophantine inequalities

The basic idea that underpins the strategy followed by Davenport and Heil-

bronn [17] is best explained in broad generality. Consider the polynomial

F ∈ ℤ[x1, . . . , xs], and suppose that u : ℤs → [0,∞) is a weight that van-

ishes outside a finite subset of ℤs. In practice u will be supported in a box

depending on a size parameter, say B. For a positive real number � , we

then wish to evaluate the sum

P(� ;u) =
∑
x∈ℤs
∣F (x)∣<�

u(x), (2.5)
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at least asymptotically, as B →∞. This is approached through the cognate

yet analytically simpler expression

P∗(� ;u) =
∑
x∈ℤs

u(x)ŵ� (F (x)). (2.6)

Occasionally, we shall use also the clumsier notation PF (� ;u), P∗F (� ;u) to

point out the dependence on F more explicitly. If only a lower bound for

P(� ;u) is desired, then it will suffice to proceed through the inequality

P(� ;u) ≥ P∗(� ;u) (2.7)

that is readily inferred from (2.2), (2.5) and (2.6). Moreover, it is an exercise

in elementary analysis to show that an asymptotic formula for P∗(� ;u)

implies a related one for the unweighted counter P(� ;u). If one has to take

care of error terms, this needs some dexterity. There are several ways to

perform the transition. Freeman [22] and Wooley [44] describe a sandwich

technique. Another option is to choose � in the range 0 < � < 1
2� . Then

observe that

P(� ;u) ≤
∑
x∈ℤs

u(x)W�,�(F (x)), (2.8)

an upper bound that uses only the definition of W�,� and the non-negativity

of u(x). However, when � is much smaller than � , the right hand side here

should be approximately equal to P(� ;u). In fact, the difference between

the left and right hand sides of (2.8) arises only from solutions of � <

∣F (x)∣ < � + �, and by taking into account the actual definition of W�,�,

we find that

P(� ;u) ≥
∑
x∈ℤs

u(x)W�,�(F (x))− P∗F−� (�;u)− P∗F+� (�;u).

We may combine these inequalities and apply (2.3) to conclude as follows.

Lemma 2.1. Let 0 < � < 1
2� . Then, in the notation introduced in this

section, one has

P(� ;u) =
(

1 +
�

�

)
P∗(� + �;u)− �

�
P∗(� ;u)− E,

where E satisfies the inequalities 0 ≤ E ≤ P∗F+� (�;u) + P∗F−� (�;u).
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2.3. Weighted counting

With the transition relations in (2.7) and Lemma 2.1 now in hand, we may

concentrate on P∗(� ;u). By (2.1), (2.2), (2.4) and (2.6) we have

P∗(� ;u) =

∫ ∑
x∈ℤs

e(�F (x))u(x) d��. (2.9)

It then suffices to establish an asymptotic formula for P∗(� ;u); a mild

uniformity in � comes with it at no cost so that Lemma 2.1 yields the

desired formula for P(� ;u).

The integral (2.9) is the starting point for the Davenport-Heilbronn

method. Before we enter this subject, we make the rather abstract dis-

cussion in §2.2 more concrete and show how this can be used to reduce

the proofs of Theorems 1.1 and 1.5 to related weighted versions of these

theorems.

We begin with additive cubic forms. The classical Weyl sum

f(�) =
∑
x≤X

e(�x3) (2.10)

will be prominently featured. When �1, . . . , �s are positive we choose

X = 2(�
−1/3
1 + . . .+ �−1/3

s + 1)N1/3. (2.11)

Then, for any solution of ∣�1x
3
1 + . . . + �sx

3
s − �∣ < 1 with � ≤ N , one

has xj ≤ X. Hence, we may take F = �1x
3
1 + . . . + �sx

3
s − � and u(x)

as the indicator function on the box 1 ≤ xj ≤ X (1 ≤ j ≤ s). Then

�s(�, �) = PF (� ;u) in the notation of the previous section, and the weighted

analogue P∗F (� ;u) now becomes

�∗s(�, �) =

∫
f(�1�) . . . f(�s�)e(−��) d��,

as a special case of (2.9). In this form, Lemma 2.1 shows that whenever

0 < � < 1
2� , one has

�s(�, �) =
(

1 +
�

�

)
�∗s(� + �, �)− �

�
�∗s(�, �) +O

(
�∗s(�, � + �) + �∗s(�, � − �)

)
.

(2.12)

For Theorem 1.2, we will have to work directly from this formula; see

the last part of §5.2. In order to establish Theorem 1.1, on the other hand,

we take s = 4, and invoke the following weighted variant which involves the

moment

Υ(�,N) =

∫ N

0

∣∣∣∣∣�∗4(�, �)−
Γ( 4

3 )3��1/3

(�1�2�3�4)1/3

∣∣∣∣∣
2

d�. (2.13)
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Theorem 2.2. Let �1, �2, �3, �4 be positive real numbers with �1/�2 irra-

tional and algebraic. Then, uniformly in (logN)−3 < � ≤ 1, one has

Υ(�,N)≪ �N5/3(logN)"−3.

This will be proved in §§3.1–3.3. For the time being, we take Theorem

2.2 for granted and deduce Theorem 1.1. One uses (2.12) together with the

identity

2� =
(

1 +
�

�

)
(� + �)− �2

�
− � (2.14)

within the integral in Theorem 1.1. Then, by (2.13) and the trivial inequal-

ity ∣�+ �∣2 ≤ 2(∣�∣2 + ∣�∣2), one finds that∫ N

0

∣∣∣∣∣�4(�, �)−
2Γ( 4

3 )3��1/3

(�1�2�3�4)1/3

∣∣∣∣∣
2

d�

≪
(�
�

)2(
Υ(� + �,N) + Υ(�,N)

)
+

∫ 2N

0

∣�∗4(�, �)∣2 d� + �2N5/3

holds uniformly for 0 < � < 1
2� ≤

1
2 . The term N5/3�2 arises from integrat-

ing the term −� in the expansion of 2� , and the integral on the right hand

side stems from the error terms �∗(�, � ± �) in (2.12). A similar argument

gives ∫ 2N

0

∣�∗4(�, �)∣2 d� ≪ Υ(�, 2N) +

∫ 2N

0

�2/3�2 d�,

and thus we conclude that∫ N

0

∣∣∣∣∣�4(�, �)−
2Γ( 4

3 )3��1/3

(�1�2�3�4)1/3

∣∣∣∣∣
2

d�

≪
(�
�

)2(
Υ(� + �,N) + Υ(�,N)

)
+ Υ(�, 2N) + �2N5/3.

The conclusion of Theorem 1.1 now follows from Theorem 2.2 on taking

� = 1
2�

3/4(logN)−3/4.

Similar techniques yield Theorem 1.5, but the details are more involved.

For �1, �2 > 0 we study the linear problem (1.5). In this new context, put

X = 2(�−1
1 + �−1

2 + 1)N, (2.15)

and observe that for any � ≤ N and any solution of (1.5), one has pj ≤ X.

In (2.5) we insert F = �1x1 + �2x2 − �, and set u(x1, x2) = 0 unless

x1, x2 are primes p1, p2 not exceeding X, in which case we take u(p1, p2) =

(log p1)(log p2). In the notation of Theorem 1.5 and that used in §2.2, we
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see that �(�, �) = PF (� ;u). By (2.6) and (2.9), the formulae for P∗(� ;u)

mutate into

�∗(�, �) =

∫
ℎ(�1�)ℎ(�2�)e(−��) d��,

where now

ℎ(�) =
∑
p≤X

(log p)e(�p)

is a Weyl sum over primes. The formula (2.12) remains valid, with �s, �
∗
s

replaced by �, �∗, respectively. We conclude as follows.

Theorem 2.3. With the hypotheses of Theorem 1.5, for any A ≥ 1, there

is a measurable function E� (�) such that, for 1 ≤ � ≤ N , one has

�∗(�, �) =
��

�1�2
+ E� (�) +O(�N(logN)−A)

and ∫ N

0

∣E� (�)∣2 d� ≪ �N8/3+".

We defer the proof of this result to §3.4, for now is the moment to

deduce Theorem 1.5. Observing that the desired conclusion is trivial when

� is smaller than N−1/3, we are entitled to assume the contrary. Equipped

with the newly interpreted versions of (2.12) and (2.13), with � in place of

�s, we deduce from (2.14) that for 0 < � < 1
2� , one has

�(�, �)− 2��

�1�2
=
(

1 +
�

�

)
E�+�(�)− �

�
E� (�) +

��

�1�2

+O
(
�∗(�, � + �) + �∗(�, � − �) +

�2

�
N(logN)−8A

)
.

Choosing � = �(logN)−4A, it is an easy exercise in the theory of uniform

distribution to show that

(logN)−2�∗(�, �) ≤ card {n,m ≤ X : ∣�1n+ �2m− �∣ < �} ≪ �N.

Here it is worth recalling that X ≍ N and �1/�2 is algebraic, and thus one

even obtains an asymptotic formula for the counting problem in the middle

term. The formula central to our discussion now reduces to∣∣∣�(�, �)− 2��

�1�2

∣∣∣≪ (logN)4A(∣E�+�(�)∣+ ∣E� (�)∣) +
�N

(logN)2A
. (2.16)
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Next, consider any real number � ∈ [ 1
2N,N ] for which the inequality (1.6)

holds. Then, by (2.16), one of the two inequalities

∣E� (�)∣ ≥ �N

(logN)6A
or ∣E�+�(�)∣ ≥ �N

(logN)6A

must also hold. However, by Theorem 2.3, the measure of all � ≤ N , for

which this lower bound for ∣E� (�)∣ holds, cannot exceed

(logN)12A

�2N2

∫ N

0

∣E� (�)∣2 d� ≪ �−1N2/3+".

Since the same argument may be applied to E�+�(�), the conclusion of

Theorem 1.5 follows via a dyadic dissection argument.

2.4. The central interval

As remarked earlier, the Davenport-Heilbronn method for diophantine in-

equalities embarks from (2.9). Whenever it succeeds, an asymptotic formula

is produced where the main term arises from an interval centered at the

origin, hereafter called the central interval. It has become common to refer

to the latter interval as the major arc, by analogy with the circle method,

but we reserve the term “major arcs” for classical major arcs.

We proceed in moderate detail and discuss the central interval for the

integrals �∗s(�, �) and �∗(�, �). Our treatment of �∗s(�, �) can be taken as a

model for any other application of the Fourier transform method to definite

diophantine inequalities. There is a certain overlap with the exposition in

Wooley [44], but the discussion there emphasises indefinite forms, and uses

a different kernology. We shall conclude as follows.

Lemma 2.4. Suppose that s ≥ 4, that �1, . . . , �s are positive real numbers

and that X is defined by (2.11). Let C > 0 denote a real number with

6C�j < 1 for all 1 ≤ j ≤ s, and let ℭ = [−CX−2, CX−2]. In addition, put

I =

∫
ℭ

f(�1�) . . . f(�s�)e(−��) d��.

Then, uniformly in 0 < � ≤ 1 and 1 ≤ � ≤ N , one has

I = Γ( 4
3 )sΓ( s3 )−1(�1 ⋅ ⋅ ⋅�s)−1/3��s/3−1 +O

(
1 + �Xs−10/3

)
.

Proof. Let

v(�) =

∫ X

0

e(��3) d�. (2.17)
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Then, according to Theorem 4.1 of Vaughan [35], in the range ∣�∣ ≤ 1
6X
−2

one has f(�) = v(�) +O(1). Also, Theorem 7.3 of Vaughan [35] yields

v(�)≪ X(1 +X3∣�∣)−1/3. (2.18)

For � ∈ ℭ, we therefore deduce that

f(�1�) . . . f(�s�) = v(�1�) . . . v(�s�) +O
(
1 +Xs−1(1 +X3∣�∣)−(s−1)/3

)
.

Then, on multiplying the previous display by w� (�)e(−��) and integrating,

we obtain

I =

∫
ℭ

v(�1�) . . . v(�s�)e(−��) d��+O(1 + �Xs−4 logX).

By (2.18), the singular integral

I∞ =

∫
v(�1�) . . . v(�s�)e(−��) d��

converges, and by (2.18) and (2.2), for any Y > 0, one has∫ ∞
Y

∣v(�1�) . . . v(�s�)∣d��≪ �

∫ ∞
Y

�−s/3 d�.

It is now immediate that

I = I∞ +O(1 + �Xs−10/3). (2.19)

Within the singular integral, we resubstitute (2.17) and apply (2.1) and

(2.4) to arrive at the interim identity

I∞ =

∫
[0,X]s

ŵ� (�1�
3
1 + . . .+ �s�

3
s − �) d�.

Since the �j are positive, it follows from (2.2) that we may extend the range

of integration to [0,∞)s. A change of variable then yields the alternative

formula

I∞ = (�1 . . . �s)
−1/3

∫
[0,∞)s

ŵ� (z3
1 + . . .+ z3

s − �) dz.

Consider the equation t = z3
1 + . . . + z3

s , which defines a surface in ℝs
of codimension 1. The area of this manifold in the quadrant with all zj
positive is Γ( 4

3 )sΓ( s3 )−1t
s
3−1. Hence, by the transformation formula and

Fubini’s theorem, one confirms that

I∞ = (�1 . . . �s)
−1/3Γ

(4

3

)s
Γ
(s

3

)−1
∫ ∞

0

ts/3−1ŵ� (t− �) dt.
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By (2.2), the remaining integral on the right hand side is equal to∫ �

−�

(
1− ∣�∣

�

)
(� + �)s/3−1 d� = ��s/3−1 +O(�2�s/3−2),

and the lemma follows from (2.19).

The analysis of the prime variables case is deeper because we need a

rather wide central interval, for a reason that will become more transpar-

ent in due course. In such cases, the distribution of primes in short intervals

comes into play. Fortunately, our discussion may be abbreviated by appeal-

ing to Brüdern, Cook and Perelli [6].

Lemma 2.5. Let �1, �2 > 0 and 0 < � < 1, and suppose that X is defined

by means of (2.15). In addition, let ℭ = [−X−1/2, X−1/2]. Then, for any

A > 1, and uniformly in 0 < � ≤ 1 and 1 ≤ � ≤ N , one has∫
ℭ

ℎ(�1�)ℎ(�2�)e(−��) d�� =
��

�1�2
+O(�X(logX)−A).

Proof. Let

ℎ∗(�) =
∑
x≤X

e(�x).

Then one may apply the methods underlying the proof of Lemma 2 of [6]

to establish the estimate∫
ℭ

∣ℎ(�j�)− ℎ∗(�j�)∣2 d�≪ X(logX)−2A. (2.20)

Here we note that although Lemma 2 of [6] states (2.20) only with A = 1,

an inspection of the proof, which combines only Lemma 1 and estimate (5)

of that paper, shows that any positive value of A is permissible. Next, let

v1(�) =

∫ X

0

e(��) d�.

By Euler’s summation formula, one finds that ℎ∗(�) − v1(�) ≪ 1 + X∣�∣,
whence from (2.20) we obtain∫

ℭ

∣ℎ(�j�)− v1(�j�)∣2 d�≪ X(logX)−2A.

Then, on noting the trivial estimate w� (�)≪ � evident from (2.2), it follows

from Schwarz’s inequality that∫
ℭ

ℎ(�1�)ℎ(�2�)e(−��) d��

=

∫
ℭ

v1(�1�)v1(�2�)e(−��) d��+O(�X(logX)−A). (2.21)
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We can now proceed as we have explained in detail for sums of cubes. By

partial integration, one has v1(�) ≪ X(1 + X∣�∣)−1, and consequently,

the integral on the right hand side of (2.21) can be extended to the whole

real line, with the introduction of acceptable errors. Then, applying Fourier

inversion as before we confirm that∫ ∞
−∞

v1(�1�)v1(�2�)e(−��) d�� =
��

�1�2
,

the details being considerably simpler. This proves the lemma.

2.5. The interference principle

In the previous section, we evaluated the contribution from the central

interval ℭ to the Fourier transform that counts solutions of a diophantine

inequality. The complementary set c = ℝ∖ℭ consists of two disjoint half-

lines, and we therefore refer to it as the complementary compositum. For a

successful analysis, its contribution to the count should be of a lower order

of magnitude. The most important ingredient in any proof of this is an

interference principle asserting that, when �1, �2 are non-zero real numbers,

and �1/�2 is irrational, then two exponential sums such as f(�1�) and

f(�2�), or ℎ(�1�) and ℎ(�2�), say, cannot be large simultaneously unless

� lies in the central interval. However, loosely speaking, when ∣f(�j�)∣
is large, then as a consequence of Weyl’s inequality, or a suitable variant

thereof, one finds that �j� has a rational approximation aj/qj with small

denominator. If this happens simultaneously for j = 1, 2, then a1q2/(a2q1)

is an approximation to �1/�2, and so the measure of the set of all � where

∣f(�1�)∣ and ∣f(�2�)∣ are simultaneously large, should be quite small. In

this form, the interference principle becomes a statement about diophantine

approximations alone, and references to exponential sums can be removed

entirely. For another, rather different view of this phenomenon, see section

3 of Brüdern [5].

We shall present here a simple derivation of the interference principle

along the lines indicated, based on ideas of Watson [38]. It appears to us

that the potential of this approach has been overlooked in the past. As

we shall demonstrate below, our method provides easy access to asymp-

totic formulae for diophantine inequalities, avoiding to a large extent the

entangled interplay between diophantine approximations and major arc in-

formation for exponential sums, as in the celebrated works of Bentkus and

Götze [2], and Freeman [21], who were the first to obtain such asymptotic

formulae at all. The stronger bounds that are available when �1/�2 is not

only irrational but also algebraic, moreover, follow from the same principles.
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Before making these comments precise, we need to introduce some no-

tation. Let N ≥ 1 denote the main parameter. For 1 ≤ Q ≤ 1
2

√
N the

intervals ∣q� − a∣ ≤ Q/N with 1 ≤ q ≤ Q, a ∈ ℤ and (a, q) = 1, are pair-

wise disjoint. Their union, the major arcs M(Q), forms a 1-periodic set.

The subset N(Q) = M(Q) ∩ [0, 1] is the familiar set of major arcs in the

classical circle method. We also define here the minor arcs

m(Q) = ℝ∖M(Q), n(Q) = [0, 1]∖N(Q),

although these will not be needed until the next section. Watson’s method

is imported through Lemma 4 of Brüdern, Cook and Perelli [6] that we

restate as Lemma 2.6. Temporarily, we suppose only that �1, �2 are non-

zero real numbers, so that our main estimates Theorems 2.7 and 2.8 apply

also to indefinite problems. With �1, �2 ∈ ℝ∖{0} fixed, we define

K(Q1, Q2) = {� ∈ ℝ : �j� ∈M(Qj) (j = 1, 2)}.

In addition, when y > 0, we put

Ky(Q1, Q2) = {� ∈ K(Q1, Q2) : y < ∣�∣ ≤ 2y}.

Lemma 2.6. Let �1, �2 be non-zero real numbers such that �1/�2 is ir-

rational. There exists a positive real number "0 = "0(�1, �2) with the fol-

lowing property. Suppose that 1 ≤ Qj ≤ 1
2

√
N (j = 1, 2), and r ∈ ℕ

satisfies r ≤ "0N/(Q1Q2) and ∥r�1/�2∥ < 1/r. Then, for any y > 0 with

∣�j ∣y ≥ 2Qj/N (j = 1, 2), one has mesKy(Q1, Q2)≪ yN−1Q1Q2r
−1.

Note that N(Q) has measure about Q2N−1. An application of Schwarz’s

inequality therefore reveals that mesKy(Q1, Q2)≪ yN−1Q1Q2. Lemma 2.6

improves on this estimate by a factor 1/r, and it is this saving that implies

that �1� and �2� simultaneously lie on major arcs only for a slim set of

real numbers �.

For a non-zero real number �, define

T�(R) = max{r ∈ ℕ : r ≤ R, ∥�r∥ ≤ 1/r}. (2.22)

When � is irrational, then ∥�r∥ ≤ 1/r has infinitely many solutions, and

consequently T�(R) → ∞ as R → ∞. If rm is the sequence of solutions

of ∥�r∥ ≤ 1/r, arranged in increasing order, then for algebraic irrational

numbers �, Roth’s theorem gives rm+1 ≪ r1+"
m . Therefore, in this case,

T�(R)≫ R1−". (2.23)
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We can now put Lemma 2.6 into a form more readily applied. Subject to

the conditions of this lemma, we deduce from (2.2) and (2.4) that∫
Ky(Q1,Q2)

d��≪ Q1Q2(NT )−1 min(�y, (�y)−1),

where T = T�1/�2
("0N/(Q1Q2)). We choose a number Y with ∣�j ∣Y ≥

2Qj/N (j = 1, 2) and sum the previous estimate over y = 2lY . This gives∫
∣�∣≥Y

�∈K(Q1,Q2)

d��≪ Q1Q2(NT )−1. (2.24)

Theorem 2.7. Let �1, �2 be non-zero real numbers. If �1/�2 is irra-

tional and algebraic, then uniformly in 0 < � ≤ 1, Qj ≤ 1
2

√
N and

Y ≥ 2Qj/(∣�j ∣N) (j = 1, 2), one has∫
∣�∣≥Y

�∈K(Q1,Q2)

d��≪ N"−2Q2
1Q

2
2.

The proof is immediate from (2.23) and (2.24).

Theorem 2.8. Let Q = Q(N) be a function that is increasing, unbounded,

and satisfies Q(N)/
√
N → 0 as N → ∞. Let �1, �2 be non-zero real

numbers such that �1/�2 is irrational. Then, uniformly in 0 < � ≤ 1,

1 ≤ Qj ≤ Q(N) and Y ≥ 2Q(N)/(∣�j ∣N), one has∫
∣�∣≥Y

�∈K(Q1,Q2)

d��≪ N−1Q1Q2T�1/�2

( "0N

Q(N)2

)−1

.

Again, this is merely a restatement of (2.24) if one observes that un-

der the current hypotheses, one has Q1Q2 ≤ Q(N)2, and T�(R) is a non-

decreasing function. We note that the condition N/Q(N)2 → ∞ ensures

that the upper bound in Theorem 2.8 is o(N−1Q1Q2) as N →∞.

3. Classical mean square methods

3.1. Plancherel’s identity

In this chapter, we complete the proofs of Theorems 1.1 and 1.5 by demon-

strating Theorems 2.2 and 2.3. However, our primary concern is to illus-

trate, in this and related enterprises, the use of Plancherel’s identity for
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take-off and Wooley’s amplifier [44] coupled with the interference principle

for landing.

As in previous sections, we begin with additive cubic forms. Under the

hypotheses of Theorem 2.2, for any measurable set A ⊂ ℝ we write

�∗A(�, �) =

∫
A

f(�1�)f(�2�)f(�3�)f(�4�)e(−��) d��. (3.1)

We define the central interval ℭ as in Lemma 2.4, and the complemen-

tary compositum c as in §2.5, and then have �∗4(�, �) = �∗ℭ(�, �) + �∗c (�, �).

Consequently, recalling (2.13), we find that

Υ(�,N)≪
∫ N

0

∣∣∣∣∣�∗ℭ(�, �)−
Γ( 4

3 )3��1/3

(�1�2�3�4)1/3

∣∣∣∣∣
2

d� +

∫ N

0

∣�∗c (�, �)∣2 d�.

Next, applying Lemma 2.4 to estimate the term involving the central inter-

val, we deduce that

Υ(�,N)≪ N(1 +N4/9�2) +

∫ N

0

∣�∗c (�, �)∣2 d�. (3.2)

Now, by (3.1) and (2.4), the number �c(�, �) is the Fourier transform, at �,

of the function that is

f(�1�)f(�2�)f(�3�)f(�4�)w� (�)

for � ∈ c, and 0 on ℭ. By Plancherel’s identity,∫ ∞
−∞
∣�∗c (�, �)∣2 d� =

∫
c

∣f(�1�) . . . f(�4�)∣2w� (�)2 d�,

from which we deduce, via (2.2) and (2.4), the important inequality∫ N

0

∣�∗c (�, �)∣2 d� ≤ �
∫
c

∣f(�1�) . . . f(�4�)∣2 d�� (3.3)

through which the estimation will proceed.

3.2. Some mean values

We summarize here a few standard bounds for Weyl sums f(�). It will

be convenient, temporarily, to write M = M(X3/4) and m = m(X3/4),

with N and n defined mutatis mutandis. Combining the methods used to

prove Lemma 1 in Vaughan [33] with the bounds for Hooley’s Δ-function in

Hall and Tenenbaum [26], we obtain an enhanced form of Weyl’s inequality

which asserts that

sup
�∈m
∣f(�)∣ ≪ X3/4(logX)1/4+". (3.4)
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Boklan [3] supplies the bound∫
n

∣f(�)∣8 d�≪ X5(logX)"−3 (3.5)

as an improvement over Theorem B of Vaughan [33]. Standard applica-

tions of the circle method (see Chapter 4 of [35]) yield the complementary

estimates ∫
N

∣f(�)∣4 d�≪ X1+",

∫
N

∣f(�)∣4+� d�≪ X1+�, (3.6)

the latter being valid for any fixed � > 0. This last bound combines with

(3.5) to deliver the estimate∫ 1

0

∣f(�)∣8 d�≪ X5, (3.7)

a conclusion that is also implied by Theorem 2 of Vaughan [33]. We now

transport these mean value bounds into integrals over 1-periodic sets,

against the measure d��.

Lemma 3.1. Let G : ℝ→ ℂ be a function of period 1 that is integrable on

[0, 1]. Then, for any � > 0 and any u ∈ ℝ, one has∫
G(�)e(−�u) d�� =

∞∑
n=−∞

ŵ� (n− u)

∫ 1

0

G(�)e(−�n) d�.

Proof. This is a special case of formula (4) in Brüdern [4], with w� (�) in

the role of the kernel K employed in [4]. Note that the sum on the right is

over ∣n− u∣ ≤ � only.

As an example, take u = 0, and put G(�) = ∣f(�)∣8 when � ∈ m, and

G(�) = 0 otherwise. Then∫
m

∣f(�)∣8 d�� =
∑
∣n∣≤�

ŵ� (n)

∫
n

∣f(�)∣8e(−�n) d�,

whence, in particular,∫
m

∣f(�)∣8 d��≪ X5(logX)"−3. (3.8)

Similarly, when � ≪ 1 and � > 0, one infers from (3.6) that∫
M

∣f(�)∣4 d��≪ X1+",

∫
M

∣f(�)∣4+� d��≪ X1+�, (3.9)
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and from (3.7) that ∫
∣f(�)∣8 d��≪ X5. (3.10)

3.3. The amplification technique

The first steps in the estimation of the right hand side of (3.3) follow Wooley

[44]. We need to cover c by the sets

d = {� ∈ c : �j� ∈ m (1 ≤ j ≤ 4)},
D = {� ∈ c : �j� ∈M (1 ≤ j ≤ 4)},

Eij = {� ∈ c : �i� ∈M, �j� ∈ m} (1 ≤ i, j ≤ 4, i ∕= j).

Each of these sets a requires a different argument. For convenience, we write

I(a) =

∫
a

∣f(�1�) . . . f(�4�)∣2 d��.

By Hölder’s inequality, one infers that

I(d) ≤
4∏
j=1

(∫
�j�∈m

∣f(�j�)∣8 d��
)1/4

.

Since a change of variable reveals that∫
��∈m

∣f(��)∣8 d�� =

∫
m

∣f(�)∣8 d�/��,

one derives from (3.8) the important bound

I(d)≪ X5(logX)"−3. (3.11)

Next, we use (3.4) and Hölder’s inequality to conclude that

I(E12)≪ X3/2+"
(∫

�1�∈M
∣f(�1�)∣4 d��

)1/2

×
(∫
∣f(�3�)∣8 d��

)1/4(∫
∣f(�4�)∣8 d��

)1/4

.

Thus, by changes of variable together with (3.9) and (3.10), it follows that

I(E12)≪ X9/2+". By symmetry, this shows that

I(Eij)≪ X9/2+" (1 ≤ i, j ≤ 4, i ∕= j). (3.12)

The amplification is now complete: since c is the union of d,D and the Eij ,

then in view of (3.11) and (3.12), it suffices to consider D. Here all �j�

lie on a major arc. But by comparison with the analysis just undertaken,
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major arc moments are far easier to control (compare (3.5), (3.6)), and the

interference principle can be brought into play.

For ∣q� − a∣ ≤ QX−3 and q ≤ Q ≤ X3/4 it follows from Theorem 4.1

and Lemma 4.6 of [35] that

f(�)≪ X(q +X3∣q�− a∣)−1/3, (3.13)

and consequently, when � ∈M(2Q)∖M(Q), we find that f(�)≪ XQ−1/3.

Therefore, slicing D into sections

D(Q1, Q2) = {� ∈ D : �j� ∈M(2Qj)∖M(Qj) for j = 1, 2}, (3.14)

with 1 ≤ Qj ≤ X3/4, we see from Theorem 2.7 that∫
D(Q1,Q2)

∣f(�1�)f(�2�)∣2 d��≪ N"−2X4(Q1Q2)4/3 ≪ N".

By a dyadic dissection argument and trivial bounds for ∣f(�3�)f(�4�)∣,
it therefore follows that I(D) ≪ N"X4. In combination with (3.11) and

(3.12), we may infer that the integral on the left hand side of (3.3) is

O(�X5(logX)"−3), and Theorem 2.2 follows from (3.2). In view of the

discussion following the statement of Theorem 2.2, this also completes the

proof of Theorem 1.1.

3.4. Linear forms in primes

We now establish Theorem 2.3 by an argument paralleling that of the pre-

vious two sections. By Lemma 2.5, if we put c = {� : ∣�∣ ≥ X−1/2} and

E� (�) =

∫
c

ℎ(�1�)ℎ(�2�)e(−��) d��, (3.15)

then just as in the discussion leading to (3.3), Plancherel’s identity gives∫ N

0

∣E� (�)∣2 d� ≪ �

∫
c

∣ℎ(�1�)ℎ(�2�)∣2 d��. (3.16)

The dissection of c this time is much simpler. For j = 1 and 2, we consider

mj = {� ∈ c : �j� ∈ m(X1/3)}.

Then c is the union of m1,m2 and c ∩ K(X1/3, X1/3).

Vinogradov’s estimate for exponential sums (Vaughan [35], Theorem

3.1) shows both that

sup
�∈m(X1/3)

∣ℎ(�)∣ ≪ X5/6(logX)4,
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and, whenever Q ≤ X1/3, that

sup
�∈M(2Q)∖M(Q)

∣ℎ(�)∣ ≪ XQ−1/2(logX)4. (3.17)

Paired with the mean square bound∫
∣ℎ(�1�)∣2 d�� =

∑
�1∣p1−p2∣<�
p1,p2≤X

(log p1)(log p2)≪ X logX, (3.18)

the first of these estimates yields∫
m2

∣ℎ(�1�)ℎ(�2�)∣2 d��≪ X8/3(logX)9,

and the same is true for the contribution from m1, by symmetry. For the

set K(X1/3, X1/3), we apply the same slicing technique as we used for D in

§3.3. Then, importing (3.17) into Theorem 2.7, we find that∫
c∩K(X1/3,X1/3)

∣ℎ(�1�)ℎ(�2�)∣2 d��≪ X8/3+",

an estimate that may also be found on p. 97 of [6]. Collecting the upper

bounds obtained thus far, we conclude that∫
c

∣ℎ(�1�)ℎ(�2�)∣2 d��≪ X8/3+", (3.19)

and Theorem 2.3 follows from (3.16) and Lemma 2.5.

3.5. Bessel’s inequality

The continuous averages in Theorems 1.1, 2.2 and 2.3 could be replaced

by discrete ones. In such a setting, one chooses an increasing sequence of

test points �m that is roughly of linear growth; see [6] for one of the many

possibilities to make this precise. One would then study, for example, a

mean square of the type∑
�m≤N

∣∣∣∣∣�4(�, �m)−
2Γ( 4

3 )3��
1/3
m

(�1�2�3�4)1/3

∣∣∣∣∣
2

as the appropriate analogue of the integral in Theorem 1.1. This approach,

which has been used successfully by Brüdern, Cook and Perelli [6], Parsell

[30], and others, is roughly of the same strength as the methods described

herein. Bessel’s inequality performs the averaging in the discrete world, and

replaces Plancherel’s identity in the work of §3.1 and elsewhere. For thinner

averages, it appears that it is almost mandatory to work with discrete test

points, and this will be the theme in most of the following sections.
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4. Semi-classical averaging

4.1. Another mean square approach

The main purpose of this chapter is to establish Theorem 1.7. Thus, we

continue the discussion begun in §§3.4 and 3.5, and examine the distribution

of the linear form �1p1 + �2p2 near the sequence

�m = exp((logm)), (4.1)

where 1 <  < 3
2 is fixed once and for all. As much as is possible, the

notation from the proof of Theorem 1.5 is kept throughout this chapter. The

parameters X and N are linked as in (2.15), and we apply the same notation

as in §3.4 and the statement of Lemma 2.5. This defines the central interval

and its complement c. With E� (�) as in (3.15), we recall that Lemma 2.5

asserts that for any A > 1, uniformly in 0 < � ≤ 1 and 1 ≤ � ≤ N , one has

�∗(�, �) =
��

�1�2
+ E� (�) +O(�N(logN)−A). (4.2)

Now define M through the equation

exp((log 2M)) = N.

Then logM ≍ (logN)1/ , and whenever m ≤ 2M one has �m ≤ N .

Lemma 4.1. Let 1 <  < 3
2 . Also, let �1, �2 > 0, and suppose that �1/�2

is an algebraic irrational. Then, there exists � > 0 such that∑
M<m≤2M

∣E� (�m)∣2 ≪MN2 exp
(
− 2�(logM)3−2

)
.

This implies Theorem 1.7, for in view of (4.2) we infer that for any fixed

0 < � < 1, the asymptotic formula

�∗(�, �) =
��

�1�2
+O(N(logN)−A)

holds for all but O(M exp(−�(logM)3−2)) of the values � = �m with

M < m ≤ 2M . By the transfer principle (Lemma 2.1) and an argument

almost identical to the one given after the statement of Theorem 2.3, this

can be reformulated as an asymptotic formula for �(�, �). Theorem 1.7 then

follows by summing over dyadic intervals.

4.2. Exponential sums over test sequences

Let

Φ(�) =
∑

M<m≤2M

e(��m), H(�) = ℎ(�1�)ℎ(�2�). (4.3)
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Then, by (3.15), one has∑
M<m≤2M

∣E� (�m)∣2 =

∫∫
c×c

H(�)H(−�)Φ(� − �) d�� d��. (4.4)

The next lemma is a special case of Theorem 2 of Brüdern and Perelli [15].

Lemma 4.2. Let 1 <  < 3
2 and 0 < � < min( 1

100 ,  − 1). Then, there is a

real number � > 0 such that uniformly in N�−1 ≤ ∣�∣ ≤ N�, one has

Φ(�)≪M exp(−2�(logM)3−2).

In order to establish Lemma 4.1, we split the integration in (4.4) into

the three regions

T = {(�, �) ∈ c× c : ∣�− �∣ > 2N�},
U = {(�, �) ∈ c× c : N�−1 < ∣�− �∣ ≤ 2N�},
V = {(�, �) ∈ c× c : ∣�− �∣ ≤ N�−1}.

The corresponding contributions to (4.4) are denoted by J(T), J(U), J(V)

respectively, and we examine each in turn.

The set T presents little difficulty. When ∣� − �∣ > 2N�, then

max(∣�∣, ∣�∣) > N �. By symmetry and a trivial bound for Φ(�), this im-

plies that

∣J(T)∣ ≤ 4M

∫
∣H(�)∣d��

∫ ∞
N�
∣H(�)∣d��.

By Schwarz’s inequality and (3.18), the �-integral here is O(X logX). For

the �-integral, note that whenever � > 0, then

�

∫ y+1/�

y

∣ℎ(��)∣2 d� =

∫ 1

0

∣ℎ(�)∣2 d�≪ X logX,

irrespective of y ∈ ℝ. Hence, we may split the range [N�,∞) into intervals

of length 1/� to deduce via (2.2) and (2.4) that∫ ∞
N�
∣ℎ(��)∣2 d��≪ �−1N−�X logX.

We apply this bound with � = �1 and � = �2. Recalling that X ≍ N in the

current context, another application of Schwarz’s inequality reveals that

J(T)≪MN2−�(logN)2, (4.5)

which is more than is required.
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For the set U, we argue similarly, but this time one estimates Φ(�− �)

using Lemma 4.2. The remaining double integral can be taken over ℝ2, and

is then readily reduced to four integrals of the type (3.18). This yields

J(U)≪MN2(logN)2 exp(−2�(logM)3−2). (4.6)

Rather more care is required for V. The treatment begins with (4.4)

and the substitution � = � + �. With a trivial bound for Φ(�) and (2.4),

we infer that

J(V)≪M

∫
c

∣H(�)∣
∫ N�−1

−N�−1

∣H(�+ �)∣w� (�+ �) d� d��.

Reverse the order of integrations, and then apply Schwarz’s inequality to

the integral over c to bring in the integral (3.19). This implicitly applies the

interference estimates from the work of §3.4, and reveals that

J(V)≪MX4/3+"

∫ N�−1

−N�−1

(∫
∣H(�+ �)w� (�+ �)∣2 d��

)1/2

d�.

A trivial estimate for ℎ(�2(� + �)), in combination with (2.2) and (3.18),

bounds the inner integral by

�2X2

∫ ∞
−∞
∣ℎ(�1(�+ �))∣2w� (�+ �) d�≪ �2X3 logX,

which then implies the bound

J(V)≪ �MN11/6+�+". (4.7)

The conclusion of Lemma 4.1 follows from (4.4), (4.5), (4.6) and (4.7).

4.3. Potential applications

The method exposed here is particularly useful if the test sequence �m is

uniformly distributed modulo 1, as is the case with the example (4.1). The

Fourier series Φ(�) then peaks only at � = 0. The mean square method

produces a double integral that Φ collapses to an expression reminiscent of

a one-dimensional situation, but with two sets of generating functions. This

far, there is a strong resemblence to the analysis via Plancherel’s identity.

The success of the method then depends on the savings that one can obtain

for Φ(�), and in the case (4.1) this is our Lemma 4.2.

At least in principle, the method is also applicable when �m runs through

an arithmetic sequence, such as the values of a polynomial, but then Φ(�)

may have large values when � is in some set of major arcs M(Q). Yet, at

the cost of extra complication in detail, the method can still be pressed
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home when the initial estimations stemming from a suitable analogue of

Lemma 4.2 turn out to be successful. Perelli [32] is an example where these

ideas were used, and one could obtain a weaker version of Theorem 1.6

along these lines as well. However, for polynomial sequences in particular,

the methods developed in I - VI are more promising, and we now turn to

their initiation in the context of diophantine inequalities.

5. Fourier analysis of exceptional sets

5.1. An illustrative example

The work of chapter 4 depends on an analysis of the Fourier series of the

test sequence. From now on we take a different point of view, and examine

the Fourier series of the exceptional set to a representation problem.

Most of the results stated in chapter 1 that we have not yet established

have a common flavour. One investigates a diophantine inequality involving

a (large) parameter �, and it is expected that there are many solutions. This

expectation is tested on average over the values �m of a positive polynomial

(Theorems 1.2, 1.3, 1.6, 1.8). There may be exceptions to the anticipated

behaviour, but these are characterised by an analytic inequality: the inte-

gral over the complementary compositum must be unexpectedly large. This

gives a precise meaning to an “exceptional value” of m. These numbers form

a set Z, and we consider the exponential sum∑
m∈Z

e(��m).

This is no longer a classical Weyl sum, as was the case with (4.3), but

whenever the sum reappears within moment estimates, one can restore the

polynomial structure through an enveloping argument. This idea has been

explored in I, II, III and V, for diophantine equations, but there is little

difficulty to adapt the principal ideas to the wider context. The introductory

section of I contains a detailed account of the method to which we have

nothing to add. Instead, we introduce the reader to the basic strategy by

working through an illustrative example that can be handled from scratch.

This will ultimately yield a proof of Theorem 1.2.

Thus, we are now concerned with the weighted counter �∗6(�, �), we

suppose that 1 ≤ � ≤ N , and that X ≍ N1/3 is chosen in accordance with

(2.11). We can apply Lemma 2.4, the infrastructure of which also fixes the

central interval and the complementary compositum c. The result is that

�∗6(�, �) =
Γ( 4

3 )6��

(�1 . . . �6)1/3
+

∫
c

F (�)e(−��) d��+O(1 + �N8/9). (5.1)
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where F (�) = f(�1�) . . . f(�6�). We will attempt to mimic the amplifica-

tion procedures in §3.3, and also the interference estimate. It is important

to observe that the latter can be performed without averaging, and we

therefore begin with this part.

Let m,M be defined as in §3.2. Following the pattern of §3.3, we write

D = {� ∈ c : �j� ∈M (1 ≤ j ≤ 6)}

for the amplifying set, and slice it into the subsets D(Q1, Q2) introduced

in (3.14). Let

T̃ (N) = min(T�1/�2
("0NX

−3/2), (log logN)4).

By (3.13) and Theorem 2.8, the bound∫
D(Q1,Q2)

∣f(�1�)f(�2�)∣4 d��≪ X8N−1(Q1Q2)−1/3T̃ (N)−1

holds throughout the relevant range 1 ≤ Q1, Q2 ≤ X3/4. We may therefore

sum over dyadic ranges for Q1 and Q2 to confirm that∫
D

∣f(�1�)f(�2�)∣4 d��≪ N5/3T̃ (N)−1. (5.2)

Also, by (3.9) one has∫
D

∣f(�j�)∣16/3 d��≪ X7/3 (3 ≤ j ≤ 6), (5.3)

and an application of Hölder’s inequality combined with (5.2) and (5.3)

yields the final estimate∫
D

∣f(�1�) . . . f(�6�)∣d��≪ NT̃ (N)−1/4. (5.4)

Another subset of c needs to be removed before an averaging process

can be launched. Let I ⊂ {1, 2, . . . , 6} be a set with 4 elements, and let

E(I) = {� ∈ c∖D : �i� ∈M (i ∈ I)}.

We write E for the union of all E(I). By symmetry, there is no loss of

generality in considering the special case where I = {3, 4, 5, 6}. Then, since

� /∈ D, at least one of �1� and �2� lies in m, and consequently, the bound

f(�1�)f(�2�) ≪ X7/4+" follows from (3.4). By Hölder’s inequality and

(3.9), we therefore obtain∫
E(I)

∣F (�)∣d��≪ X7/4+"
6∏
j=3

(∫
�j�∈M

∣f(�j�)∣4 d��
)1/4

≪ X11/4+".
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We conclude that ∫
E

∣F (�)∣d��≪ X11/4+". (5.5)

Now let e = c∖(D ∪ E) and write

H� (�) =

∫
e

F (�)e(−��) d��. (5.6)

Inserting (5.4), (5.5) and (5.6) into the initial formula (5.1) for �∗6(�, �), in

the restricted range (logN)−1 ≤ � ≤ 1 we deduce that

�∗6(�, �) =
Γ( 4

3 )6��

(�1 . . . �6)1/3
+H� (�) +O(NT̃ (N)−1/4) (5.7)

holds uniformly in 1 ≤ � ≤ N .

We are ready to define the exceptional set. Let � denote a positive inte-

gral quadratic polynomial, as in Theorem 1.2. Also, let M be the positive

solution of the equation �(2M) = N . Then, for large N , the �(m) with

M < m ≤ 2M are positive integers, and we define

Z(M) = {M < m ≤ 2M : ∣H� (�(m))∣ ≥ N/ log logN}.

We remark that when M < m ≤ 2M , but m /∈ Z(M), then (5.7) yields the

asymptotic formula

�∗6(�, �(m)) =
Γ( 4

3 )6��(m)

(�1 . . . �6)1/3
+O(NT̃ (N)−1/4). (5.8)

Hence it remains to establish a good bound for the number Z = cardZ(M).

5.2. A quadratic average

When m ∈ Z(M), define the complex number �m by means of the equation

�mH� (�(m)) = ∣H� (�(m))∣, and then write

K(�) =
∑

m∈Z(M)

�me(−��(m)). (5.9)

From the definitions of H� (�) and Z(M), we have

ZN

log logN
≤

∑
m∈Z(M)

∣H� (�(m))∣ =
∫
e

F (�)K(�) d��. (5.10)

This is the essential step: an upper bound for the size of the exceptional

set is provided by an integral, and K(�) inherits the arithmetical structure

of the test sequence.
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Lemma 5.1. Let � > 0 be a fixed real number, and let Z ⊂ [M, 2M ] ∩ ℕ
be a set of Z elements. Let � be a positive polynomial of degree at least 2.

For 0 < � ≤ 1, let U� denote the number of solutions of the inequality

∣�(m1)− �(m2) + �(x3
1 − x3

2)∣ < �, (5.11)

with mj ∈ Z and 1 ≤ xj ≤ X. Then

U� ≪ XZ +X"Z2. (5.12)

If � is an integral polynomial, then one has also

U� ≪ XZ +X2+". (5.13)

Proof. When m1 = m2, the inequality (5.11) reduces to ∣x3
1 − x3

2∣ < �/�,

which has O(X) solutions with 1 ≤ xj ≤ X. The number of solutions of

this type to be counted is therefore O(XZ). When m1 ∕= m2, on the other

hand, one has ∣�(m1)−�(m2)∣ ≫M . Hence, for any of the O(X2) possible

choices for x1, x2, the inequality (5.11) may have no solution with m1 ∕= m2

and mj ∈ Z, or else reduces to at most two equations

�(m1)− �(m2) = u, �(m1)− �(m2) = u+ 1, (5.14)

for some u ∈ ℤ with M ≪ ∣u∣ ≪ X3. When � is an integral polynomial,

a divisor function estimate shows that (5.14) leaves at most O(X") choices

for m1 and m2. The number of solutions with m1 ∕= m2 is thus at most

O(X2+") in this case, and this completes the proof of (5.13).

In order to establish (5.12), we count the solutions with m1 ∕= m2 in a

different way. There are O(Z2) possible choices for such m1, m2, and for

each fixed such pair, the inequality (5.11) reduces to ∣x3
1−x3

2−�∣ < �/�, for

a suitable number � satisfying � ≫ M . Again, a divisor function estimate

suffices to conclude that the number of solutions of this last inequality, in

integers x1, x2 satisfying 1 ≤ xj ≤ X, is at most O(X"). On assembling

this bound together with our earlier estimate for the number of diagonal

solutions, we confirm (5.12).

As an immediate consequence of this lemma, we infer from (2.2), (2.4)

and (5.9) that when � is any one of the numbers �j , then∫
∣K(�)f(��)∣2 d��≪ ZX +X2+". (5.15)

An estimate for Z can now be obtained through (5.10) and (5.15). Let

a ⊂ ℝ be a measurable set, and write

ℐ(a) =

∫
a

∣f(�1�) . . . f(�6�)K(�)∣d��.
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An estimate for ℐ(e) is needed, and this is accomplished by an individual

treatment of various subsets of e, specifically

d = {� ∈ e : �j� ∈ m (1 ≤ j ≤ 6)}

and, when i, j, l ∈ {1, 2, . . . , 6} are distinct, also

eij(l) = {� ∈ e : �i� ∈ m, �j� ∈ m, �l� ∈M}.

It is important to observe that e is the union of d and the eij(l). To see this,

consider � ∈ e∖d. Then, there exists at least one l with �l� ∈ M. Since �

is neither in D nor E, there are two distinct i, j with �i� ∈ m, �j� ∈ m,

whence � ∈ eij(l), as required.

By Hölder’s inequality,

ℐ(d)≪
(∫
∣Kf1∣2 d��

)1/2 5∏
j=2

(∫
m

∣fj ∣8 d��
)1/8

sup
�6�∈m

∣f6(�)∣.

Here and hereafter, we write fj = f(�j�). By (3.4), (3.10) and (5.15), it

follows that

ℐ(d)≪ X13/4(ZX +X2+")1/2(logX)"−5/4. (5.16)

Also, by (3.4), one has f2f1 ≪ X3/2+" on e12(3), so by Hölder’s inequality,

ℐ(e12(3))≪ X3/2+"
(∫
∣Kf6∣2 d��

)1/2(∫
∣f5∣8 d��

)1/8

×
(∫
∣f4∣8 d��

)1/8(∫
M

∣f3∣4 d��
)1/4

.

Employing (3.10) once again, we find that the eighth moments of f5 and f4

are bounded by O(X5). The other factors can also be estimated via (5.15)

and (3.9), and thus

ℐ(e12(3))≪ X3+"(ZX +X2+")1/2, (5.17)

a bound superior to (5.16). Also, by symmetry, this last bound holds for

any other eij(l) in place of e12(3). Hence, the bound (5.16) remains valid

with d replaced by e.

Estimating the right hand side of (5.10) by means of (5.16) and (5.17),

we deduce that

ZN

log logN
≪ X13/4(ZX +X2+")1/2(logX)"−5/4.

But N ≍ X3, whence it now follows that

Z ≪ X3/2(logX)"−5/2 ≪M(logM)"−5/2.
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In particular, the asymptotic formula (5.8) holds for all but

O(M(logM)"−5/2) of the integers m with M < m ≤ 2M . One can now

apply the transference principle (2.12), with s = 6 and � = (log logN)−1/2,

say, to conclude that the expected asymptotic formula

�6(�, �(m)) =
2Γ( 4

3 )6��(m)

(�1 . . . �6)1/3
+O(NT̃ (N)−1/8)

holds for all but O(M(logM)"−5/2) of the integers m ∈ (M, 2M ] as well. A

dyadic dissection argument completes the proof of Theorem 1.2.

5.3. Some brief heckling

Most of the results in I, II, III, V and VI depend on mean value esti-

mates over exceptional sets, often in mixed form. Lemma 5.1 is only a

typical example, and one may take our proof of Theorem 1.2 as a model for

generalising our results on diophantine equations to the wider class of in-

equalities. However, it should be stressed that the estimate (5.13) applies to

integral polynomials only. Its proof crucially depends on a divisor estimate

that is otherwise not available. If the test sequence stems from a positive

polynomial that is no longer integral, different methods have to be applied,

and this is the main reason why in the non-integral case our exceptional

set estimates are considerably weaker. We proceed by presenting two mean

value estimates relating to general polynomials, and then illustrate their

use within the proof of Theorem 1.6.

5.4. An inequality involving quadratic polynomials

The sole purpose of this section is to establish the following simple mean

value theorem. Although the result is not needed until chapter 6, the

method is a model for the work in §5.5 which is more relevant for our

immediate needs.

Lemma 5.2. Let � ∈ ℝ[t] denote a quadratic polynomial. Suppose that

Z ⊂ [1,M ] ∩ ℤ, and write Z = cardZ. Finally, let Ω(M,Z) denote the

number of solutions of the inequality

∣�(m1) + �(m2)− �(m3)− �(m4)∣ < 1 (5.18)

with mj ∈ Z. Then one has Ω(M,Z)≪M1+"Z.

Proof. We may write �(t) = �2t
2+�1t+�0 for some real numbers �0, �1, �2

with �2 ∕= 0. Given a solution of (5.18) counted by Ω(M,Z), let k1 and k2
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be defined by means of the equations

kj = mj
1 +mj

2 −m
j
3 −m

j
4 (j = 1, 2). (5.19)

The inequality (5.18) then reduces to

∣�2k2 + �1k1∣ < 1. (5.20)

Substituting from the linear equation in (5.19) into the quadratic one,

we find that

2(m1 −m3 − k1)(m2 −m3 − k1) = 2m3k1 + k2
1 − k2. (5.21)

We note that ∣k1∣ ≤ 2M , and that for any given k1, the inequality (5.20)

allows only O(1) possible choices for k2. Thus, when the right hand side of

(5.21) is non-zero, there are O(MZ) possible choices for k1, k2 and m3, and

for any one of these choices, a divisor function estimate shows that there

are O(M") possible values for m1 and m2 satisfying (5.21). The solutions

of this type consequently contribute O(M1+"Z) to Ω(M,Z). On the other

hand, when the right hand side of (5.21) is zero, one has either k1 = 0 or

m3 = (k2−k2
1)/(2k1), and this implies that there are at most O(M) possible

choices for k1, k2 and m3. For each fixed choice of this type, one finds from

(5.21) that mj = m3 + k1 for j = 1 or 2, whence there are at most O(Z)

integers m1 and m2 satisfying (5.21). The solutions of this second type

therefore contribute at most O(MZ) to Ω(M,Z). The conclusion of the

lemma now follows.

5.5. An application of Vinogradov’s method

A version of Lemma 5.2 for polynomials of higher degree can be fabricated

through a suitable generalisation of the idea exploited in §5.4. The prob-

lem may be addressed through an application of Vinogradov’s mean value

theorem. Let Jk,s(M) denote the number of solutions of the simultaneous

equations
s∑
j=1

(xlj − ylj) = 0 (1 ≤ l ≤ k),

with 1 ≤ xj , yj ≤M .

Lemma 5.3. Let � ∈ ℝ[t] denote a polynomial of degree d ≥ 3. Let s ≥ 2,

and let U�,s(M) denote the number of solutions of the inequality∣∣∣ s∑
j=1

(�(xj)− �(yj))
∣∣∣ < 1, (5.22)
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in integers xj , yj with 1 ≤ xj , yj ≤M . Then

U�,s(M)≪M
1
2d(d−1)Jd,s(M).

Proof. Motivated by the argument used to prove Lemma 5.2, we begin by

writing �(t) = �dt
d+ . . .+�1t+�0, with �d ∕= 0. Given a solution of (5.22)

counted by U�,s(M), we define k1, . . . , kd by

kl =

s∑
j=1

(xlj − ylj). (5.23)

Then (5.22) implies that ∣�dkd + . . . + �1k1∣ < 1. If k1, . . . , kd−1 are de-

termined, then this inequality leaves O(1) possibilities for kd. On not-

ing that ∣kl∣ < sM l, we find that the number of choices for k1, . . . , kd is

O(M
1
2d(d−1)), and hence

U�,s(M)≪M
1
2d(d−1) max

k1,...,kd
Jd,s,k(M),

where Jd,s,k(M) denotes the number of solutions of the diophantine system

(5.23), with 1 ≤ xj , yj ≤ M . But a well-known argument (see inequality

(5.4) of Vaughan [35]) shows that Jd,s,k(M) ≤ Jd,s(M), and the lemma

follows.

An upper bound for Jd,s(M) is now required that is of the expected

order of magnitude. According to Theorem 3 of Wooley [42], there exists a

constant C with the property that whenever

s > d2(log d+ 2 log log d+ C), (5.24)

one has Jd,s(M) ≪ M2s− 1
2d(d+1). Subject to the condition (5.24), one de-

duces from Lemma 5.3 the bound

U�,s(M)≪M2s−d. (5.25)

5.6. Linear forms in primes, yet again

In this section, we briefly indicate how (5.25) may be applied to establish

Theorem 1.6. Thus, we now work under the hypotheses of that theorem. In

particular, we suppose that �1/�2 is an algebraic irrational, and � ∈ ℝ[t]

is a polynomial of degree d. The argument, at the beginning, is largely

similar to that proceeding in §4.1, but we need to replace the test sequence

by �m = �(m), and the parameter M by �(2M) = N . In all other respects,

we use the notation and work from §4.1 that is partly inherited from Lemma

2.5 and §3.4. This defines a complementary compositum, a parameter X
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with X ≍ N , and E� (�) via (3.15). The substitute for Lemma 4.1 is the

following estimate.

Lemma 5.4. Let s denote a natural number, and suppose that (5.25) holds.

Then, whenever 0 < � ≤ 1 is fixed, one has∑
M<m≤2M

∣E� (�(m))∣ ≪MN1−1/(6s)+".

This implies Theorem 1.6, as we now demonstrate. By Lemma 5.4,

the inequality ∣E� (�(m))∣ > N(logN)−A can hold for no more than

O(MN−1/(6s)+2") of the integers m with M < m ≤ 2M , and for the

remaining values in this range, the relation (4.2) yields the asymptotic

formula

�∗(�, �(m)) =
��(m)

�1�2
+O(N(logN)−A).

The now familiar transference principle takes this to an asymptotic for-

mula for �(�, �(m)), outside an exceptional set that still has no more

than O(MN−1/(6s)+2") members. But M ≍ N1/d, and (5.25) holds when-

ever s satisfies (5.24). Consequently, a dyadic dissection argument deliv-

ers the conclusion of Theorem 1.6 with a permissible value of � satisfying

� = 1
6 +O(log log d/ log d).

It remains to prove Lemma 5.4. Define the numbers �m by putting

�m = 0 when E� (�(m)) = 0, and otherwise via the equation ∣E� (�(m))∣ =
�mE� (�(m)). Also, write

K(�) =
∑

M<m≤2M

�me(−��(m)).

Then, by (3.15) and Hölder’s inequality,∑
M<m≤2M

∣E� (�(m))∣ =
∫
c

K(�)ℎ(�1�)ℎ(�2�) d��

≤
(∫
∣K(�)∣2s d��

)1/(2s)

J1/(2s)(J1J2)
1
2 (1−1/s),

where

J =

∫
c

∣ℎ(�1�)ℎ(�2�)∣2 d��, Jl =

∫
∣ℎ(�l�)∣2 d��.

A consideration of the underlying diophantine inequality reveals that∫
∣K(�)∣2s d�� ≤ U�,s(M),
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and we may now apply (5.25), (3.19) and (3.18) to infer that∑
M<m≤2M

∣E� (�(m))∣ ≪ (M2s−d)1/(2s)(N8/3+")1/(2s)(N logN)1−1/s.

The proof of Lemma 5.4 is completed by recalling that M ≍ N1/d.

Note that when � is an integral polynomial, the work of Ford [20] gives

much better bounds for U�,s(M), and there is then no essential difficulty in

improving the exceptional set estimate to a full analogue of Theorem 1 of

II. On the other hand, it seems more difficult to relax the hypothesis that

�1/�2 be algebraic. If �1/�2 is merely supposed to be irrational, one might

have to accept weaker exceptional set estimates.

6. Outstanding arts

6.1. Smooth cubic Weyl sums

This chapter is devoted to all the remaining results concerned with additive

representation in thin sequences. In the next section we consider diagonal

cubic forms in six variables, and we establish Theorem 1.3 by applying a

complementary compositum estimate, the proof of which is the central fo-

cus of §6.3. We then pause to discuss diagonal cubics in five variables, the

topic of Theorem 1.4, and a situation in which we are restricted to contem-

plating only lower bound estimates via the methods of IV. The argument

here makes use of an asymptotic lower bound for the number of solutions

of the diophantine inequality in question, a matter we defer to §6.5, incor-

porated into a mean value involving the exceptional set within §6.4. Some

preparatory work concerning smooth Weyl sums of higher degree leads from

§6.6 to the proof of Theorem 1.8 in §6.7. Finally, in §6.8, we consider prime

numbers close to diagonal forms using the methods of VI, completing our

journey with the proof of Theorem 1.9. All of these discussions are depen-

dent, in some way or other, on mean value estimates for smooth Weyl sums.

We finish this section by recording here those estimates that are needed to

establish Theorems 1.3 and 1.4.

Define

A(P,R) = {x ∈ ℕ : x ≤ P, p∣x⇒ p ≤ R}.

Also, let � > 0 denote a small real number, and write

g(�) =
∑

x∈A(X,X�)

e(�x3). (6.1)
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Lemma 6.1. Let u be one of 6 and 77/10. Then, there exists a real number

�0 > 0 such that, whenever 0 < � ≤ �0, one has the estimate∫ 1

0

∣g(�)∣u d�≪ P�u ,

where �6 = 3.2495 and �77/10 = 4.7.

The permissible exponent �u claimed in Lemma 6.1 is a consequence of

Theorem 1.2 of Wooley [43] when u = 6, and is a special case of Theorem

2 of Brüdern and Wooley [16] when u = 77/10. In fact, in the case u = 6,

we have rounded up; for a microscopically better bound see [43].

6.2. Senary cubic forms

In this and the next section we establish Theorem 1.3. Let �1, . . . , �6 be

positive real numbers with �1/�2 irrational. As always, our leading param-

eter is N , and X is chosen in accordance with (2.11), so that X3 ≍ N .

With f(�) and g(�) defined by (2.10) and (6.1), and fixed 0 < � ≤ 1, we

consider the integral

�∗(�, �) =

∫
f(�1�)f(�2�)g(�3�) . . . g(�6�)e(−��) d��. (6.2)

By considering the underlying diophantine inequality, it follows that for all

� ∈ ℝ one has

�6(�, �) ≥ �∗(�, �). (6.3)

The central interval is chosen as

ℭ = {� ∈ ℝ : ∣�∣ ≤ (logN)1/4N−1}. (6.4)

Then, as a consequence of Lemma 8.5 of Wooley [39], there exists a number

C = C(�) > 0 such that, whenever � ∈ ℭ, one has

f(�1�)f(�2�)g(�3�) . . . g(�6�)− Cv(�1�) . . . v(�6�)≪ X6(logX)−1/2,

where v is defined in (2.17). Now, much as in the proof of Lemma 2.4, it

follows that∫
ℭ

f(�1�)f(�2�)g(�3�) . . . g(�6�)e(−��) d��

= C

∫ ∞
−∞

v(�1�) . . . v(�6�)e(−��) d��+O(X3(logX)−1/4).

The integral on the right hand side here has also been evaluated in the

course of the proof of Lemma 2.4, the result being Γ( 4
3 )6(�1 . . . �6)−1/3��
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for 0 ≤ � ≤ N . In particular, we may conclude from the above that when-

ever 1
10N ≤ � ≤ N , then one has∫

ℭ

f(�1�)f(�2�)g(�3�) . . . g(�6�)e(−��) d�� ≥ 2cN, (6.5)

where c > 0 denotes a certain positive constant independent of � and N .

For the treatment of the complementary compositum c = ℝ∖ℭ, we en-

gineer an amplification procedure that is quite similar to the one used in

§3.3. The amplifier here will be

D = {� ∈ c : �1� ∈M(X3/4), �2� ∈M(X3/4)}.

We show in the next section that∫
D

∣f(�1�)f(�2�)g(�3�) . . . g(�6�)∣d�� = o(N), (6.6)

a conclusion that for the remainder of this section we take as granted.

On the complement d = c∖D, the averaging method described in §5.2

is required. Let � be a positive quadratic polynomial. For large N , let

M be the unique positive solution of �(2M) = N . Then, for any m with

M < m ≤ 2M , we have 1
10N ≤ �(m) ≤ N . We define Z(M) to be the set

of integers m with M < m ≤ 2M for which �6(�, �(m)) < cN , where c is

the number introduced in (6.5). In addition, we write Z(M) = cardZ(M).

We note that Theorem 1.3 follows from a dyadic dissection argument, once

one has established the bound

Z(M)≪M23/27. (6.7)

Write

H(�) =

∫
d

f(�1�)f(�2�)g(�3�) . . . g(�6�)e(−��) d��.

Then, one finds from (6.2), (6.3), (6.5) and (6.6) that for m ∈ Z(M), one

has ∣H(�(m))∣ ≫ N . For m ∈ Z(M), define �m through the equation

∣H(�(m))∣ = �mH(�(m)), and then define K(�) by means of (5.9). By the

argument that delivered (5.10) we now infer that

NZ(M)≪
∫
d

∣f(�1�)f(�2�)g(�3�) . . . g(�6�)K(�)∣d��. (6.8)

In the next section we show that∫
d

∣f(�1�)f(�2�)g(�3�) . . . g(�6�)∣4/3 d��≪ X43/9−2v, (6.9)
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where v = 10−6. Equipped with this estimate, we may apply Hölder’s in-

equality to the right hand side of (6.8) and bound the fourth moment of

K(�) by utilising Lemma 5.2. This yields

NZ(M)≪ (M1+"Z(M))1/4X43/12−v,

and the desired conclusion (6.7) follows.

6.3. Two technical estimates

For notational convenience, we now write fj = f(�j�) and gj = g(�j�),

and we define

J(a) =

∫
a

∣f1f2g3g4g5g6∣4/3 d��.

We split d into the three subsets

d1 = {� ∈ c : �1� ∈ m, �2� ∈M},
d2 = {� ∈ c : �2� ∈ m, �1� ∈M},
d3 = {� ∈ c : �1� ∈ m, �2� ∈ m},

where, as on earlier occasions, we put M = M(X3/4), m = m(X3/4). By

making use of (3.4) in order to estimate f1, an application of Hölder’s

inequality shows that

J(d1)≪ X1+"
(∫

�2�∈M
∣f2∣4 d��

)1/3 6∏
j=3

(∫
∣gj ∣8 d��

)1/6

.

The eighth moment of gj is O(X5); this can be seen either via (3.10), on

considering the underlying diophantine inequality, or by reference to Lemma

6.1. By (3.9), the restricted fourth moment of f2 is O(X1+"), and thus we

deduce that J(d1)≪ X14/3+". By symmetry, the same bound holds also for

J(d2). In order to estimate J(d3), meanwhile, we again use (3.4) to bound

f1 and ∣f2∣8/9, and then apply Hölder’s inequality, thereby confirming that

J(d3)≪ X5/3+"
(∫
∣f2∣4 d��

)1/9 6∏
j=3

(∫
∣gj ∣6 d��

)2/9

.

Here the fourth moment of ∣f2∣ is O(X2+"), as one finds by considering

the underlying diophantine inequality, or by reference to Hua’s lemma. The

sixth moments of gj are each O(X�6), by Lemma 6.1. This then yields the

estimate J(d3) ≪ X43/9−2v. In combination with our earlier bounds for

J(d1) and J(d2), the estimate (6.9) is confirmed on noting that J(d) =

J(d1) + J(d2) + J(d3).
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We now turn to the proof of (6.6). Let T = T�1/�2
((logN)1/4) be defined

via (2.22). Then T →∞ as N →∞. Now let

E = {� ∈ D : �j� ∈M(T 1/4) for j = 1, 2}, e = D∖E.

Then, one finds from Theorem 2.8 that∫
E

∣f1f2g3g4g5g6∣d��≪ X6

∫
E

d��≪ X3T−1/2, (6.10)

which is acceptable. Moreover, on combining (3.4) with the major arc upper

bound for ∣f1f2∣ derived from (3.13), we infer that

sup
e
∣f1f2∣ ≪ X2T−1/12.

Now, by Hölder’s inequality,∫
e

∣f1f2g3g4g5g6∣d��

≪ (sup
e
∣f1f2∣)1/44

(∫
�1�∈M

∣f1∣301/74 d��
)37/154

×
(∫

�2�∈M
∣f2∣301/74 d��

)37/154 6∏
j=3

(∫
∣gj ∣77/10 d��

)10/77

.

The moments of gj can be bounded using Lemma 6.1, and the moments of

f1, f2 by (3.9) (where it is important to note that 301
74 > 4). It follows that

the integral in question is O(X3T−1/528). The desired estimate (6.6) now

follows by combining this bound with (6.10).

6.4. The lower bound variant

We now embark on the proof of Theorem 1.4. The method derives from

IV to which we refer for a discussion of the main idea. Fundamental to its

success is a lower bound for the number of solutions of a related equation

or inequality in which the test sequence occurs as an additional variable.

Thus, we need the following result.

Lemma 6.2. Let � ∈ ℝ[t] denote a positive quadratic polynomial, and let

�1, . . . , �5 denote positive real numbers with �1/�2 /∈ ℚ. Let X be suffi-

ciently large, and let M be a positive real number with M ≍ X3/2 satis-

fying the condition that �(2M) < 2�jX
3 for all j. Finally, for any fixed

0 < � ≤ 1, let

V =
∑

ŵ� (�1x
3
1 + . . .+ �5x

3
5 − �(m)),
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with the sum extended over m,x1, . . . , x5 in the ranges

x1, x2 ≤ X, x3, x4, x5 ∈ A(X,X�), M < m ≤ 2M.

Then, one has V ≫ X2M .

Note that V counts solutions of the diophantine inequality

∣�1x
3
1 + . . .+ �5x

3
5 − �(m)∣ < �, (6.11)

with a certain non-negative weight attached. A related result occurs as

Theorem 2 of Brüdern [4], but it does not cover Lemma 6.2. The cited

work predates the innovations of Bentkus and Götze, and of Freeman, and

therefore, one would find a lower bound for V only for a certain sequence

of values of the parameter X. Secondly, in [4] the polynomial � has to be a

monomial. It is relatively straightforward to attend to these two problems.

More importantly, however, the method in [4] is laid out only for an alge-

braic irrational coefficient ratio. Therefore, we spell out a proof of Lemma

6.2 in the next section.

It is a delightful exercise to deduce Theorem 1.4. Let N be a large real

number, let X be defined in accordance with (2.11), and choose M as in

the statement of Lemma 6.2. Next, let Z(M) denote the set of all m with

M < m ≤ 2M for which the diophantine inequality (6.11) has at least one

solution in positive integers xj , and put Z = cardZ(M). We write

Φ(�) =
∑

M<m≤2M

e(��(m)), k(�) =
∑

m∈Z(M)

e(��(m)),

G(�) = f1(�)f2(�)g3(�)g4(�)g5(�).

Then, on considering the underlying diophantine inequality, one verifies

that ∫
G(�)Φ(−�) d�� =

∫
G(�)k(−�) d��. (6.12)

By orthogonality, the left hand side here is equal to the quantity V defined

in Lemma 6.2. Hence, by that lemma, it follows that the integrals in (6.12)

are asymptotically bounded from below by X2M .

We now estimate the integral on the right hand side from above. With

this end in view, we cover the real line by the three sets

ej ={� ∈ ℝ : �j� ∈ m} (j = 1, 2),

E ={� ∈ ℝ : �1� ∈M, �2� ∈M}.
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When a is any one of these sets, we write

I(a) =

∫
a

∣G(�)k(�)∣d��.

By (6.12) and the discussion thereafter, it follows that

X2M ≪ I(e1) + I(e2) + I(E). (6.13)

It remains to establish upper bounds for I(e1), I(e2) and I(E). On the

set E, we use the trivial bound ∣k(�)∣ ≤ Z, and apply Hölder’s inequality

to infer that

I(E) ≤ Z
(∫

�1�∈M
∣f1∣4 d��

)1/4(∫
�2�∈M

∣f2∣4 d��
)1/4

×
5∏
j=3

(∫
∣gj ∣6 d��

)1/6

.

One may estimate the first two integrals by applying (3.9). An upper bound

for the sixth moments of gj is given in Lemma 6.1, and we deduce that

I(E)≪ X17/8Z. (6.14)

A similar argument may be used to estimate I(e1). By (3.4), we find

that f1(�) ≪ X3/4+" whenever � ∈ e1. Hölder’s inequality now reveals

that

I(e1)≪ X3/4+"
(∫
∣kf2∣2 d��

)1/2 5∏
j=3

(∫
∣gj ∣6 d��

)1/6

.

As before, the sixth moments of gj may be estimated through Lemma 6.1.

Moreover, by Lemma 5.1, we have∫
∣k(�)f2(�)∣2 d��≪ X"Z2 +XZ.

Therefore, it follows that I(e1) ≪ X19/8(Z2 + XZ)1/2, and by symmetry,

the same bound holds for I(e2). On combining these estimates with (6.13)

and (6.14), we conclude that

X2M ≪ X17/8Z +X19/8(Z2 +XZ)1/2.

This implies the lower bound Z ≫M3/4, as required to complete the proof

of Theorem 1.4.
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6.5. An auxiliary inequality

In the notation of the previous section, our object is to evaluate the integral

V =

∫
G(�)Φ(−�) d��. (6.15)

Define ℭ as in (6.4). Then, just as in the discussion following the latter

definition, there is little difficulty in adapting the arguments applied to

prove Lemma 2.4 so as to establish here the lower bound∫
ℭ

G(�)Φ(−�) d��≫ X2M. (6.16)

We feel entitled by now to omit the details.

The treatment of the complementary compositum depends on a tech-

nique sometimes referred to as pruning, and made available for diophantine

inequalities by Brüdern [4].

Lemma 6.3. Let �(t) = �t2 + �t + � ∈ ℝ[t], with � ∕= 0. In addition, let

K = {� ∈ ℝ : �� ∈M(X)}, and let k = ℝ∖K. Then given a fixed non-zero

real number !, for any 0 < � ≤ 1, one has∫
K

∣Φ(�)g(!�)∣2 d�� ≪ X2+",∫
k

∣Φ(�)∣4∣g(!�)∣2 d�� ≪ M2X1+".

Moreover, these estimates remain valid if f is substituted for g.

Proof. Note that �, ! and � are fixed in the current context. We may

substitute � = �� in both integrals. This replaces ! by !/�, and � by

�/�. Hence, we may assume that � = 1 in the proof of this lemma. This is

mostly for notational convenience. Note that we now have K = M(X) and

k = m(X).

Next, we define the function Υ on ℝ by taking

Υ(�) = (q +N ∣q�− a∣)−1, (6.17)

when � ∈ M( 1
5M), and a and q are the unique coprime integers with

1 ≤ q ≤ 1
5M and ∣q� − a∣ ≤ M/(5N). We put Υ(�) = 0 for � /∈ M( 1

5M).

Then, by Weyl’s inequality and a familiar transference principle (see [35],

Lemma 2.4 and Exercise 2 of §2.8), for all � ∈ ℝ, one has

∣Φ(�)∣2 ≪M2+"Υ(�) +M1+". (6.18)
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Next, by Lemma 3 of Brüdern [4], one finds that whenever 1 ≤ Q ≤ 1
5M ,

one has ∫
M(Q)

Υ(�)∣g(!�)∣2 d��≪ (QX +X2)N"−1. (6.19)

We choose Q = X and observe that for � ∈M(X) one has Υ(�) ≥ 1
2X
−1,

so that ∣Φ(�)∣2 ≪ M2+"Υ(�). The first bound claimed in the lemma is

therefore immediate. In order to establish the second bound, we begin by

covering m(X) by a dyadic dissection of the form M(2Q)∖M(Q), with X ≤
Q ≤ 1

10M , and the residual set m∗ = m(X) ∖M( 1
5M). Then one finds from

(6.18) that ∣Φ(�)∣2 ≪M1+" for � ∈ m∗, whence∫
m∗
∣Φ(�)∣4∣g(!�)∣2 d��≪M2+"

∫
∣g(!�)∣2 d��≪ XM2+".

Also from (6.18), one sees that when � ∈ M(2Q)∖M(Q) and Q ≤ 1
10M ,

then one has ∣Φ(�)∣4 ≪M4+"Q−1Υ(�), and thus (6.19) yields the bound∫
M(2Q)∖M(Q)

∣Φ(�)∣4∣g(!�)∣2 d��≪ (X +X2Q−1)M2+".

The second bound of the lemma now follows on adding the contribution aris-

ing from the O(logN) values of Q comprising the aforementioned dyadic

dissection, and incorporating our earlier bound for the contribution stem-

ming from m∗. Finally, when g is replaced by f , then the conclusion of

Lemma 6.2 follows mutatis mutandis.

We now consider the integral

ℐ(a) =

∫
a

∣G(�)Φ(�)∣d��.

In view of (6.16), it suffices now to show that ℐ(c) = o(X2M), for it then

follows from (6.15) that

V ≫ X2M, (6.20)

as required to complete the proof of Lemma 6.2. Recall the notation of the

statement of Lemma 6.3. We begin an amplification argument by consider-

ing the set

e = {� ∈ c : �� ∈ m(X)}.

Then, by Hölder’s inequality, one finds that

ℐ(e) ≤
(∫

k

∣Φ∣4∣f1∣2 d��
)1/4(∫

∣f1∣2∣f2∣4 d��
)1/4 5∏

j=3

(∫
∣gj ∣6 d��

)1/6

.
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By Schwarz’s inequality, followed by applications of (3.10) and Hua’s

Lemma (see Vaughan [35], Lemma 2.5), we deduce that∫
∣f1∣2∣f2∣4 d�� ≤

(∫
∣f1∣4 d��

)1/2(∫
∣f2∣8 d��

)1/2

≪ X7/2+".

Consequently, by Lemmata 6.1 and 6.3, it now follows that

ℐ(e)≪ (M2X)1/4X7/8+"(X�6)1/2 = o(MX2),

a bound which does not interfere with the desired conclusion (6.20).

On the remaining set, we may suppose that �� ∈ M(X). We next

dispose of the subsets

Ej = {� ∈ c : �� ∈M(X) and �j� ∈ m(X3/4)}.

Then, by (3.4) and Hölder’s inequality, we have

ℐ(E1)≪ X3/4+"
(∫

K

∣Φf2∣2 d��
)1/2 5∏

j=3

(∫
∣gj ∣6 d��

)1/6

.

The first integral may be estimated by applying Lemma 6.3, and for the

sixth moments of gj we again make use of Lemma 6.1. We then find that

ℐ(E1)≪ X3/4+"(X2+")1/2(X�6)1/2 ≪MX15/8.

By symmetry, the same bound holds for ℐ(E2).

It remains to consider the amplifying set

D = {� ∈ c : �� ∈M(X) and �j� ∈M(X3/4) (j = 1, 2)}.

The endgame is almost identical to the one described in §6.3. If T is de-

fined as in the discussion surrounding (6.10), then one may show that the

portion of D, wherein �1� ∈ M(T 1/4) and �2� ∈ M(T 1/4) hold simulta-

neously, makes a contribution to ℐ(D) that is O(MX2T−1/2) = o(MX2).

The required argument follows exactly that leading to (6.10). This leaves

the two sets

Dj = {� ∈ D : �j� ∈ m(T 1/4)} (j = 1, 2).

Here we apply (3.13) to bound f(�j�), and thereby conclude that one has

f(�j�)≪ XT−1/12 throughout Dj , whence

sup
�∈D1∪D2

∣f1f2∣ ≪ X2T−1/12.
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We now infer from Hölder’s inequality that

ℐ(D1 ∪D2) ≤ sup
�∈D1∪D2

∣f1f2∣1/8
(∫

D

∣Φ∣5 d��
)1/5 5∏

j=3

(∫
∣gj ∣8 d��

)1/8

×
(∫

D

∣f1∣70/17 d��
)17/80(∫

D

∣f2∣70/17 d��
)17/80

.

The last two integrals can be bounded with the aid of (3.9), and for the

eighth moments of gj , one may apply Lemma 6.1 combined with a trivial

estimate. In addition, when �� ∈ M(X), one may apply the recent work

of Vaughan [36] to show that Φ(�) ≪ MΥ(��)1/2, with Υ defined as in

(6.17). Then, a straightforward calculation reveals that∫
D

∣Φ(�)∣5 d��≪M3.

Note here the important feature that there is no inflation of the estimate

by an unacceptable logarithmic factor. Collecting together the estimates of

this paragraph, we find that ℐ(D1 ∪D2) ≪ MX2T−1/96. In summary, we

have shown that ℐ(D) ≪ MX2T−1/96, and hence also ℐ(c) = o(MX2).

The proof of Lemma 6.2 is therefore complete.

6.6. Additive forms of large degree

In the last three sections of this chapter, we discuss the distribution of the

values of the additive form (1.1) for larger degree. Theorem 1.8 will be

established in §6.7, and Theorem 1.9 in §6.8. Here, we summarize results

on smooth Weyl sums over k-th powers. The definition of g(�) in (6.1) is

now to be replaced by the more general

g(�) =
∑

x∈A(X,X�)

e(�xk).

It will also be convenient to define

t0(k) = ⌈ 1
2k(log k + log log k + 1)⌉+ ⌈ 1

2k(1 + 1/
√

log k)⌉.

Lemma 6.4. For any " > 0 there exists �0(") > 0 such that whenever

0 < � ≤ �0 and t ∈ ℕ, one has∫ 1

0

∣g(�)∣2t d�≪ X2t−k+Δt+",
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where the real number Δt satisfies Δte
Δt/k ≤ ke1−2t/k. Moreover, when

t ≥ t0(k), then ∫ 1

0

∣g(�)∣2t d�≪ X2t−k.

Proof. The first estimate is the corollary to Theorem 2.1 of Wooley [41],

the second is (5.2) of V.

Lemma 6.5. Let Y = X2/3. Then, uniformly for � ∈ m(Y ), one has

g(�) ≪ X1−� for some � = �k > 0. Moreover, for 1 ≤ T ≤ (logX)2

and � ∈ m(T ), one has g(�) ≪ XT "−1/(2k). Finally, for any real number

t > 4k, one has ∫
N(Y )

∣g(�)∣t d�≪ Xt−k.

Proof. The first bound, of Weyl’s type, follows from Theorem 1.4 of Woo-

ley [40], for example. By combining Lemmata 7.2 and 8.5 of Vaughan and

Wooley [37], one may confirm that

∣g(�)∣ ≪ X(q +Xk∣q�− a∣)"−1/(2k)

whenever q ≤ Y , ∣q� − a∣ ≤ Y X−k and (a, q) = 1. The second upper

bound for g(�) is now transparent, and the major arc estimate follows via

a straightforward calculation.

We also present a rather general treatment for the expected main terms.

Suppose that �1, . . . , �t are positive real numbers. Also, define

X = 2(�
−1/k
1 + . . .+ �

−1/k
t + 1)N1/k. (6.21)

Then, whenever 1 ≤ � ≤ N and 0 < � ≤ 1, and xj ∈ ℕ satisfy

∣�1x
k
1 + . . .+ �tx

k
t − �∣ < �,

one finds that xj ≤ X. The central interval ℭ remains defined by (6.4).

Then for any fixed � ∈ (0, 1], uniformly in 1 ≤ � ≤ N , it follows that

whenever t > k one has∫
ℭ

g(�1�) . . . g(�t�)e(−��) d�� = c�t/k−1 +O(Xt−k(logX)−1/4). (6.22)

Here, the constant c > 0 is independent of � and X. This is readily estab-

lished by following the method of proof of Lemma 2.4, but the approxima-

tion of g(�j�) is accomplished via Lemma 8.5 of Wooley [39], for example.

The reader is entitled to be spared further details.
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6.7. Proof of Theorem 1.8

Consider the situation described in Theorem 1.8. Suppose that 1 ≤ � ≤ N ,

and that X ≍ N1/k is chosen in accordance with (6.21). In particular, let

s ∈ ℕ with s ≥ max( 3
2 t0(k) + 1, 4k + 3), and consider the integral

J(�) =

∫
g(�1�) . . . g(�s�)e(−��) d��, (6.23)

where 0 < � ≤ 1 is fixed from now on. Then by (6.22), uniformly for 1
10N <

� ≤ N , the central interval ℭ contributes≫ XsN−1 to the integral in (6.23).

On the complementary compositum c, we first define T = T�1/�2
(logN) via

(2.22), and then the amplifying set by

D = {� ∈ c : �1� ∈M(T 1/4), �2� ∈M(T 1/4)}.

Then, as in (6.10), one may employ Theorem 2.8 to establish that the

contribution of D to the integral (6.23) does not exceed O(XsN−1T−1/2),

uniformly in �.

We are now reduced to the set d = c∖D, and here we average over the

quadratic polynomial �. Let M be the positive solution of �(2M) = N .

Suppose that m is an integer with M < m ≤ 2M for which

∣�1x
k
1 + . . .+ �sx

k
s − �(m)∣ < �

has no solution in natural numbers xj . Then J(�(m)) = 0. Let Z(M) be

the set of all such m, and write Z(M) for its cardinality. Recalling what has

just been said concerning the contributions of ℭ and D to (6.23), it follows

that for all m ∈ Z(M), one has the lower bound∣∣∣ ∫
d

g(�1�) . . . g(�s�)e(−�(m)�) d��
∣∣∣≫ XsN−1.

We sum over these exceptional m. Then, for suitable �m ∈ ℂ with ∣�m∣ = 1,

and with K(�) defined by (5.9), we infer that

XsN−1Z(M)≪
∫
d

∣g(�1�) . . . g(�s�)K(�)∣d��.

Let Y = X2/3, and let dj be the set of all � ∈ d with �j� ∈ m(Y ).

Then, by Hölder’s inequality and Lemma 6.5,∫
d1

∣g1 . . . gsK∣d��

≪ X1−�
(∫
∣K∣4 d��

)1/4 s∏
j=2

(∫
∣gj ∣(4s−4)/3 d��

)3/(4s−4)

.
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We estimate the first integral using Lemma 5.2. Also, since 4
3 (s−1) ≥ 2t0(k),

one may apply Lemma 6.4 to the moments of gj . Thus we obtain the upper

bound ∫
d1

∣g1 . . . gsK∣d��≪ (M1+"Z(M))1/4Xs−3k/4−�.

By symmetry, the same bound holds for any other dj . It therefore remains

only to discuss the contribution from the set

e = {� ∈ d : �j� ∈M(Y ) (1 ≤ j ≤ s)}.

The definition of D combined with Lemma 6.5 shows that for � ∈ d one has

g(�1�)g(�2�) ≪ X2T "−1/(8k). Moreover, by applying Hölder’s inequality

in combination with the major arc estimate from Lemma 6.5, it is clear

that ∫
e

∣g3g4 . . . gs∣d��≪ Xs−2−k,

whence ∫
e

∣g1 . . . gsK∣d��≪ Xs−kT "−1/(8k)Z(M).

Assembling together the estimates of this section, we find that

XsN−1Z(M)≪ Xs−kT "−1/(8k)Z(M) + (M1+"Z(M))1/4Xs−3k/4−�,

and we may therefore conclude that Z(M) ≪ M1+"X−4�/3. This estab-

lishes Theorem 1.8.

6.8. Proof of Theorem 1.9

In this section, we discuss the diophantine inequality

∣�1x
k
1 + . . .+ �sx

k
s − p− 1

2 ∣ <
1
2 (6.24)

by the methods of §6.7. If p is a prime and x1, . . . , xs are natural numbers

satisfying (6.24), then

[�1x
k
1 + . . .+ �sx

k
s ] = p.

We choose N and X in accordance with (6.21), and set � = 1
2 . In the

present context, it is appropriate to modify the definition of ℎ(�) so that

ℎ(�) =
∑
p≤N

(log p)e(p�).



72 BRÜDERN, KAWADA AND WOOLEY

We then put

J =

∫
g(�1�) . . . g(�s�)ℎ(−�)e(− 1

2�) d��. (6.25)

This integral provides a weighted count of the solutions of (6.24) with xj ≤
X and p ≤ N , in which the weight is non-negative. We assume the Riemann

hypothesis for Dirichlet L-functions, and proceed to show that for s ≥
8
3k + 2, one has J ≫ Xs. This suffices to establish Theorem 1.9.

It will be useful to denote the contribution to (6.25) from a measurable

set a ⊂ ℝ by J (a). In order to estimate J (ℭ), we choose � = p + 1
2 and

� = 1
2 in (6.22). Multiplying by log p and summing over primes p ≤ N ,

we confirm the lower bound J (ℭ) ≫ Xs. Hence, if c denotes the comple-

mentary compositum, it now suffices to show that J (c) = o(Xs). It is only

at this point that the Riemann hypothesis is required, and it is invoked

through Lemma 2 of Brüdern and Perelli [14]. As a consequence of the

latter, we have

sup
�∈m(N1/6)

∣ℎ(�)∣ ≪ N5/6+".

Also, when � ∈ M(N1/6), one has ℎ(�) ≪ Υ∗(�), where for � = a/q + �

with (a, q) = 1, 1 ≤ q ≤ N1/6 and ∣�∣ ≤ q−1N−5/6, the function Υ∗ is

defined by

Υ∗(�) = N'(q)−1(1 +N ∣�∣)−1.

Here '(q) denotes Euler’s totient.

We split c into various subsets of which we first treat

e = {� ∈ c : � ∈ m(N1/6)}.

On this set, Hölder’s inequality yields

J (e)≪ N5/6+"
s∏
j=1

(∫
∣gj ∣s d��

)1/s

,

and since s ≥ 8
3k + 2, we may apply Lemma 6.4 to establish the bound∫

∣gj ∣s d��≪ Xs− 5
6k−�,

for some � > 0. Consequently, one deduces that J (e)≪ Xs−�+", which is

acceptable.

It remains to consider the set c ∩M(N1/6). The auxiliary estimate∫
M(N1/6)

Υ∗(�)∣g(�j�)∣2t d��≪ N"
(
N1/6

∫ 1

0

∣g(�)∣2t d�+X2t
)

(6.26)
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is now required, and this may be verified by a route paralleling that which

arrives at (6.19). Note here that the irritating factor '(q)−1 can be replaced

by q−1 at the cost of an inflationary factor O(log logN) that can be ab-

sorbed into the term N". The amplification is now similar to the work in

§6.7. Let

dj = {� ∈ c ∩M(N1/6) : �j� ∈ m(Y )}.

Then, by Lemma 6.5 and Hölder’s inequality, one obtains

J (d1)≪ X1−�
2k+1∏
j=2

(∫
d1

Υ∗(�)∣g(�j�)∣2k d��
)1/(2k)

Xs−2k−1.

On combining (6.26) with the first estimate of Lemma 6.4, it readily follows

that J (d1) ≪ Xs−�+". By symmetry, the same is true for J (dj) when

2 ≤ j ≤ s.
It now remains to discuss the set

E = {� ∈ c ∩M(N1/6) : �j� ∈M(Y ) for 1 ≤ j ≤ s}.

Define T = T�1/�2
(logN) as in (2.22) once again, and put

D = {� ∈ E : �1� ∈M(T 1/4) and �2� ∈M(T 1/4)}.

Then, again as in §6.7, one finds that J (D) ≪ XsT−1/2, which is again

acceptable. For � ∈ E∖D, it follows from Lemma 6.5 that

g(�1�)g(�2�)≪ X2T "−1/(8k).

The estimate ∫
E

Υ∗(�)3 d�� ≤
∫
M(N1/6)

Υ∗(�)3 d��≪ N2

follows by a simple calculation. In addition, on noting that 3
2 (s − 1) > 4k

and �j� ∈M(Y ) for all j, an application of Hölder’s inequality in alliance

with Lemma 6.5 confirms the upper bound∫
E

(∣g1g2∣1/2∣g3 . . . gs∣)3/2 d��≪ X3(s−1)/2−k.

Here, and in what follows, we have written gi for g(�i�). It now follows by

Hölder’s inequality that∫
E∖D
∣Υ∗(�)g1 . . . gs∣d�� ≤ sup

�∈E∖D
∣g1g2∣1/2

(∫
E

Υ∗(�)3 d��
)1/3

×
(∫

E

(∣g1g2∣1/2∣g3 . . . gs∣)3/2 d��
)2/3

.
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We therefore deduce that J (E∖D)≪ XsT "−1/(16k), a bound that in concert

with our earlier estimates yields J (c) = o(Xs). This suffices to complete

the proof of Theorem 1.9.

7. An appendix on inhomogenous polynomials

7.1. The counting integral

In this final chapter we sketch a proof of Theorem 1.10. Freeman’s work

[24] will be invoked when appropriate, but the argument relies heavily on

Lemma 5.3, and is otherwise largely standard.

We keep as much notation from earlier chapters as is possible, and in

particular apply the conventions of §1.5. We can then rewrite the polynomi-

als �j as �j(t) = �jdj t
dj + . . .+�j1t, and rearrange the indices of �1, . . . , �s

so as to assure that

�1l1 and �2l2 are not in rational ratio (7.1)

for some 1 ≤ l1 ≤ d1, 1 ≤ l2 ≤ d2. To see this, suppose first that all the

�j are multiples of rational polynomials. Then, there exist non-zero real

numbers �j such that �j�j ∈ ℚ[t]. Under the current hypotheses, there

must be an index j with �1/�j ∕∈ ℚ. Exchanging j with 2, we find that

(7.1) holds. In the contrary case, at least one of the polynomials �j is

irrational, and we may assume that this is so for �1. Then d1 ≥ 2, and

�1d1/�1i is irrational for some i with 1 ≤ i ≤ d1 − 1. Hence, one of the

numbers �1d1/�2d2 , �1i/�2d2 is also irrational, as required.

From now on, suppose that (7.1) holds, and that � is large. Define Xj

to be the unique positive solution of �j(Xj) = �. Then, for any positive

solution of (1.9) with 0 < � ≤ 1, one has xj ≤ 2Xj . Define the Weyl sums

fj(�) =
∑

x≤2Xj

e(��j(x)), (7.2)

and the integral

�∗�(�, �) =

∫
f1(�) . . . fs(�)e(−��) d��.

In view of (7.2) and (2.4), this is a counting integral with weight, of the type

considered in (2.6), and can therefore be compared with the number ��(�, �)

through the now familiar mechanism based on Lemma 2.1. In particular,

the proof of Theorem 1.10 is made complete with the verification of the

asymptotic formula

�∗�(�, �) = 1
2c(�)��D−1 + o(�D−1). (7.3)
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7.2. The central interval

In the interests of brevity, we put

ℐ(a) =

∫
a

f1(�) . . . fs(�)e(−��) d��.

Set d = max dj , and write Y = �1/(2d)−1 and ℭ = [−Y, Y ]. One may closely

follow the proof of Lemma 2.4, or the arguments of Freeman [24], pp. 239–

243, in order to evaluate ℐ(ℭ). One replaces fj(�) with the function

vj(�) =

∫ 2Xj

0

e(��j(t)) dt,

and then completes the singular integral

ℐ∞(�) =

∫
v1(�) . . . vs(�)e(−��) d��.

The error terms in these processes can be controlled by appealing to Lemma

4.4 of Baker [1] (see also Lemma 4 of [24]) and Theorem 7.3 of Vaughan [35].

In this way, one may confirm that

ℐ(ℭ) = ℐ∞(�) +O(�D−1−1/(2d)),

provided only that s > 2d. This asymptotic relation is more than we need

later. Under the same condition on s, the concluding part of the proof of

Lemma 2.4 is readily modified to yield

ℐ∞(�) = 1
2c(�)��D−1

(
1 +O(�−1/(2d))

)
,

where c(�) is the positive real number defined in the statement of Theorem

1.10. If c = ℝ ∖ ℭ, then, in order to confirm (7.3), it now suffices to show

that ℐ(c) = o(�D−1).

7.3. The complementary compositum

The prearrangement in (7.1) is required only within the following lemma,

which combines Lemmata 8 and 9 of Freeman [24]. We choose � = 1/(2d)

in Lemma 9 of [24], and then conclude as follows.

Lemma 7.1. Suppose that (7.1) holds. Then there exists a monotone func-

tion T (�), with T (�)→∞ as � →∞, such that

sup
Y≤∣�∣≤T (�)

∣f1(�)f2(�)∣ = o(X1X2).
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We remark that this is an estimate of Bentkus-Götze-Freeman type. In-

stead, it would be possible to work with Theorem 2.8, but at this stage the

tidy reference for Lemma 7.1 saves some effort.

Now let C > 1 be a suitably large positive number with the property

that t(d) = d2(log d+ 2 log log d+C) is an integer. From (5.25) we have the

bound ∫
∣fj(�)∣2t(d) d��≪ X

2t(d)−dj
j ≪ X

2t(d)
j �−1. (7.4)

By Lemma 11 of Freeman [24] (which is essentially already in Davenport

and Roth [18], Lemma 2), it then also follows that∫
∣�∣>T (�)

∣fj(�)∣2t(d) d��≪ X
2t(d)
j �−1T (�)−1. (7.5)

Write

L = {� : Y < ∣�∣ < T (�)} and l = {� : ∣�∣ ≥ T (�)}.

Then for s ≥ 2t(d)+2 and j ≥ 3, we may apply (7.4), together with Hölder’s

inequality and Lemma 7.1, to confirm the estimate

ℐ(L) = o(X1X2 . . . Xs�
−1).

Likewise, by Hölder’s inequality and (7.5), we infer that

ℐ(l) = o(X1X2 . . . Xs�
−1).

These two bounds combine to deliver the conlusion ℐ(c) = o(�D−1), which

was all that was required to complete the proof of Theorem 1.10.
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