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Abstract. We present a hybrid approach to bounding exponential sums
over kth powers via Vinogradov’s mean value theorem, and derive estimates
of utility for exponents k of intermediate size.

1. Introduction

The main purpose of this paper is to present a new hybrid approach to
bounding the modulus of the classical Weyl sum

fk(α;P ) =
∑

16x6P

e(αxk),

where e(z) denotes e2πiz, for values of α that are not well-approximated by
rational numbers with a small denominator. Weyl [14] was the first to suc-
cessfully investigate bounds of this type in his seminal work concerning the
uniform distribution of polynomial sequences. His methods, which involve the
repeated squaring of the modulus of the exponential sum in combination with
a consideration of the associated shift operator, still provide the sharpest es-
timates of their type for small values of k. Much stronger conclusions may
be obtained for larger k by bounding certain auxiliary mean values, as was
shown by Vinogradov [13]. Values of k having intermediate size are of consid-
erable interest in applications to Waring’s problem and beyond, and our focus
in this paper is on squeezing the very strongest bounds feasible from available
estimates for these mean values.

In order to proceed further, we must introduce some notation. Write

g(α;P ) =
∑

16x6P

e(α1x+ α2x
2 + . . .+ αkx

k),

and define the mean value

Js,k(P ) =

∫
Tk
|g(α;P )|2s dα,

where T denotes the unit interval [0, 1). Estimates for Js,k(P ) fall under the
general appellation of Vinogradov’s mean value theorem, and take the form

Js,k(P )� P 2s− 1
2
k(k+1)+∆s,k , (1.1)
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where ∆s,k is a real number depending on, at most, the positive integers s
and k. Aside from the latter quantities, in this paper implicit constants in
Vinogradov’s notation � and � will on occasion depend also on a positive
number ε. This convention we apply already in (1.1). We say that an exponent
∆s,k is permissible when the estimate (1.1) holds for all real numbers P . It
may be shown that for all natural numbers s and k one has ∆s,k > 0 (see [2,
equation (1.7)]). A trivial estimate, meanwhile, demonstrates that there is no
loss of generality in supposing that ∆s,k 6 1

2
k(k + 1).

Next, let k be a natural number, and consider a real parameter θ with
0 6 θ 6 k/2. Let mθ denote the set of real numbers α having the property
that, whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |qα−a| 6 P θ−k, then one
has q > P θ. In applications involving the Hardy-Littlewood (circle) method,
one refers to mθ as the set of minor arcs in the Hardy-Littlewood dissection.
Constraints implicit in technology available for handling the complementary
set of major arcs Mθ = [0, 1)\mθ dictate that the minor arcs m1 are of special
significance. Henceforth, we abbreviate m1 to m, and M1 to M. In §2 we
provide an estimate for fk(α;P ) when α belongs to the set of minor arcs m.

Theorem 1.1. Let k be a natural number with k > 4, and suppose that the
exponent ∆s,k−1 is permissible for s > k. Then for each ε > 0, one has

sup
α∈m
|fk(α;P )| � P 1−σ(k)+ε, (1.2)

where

σ(k) = max
s>k

(
3−∆s,k−1

6s+ 2

)
. (1.3)

The familiar output of Vinogradov’s method delivers a conclusion similar to
that of Theorem 1.1, but with the exponent σ(k) defined via the relation

σ(k) = max
s>k

(
1−∆s,k−1

2s

)
.

Such a bound is immediate from [11, Theorem 5.2], for example. The potential
superiority of the conclusion of Theorem 1.1 may be discerned by noting that
∆s,k−1 may now be permitted to be nearly three times as large, and still one
obtains a minor arc estimate of the same strength as that available hitherto.
Equipped with suitable estimates for the permissible exponents occurring in
Vinogradov’s mean value theorem, the formula (1.3) may be converted into
numerical values for the exponent σ(k). This we discuss in §4, where we
outline how to obtain the exponents listed in the following corollary.

Corollary 1.2. When 10 6 k 6 20, the estimate (1.2) holds with σ(k) =
ρ(k)−1, where ρ(10) = 440.87, ρ(11) = 575.81, ρ(12) = 733.58, ρ(13) = 910.41,
ρ(14) = 1111.15, ρ(15) = 1331.61, ρ(16) = 1576.42, ρ(17) = 1841.79, ρ(18) =
2132.47, ρ(19) = 2444.02, ρ(20) = 2781.54.

By way of comparison, Parsell [8], improving slightly on Ford [4], has ob-
tained a similar conclusion with ρ(11) = 743.409, ρ(12) = 999.270, ρ(13) =
1223.475, ρ(14) = 1420.574, ρ(15) = 1632.247, ρ(16) = 1856.535, ρ(17) =



WEYL SUMS 3

2114.819, ρ(18) = 2436.255, ρ(19) = 2779.680, ρ(20) = 3150.605. Our con-
clusions are inferior to those stemming from Weyl’s inequality for k 6 9, for
the latter shows that (1.2) holds with σ(k)−1 = 2k−1 (see [11, Lemma 2.4]).
Indeed, our methods provide the exponent σ(9) = ρ(9)−1 with ρ(9) = 324.00,
whereas Weyl’s inequality yields ρ(9) = 256. On the other hand, while the
exponents obtained by Parsell, and by Ford, are inferior to the Weyl exponent
ρ(10) = 512, our exponent ρ(10) = 440.87 is superior. We should remark also
that the conclusion of Theorem 1.1 has no impact on the sharpest asymptotic
bound at the time of writing, namely σ(k)−1 = (3

2
+ o(1))k2 log k (see [17]).

When k > 6 and α ∈ m3, work of Heath-Brown [5] supplies a bound of the
shape |fk(α;P )| � P 1−τ(k)+ε, with τ(k)−1 = 3 · 2k−3. At present, a successful
analysis of fk(α;P ) for α in the complementary set M3 is in general beyond
our competence, and so although our exponent ρ(10) = 440.87 is inferior to the
exponent τ(10)−1 = 384 associated with Heath-Brown’s estimate, the latter is
limited in its application. We refer the reader to [1] for more on this matter.

We briefly here illustrate some consequences of Corollary 1.2 by considering
the expected asymptotic formula in Waring’s problem. Define Rs,k(n) to be
the number of representations of the natural number n as the sum of s kth
powers of positive integers. Also, denote by Ss,k(n) the associated singular
series

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ark/q)
)s
e(−na/q).

We define G̃(k) to be the least integer s0 for which, whenever s > s0, one has

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 + o(ns/k−1). (1.4)

Subject to modest congruence conditions, one has 1� S(n)� nε, and so the
relation (1.4) does indeed constitute an honest asymptotic formula (see [11,
Chapter 4]). In §4 we indicate how to establish the following bounds.

Corollary 1.3. One has G̃(9) 6 365, G̃(10) 6 497, G̃(11) 6 627, G̃(12) 6
771, G̃(13) 6 934, G̃(14) 6 1112, G̃(15) 6 1307, G̃(16) 6 1517, G̃(17) 6 1747,

G̃(18) 6 1992, G̃(19) 6 2255, G̃(20) 6 2534.

For comparison, the sharpest bounds available hitherto are G̃(9) 6 393,

G̃(10) 6 551, due to Ford [4], and G̃(11) 6 706, G̃(12) 6 873, G̃(13) 6 1049,

G̃(14) 6 1231, G̃(15) 6 1431, G̃(16) 6 1645, G̃(17) 6 1879, G̃(18) 6 2134,

G̃(19) 6 2410, G̃(20) 6 2701, due to Parsell [8]. Our methods establish that

G̃(8) 6 233, which is inferior to the first author’s bound G̃(8) 6 224 (see [1]).

We would be remiss to not also mention the bounds G̃(k) 6 2k (k > 3) due

to Vaughan [9, 10], and G̃(k) 6 7
8
2k (k > 6) due to the first author [1]. The

asymptotic situation remains unchanged at the time of writing, with Ford’s

bound G̃(k) 6 k2(log k + log log k +O(1)) valid for large k (see [4]).
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Our principal conclusion, the minor arc estimate in Theorem 1.1, is obtained
by applying a variant of the Bombieri-Korobov estimate in combination with a
major arc estimate due to Vaughan. In essence, the former estimate provides
an estimate for supα∈m2

|fk(α;P )|, whilst the latter permits us to prune the set
M2 back to M1, so that we are left with an upper bound for supα∈m1

|fk(α;P )|.
The details will be found in §2.

Some words are in order concerning the calculation of permissible exponents
∆s,k. Forthcoming work of the second author transforms the landscape so
far as bounds for the mean value Js,k(P ) are concerned, and so it seems an
unwarranted indulgence to invest too much space in explaining the nuances of
various refinements in the underlying iterative method used in this paper. We
have therefore chosen to focus on the ideas underpinning Theorem 1.1, and to
sketch two refinements to the iterative method in outline so that such ideas
are not lost to the literature. Thus, in §3, the reader will find a sketch of the
changes necessary to replace the classical iteration which bounds Js+k,k(P )
in terms of Js,k(P ), by one which just as efficiently bounds Js+k−1,k(P ) in
terms of Js,k(P ). Likewise, a modest refinement that with successive efficient
differences reduces the number of variables differenced, so as to more efficiently
make use of underlying congruences, is also outlined. Detailed treatment of
these refinements would be otiose.

Throughout this paper, the letter k will denote an arbitrary integer exceed-
ing 1, the letter s will denote a positive integer, and ε will denote a sufficiently
small positive number. We take P to be a large real number depending at
most on k, s and ε, unless otherwise indicated. In an effort to simplify our
analysis, we adopt the following convention concerning the number ε. When-
ever ε appears in a statement, either implicitly or explicitly, we assert that the
statement holds for each ε > 0. Note that the “value” of ε may consequently
change from statement to statement.

2. Estimates of Weyl type

Our proof of Theorem 1.1 makes use of a special case of an estimate of
Bombieri (see [2, Theorem 8]) that improves on earlier work of Korobov [7].
In order to describe this result, we introduce some additional notation. When
b and r are natural numbers, and n ∈ Zr, denote by Υb,r(n;P ) the number of
integral solutions of the system of equations

b∑
i=1

mj
i = nj (1 6 j 6 r),

with 1 6 mi 6 P (1 6 i 6 b), and then put

Υb,r(P ) = max
n∈Zr

Υb,r(n;P ).

In addition, write

Ωr(q, P ) =
r∏
j=1

(P−j + P j−k + q−1 + qP−k). (2.1)
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Lemma 2.1. Let b, k and r be natural numbers with 1 6 r 6 k − 1. In
addition, suppose that α is a real number, and that a ∈ Z and q ∈ N satisfy
(a, q) = 1 and |α− a/q| 6 q−2. Then one has

fk(α;P )� P
(
P kr−bΥb,r(P )Ωr(q, P )Js,k−1(P )/Js,k−r−1(P )

)1/2bs
.

Proof. This is immediate from [2, Theorem 8]. �

The interested reader may care to compare Lemma 2.1 with Theorem 1.1 of
[8], the latter potentially having greater flexibility. We apply Lemma 2.1 with
r = 2 and b = 3 in order to bound |fk(α;P )| for α ∈ mθ when 1 6 θ 6 2.

Lemma 2.2. Let δ be a real number with 0 6 δ 6 1. In addition, let s and
k be natural numbers with s > k > 4, and suppose that the exponent ∆s,k−1 is
permissible. Then one has

sup
α∈m2−δ

|fk(α;P )| � P 1−ν(s,k)+ε,

where

ν(s, k) =
3− δ −∆s,k−1

6s
. (2.2)

Proof. Suppose that k > 4 and α ∈ m2−δ. Then as a consequence of Dirichlet’s
theorem on Diophantine approximation, there exist a ∈ Z and q ∈ N with
(a, q) = 1, 1 6 q 6 P k−2+δ and |qα − a| 6 P 2−δ−k 6 q−1. The definition of
m2−δ ensures that q > P 2−δ, and thus it follows from (2.1) that

Ω2(q, P )� (P−1 + P δ−2)(P−2 + P δ−2)� P δ−3.

Suppose that ∆s,k−1 is a permissible exponent, so that

Js,k−1(P )� P 2s− 1
2
k(k−1)+∆s,k−1 .

Then in view of the lower bound Js,k−3(P ) � P 2s− 1
2

(k−2)(k−3), which fol-
lows from the non-negativity of permissible exponents ∆s,k−3, we deduce from
Lemma 2.1 that

fk(α;P )� P
(
P 2k−3Υ3,2(P )Ω2(q, P )P

1
2

(k−2)(k−3)− 1
2
k(k−1)+∆s,k−1

)1/6s

� P
(
P∆s,k−1+δ−3Υ3,2(P )

)1/6s
. (2.3)

We next bound the quantity Υ3,2(P ). Let n1 and n2 be integers, and consider
the number of integral solutions of the simultaneous equations

m2
1 +m2

2 +m2
3 = n2, (2.4)

m1 +m2 +m3 = n1, (2.5)

with 1 6 mi 6 P (1 6 i 6 3). Eliminating the variable m3 between (2.4) and
(2.5), we deduce that 3X2 + Y 2 = N , where we have written

X = 2m1 +m2 − n1, Y = 3m2 − n1 and N = 6n2 − 2n2
1. (2.6)

But the number of integer solutions X, Y of this equation is O((|N |+1)ε) (see,
for example, Estermann [3]). For each fixed choice of X, Y , the equations (2.6)
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may be solved uniquely for m1 and m2, and then the value of m3 is determined
uniquely by the linear equation (2.5). Thus we deduce that

Υ3,2(n;P )� (|n1|+ |n2|+ 1)ε.

However, the simultaneous equations (2.4), (2.5) plainly possess no solutions
when |n2| > 3P 2, or when |n1| > 3P , and thus we conclude that

Υ3,2(P )� max
|n1|63P

max
|n2|63P 2

(|n1|+ |n2|+ 1)ε � P 3ε. (2.7)

Substituting (2.7) into (2.3), we deduce that fk(α;P ) � P 1−ν(s,k)+ε, where
ν(s, k) is defined as in (2.2), and the conclusion of the lemma follows. �

We next apply major arc estimates to prune the set M2 down to M1.

Lemma 2.3. Let δ be a real number with 0 6 δ 6 1. Then for any natural
number k with k > 3, one has

sup
α∈m1\m2−δ

|fk(α;P )| � P 1−1/k + P 1−δ/2+ε.

Proof. When a ∈ Z, q ∈ N and β ∈ R, define

S(q, a) =

q∑
r=1

e(ark/q) and v(β) =

∫ P

0

e(βγk) dγ.

Then from [11, Theorem 4.1], one finds that when α ∈ R, a ∈ Z, q ∈ N and
(a, q) = 1, one has

fk(α;P )− q−1S(q, a)v(α− a/q)� qε(q + P k|qα− a|)1/2. (2.8)

Moreover, from [11, Theorems 4.2 and 7.3], one sees that

q−1S(q, a)v(α− a/q)� P (q + P k|qα− a|)−1/k. (2.9)

Consider a real number α ∈ m1\m2−δ. By Dirichlet’s approximation theorem
together with the hypothesis that α 6∈ m2−δ, there must exist a ∈ Z and q ∈ N
with (a, q) = 1 and |qα − a| 6 P 2−δ−k for which q 6 P 2−δ. But α ∈ m1, and
so one has either |qα− a| > P 1−k or q > P . One therefore finds that

P < q + P k|qα− a| 6 2P 2−δ.

Consequently, in view of (2.8) and (2.9), one obtains

fk(α;P )� P 1−1/k + P ε(P 2−δ)1/2,

and the conclusion of the lemma is immediate. �

The proof of Theorem 1.1. Let s and k be natural numbers with s > k > 4,
and suppose that the exponent ∆s,k−1 is permissible. We define δ = δ(s, k) by

δ(s, k) =
3−∆s,k−1

3s+ 1
.

The hypothesis s > k ensures that δ 6 1/k. We claim that

sup
α∈m
|fk(α;P )| � P 1−δ/2+ε.
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When δ < 0, this assertion follows from the trivial estimate |fk(α;P )| 6 P .
We may therefore suppose that 0 < δ 6 1/k. In such circumstances, it follows
from Lemma 2.2 that

sup
α∈m2−δ

|fk(α;P )| � P 1−ν(s,k)+ε,

where

ν(s, k) =
3−∆s,k−1

3s+ 1

(
3s+ 1

6s
− 1

6s

)
=

3−∆s,k−1

6s+ 2
= δ/2.

On the other hand, from Lemma 2.3 one finds that

sup
α∈m1\m2−δ

|fk(α;P )| � P 1−1/k + P 1−δ/2+ε.

Since m1 = m2−δ ∪ (m1 \m2−δ), we infer that

sup
α∈m1

|fk(α;P )| � P 1−δ/2+ε.

This confirms our earlier assertion, and from here the conclusion of Theorem
1.1 follows on noting that 2σ(k) = max

s>k
δ(s, k). �

3. Improvements in Vinogradov’s mean value theorem

The primary objective of this section is to sketch certain modest improve-
ments to the efficient differencing method in Vinogradov’s mean value theorem.
These developments deliver the following conclusion.

Theorem 3.1. Let t and k be natural numbers with t > k > 2, and suppose
that the exponent µ satisfies 2t− 1

2
k(k+1) < µ 6 2t and Jt,k(P )�t,k P

µ. When
s = t+ l(k− 1) (l ∈ N), define λs, ∆s, θs and φ(j, s, J) recursively as follows.
Put ∆t = µ+ 1

2
k(k + 1)− 2t. Then, for j = 1, . . . , k, put φ(j, s, j) = 1/k, and

evaluate φ(j, s, J − 1) successively for J = j, . . . , 2 by putting

φ∗(j, s, J − 1) =
1

2k
+

(
1

2
+

1
2
(J − 1)(J − 2)−∆s

2k(k − J + 1)

)
φ(j, s, J), (3.1)

and

φ(j, s, J − 1) = min {1/k, φ∗(j, s, J − 1)} .
Finally, set

θs = min
16j6k

φ(j, s, 1),

∆s = ∆s−k+1(1− θs) + (k − 1)(kθs − 1),

λs = 2s− 1
2
k(k + 1) + ∆s.

Then for each natural number s = t+ l(k−1) (l ∈ N), one has Js,k(P )� P λs.

We note that a similar conclusion was obtained in [15, Theorem 1.1], save
with s = t + lk in place of s = t + l(k − 1), and with the denominator
2k(k − J + 1) in (3.1) replaced by 2k2. Note, in particular, that the first of
these adjustments enhances the efficiency of the method by a scale factor of
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roughly (1− 1/k)−1. The second adjustment also represents an improvement,
because in applications one makes a choice of j for which 1

2
(j−1)(j−2) < ∆s.

As we have stressed, forthcoming work of the second author makes it de-
sirable to provide the minimum of detail in our discussion here. We refer the
reader to [15] for a discussion of preliminaries and any unexplained notation.
We begin here by recalling a definition.

Definition 3.2. Let d and k be integers with 0 6 d 6 k. Let P be a positive
real parameter, and let A be a sufficiently large (but fixed) positive real num-
ber. Then we say that the k-tuple of polynomials (Ψ) = (Ψ1(x), . . . ,Ψk(x)) ∈
Z[x]k is of type (d, P,A) if

(a) Ψi has degree i− d for i > d, and is identically zero for i < d, and

(b) the coefficient of xi−d in Ψi(x) is non-zero, and bounded above by AP d

(1 6 i 6 k).

When the system (Ψ) is of type (d, P,A), we write

J(Ψ; z) = det

(
∂Ψi+d(zj)

∂zj

)
16i,j6k−d

,

and denote by B(p; u; Ψ) the number of solutions of the system of congruences

k−d∑
i=1

Ψj(zi) ≡ uj (mod pj) (d+ 1 6 j 6 k), (3.2)

with 1 6 zi 6 pk (1 6 i 6 k − d) and (J(Ψ; z), p) = 1. Also, we define
ω(k, d) = 1

2
(k − d)(k − d− 1).

Lemma 3.3. Suppose that the system (Ψ) is of type (d, P,A). Then one has
B(p; u; Ψ)� pω(k,d), where the implicit constant depends only on k.

Proof. We apply the same argument as in the proof of [15, Lemma 2.2] with the
singular exception that, since the congruences (3.2) have only k − d variables
in place of k, the factor pkd in [15, equation (2.4)] may be deleted. �

As usual, we take P to be our basic parameter, a sufficiently large positive
real number. Suppose that (Ψ) is of type (d, P,A). We define the integer d∗

associated to d by

d∗ =

{
d, when d > 1,

1, when d = 0.

Consider the quantity

Ω = sup
z

(
log |J(Ψ; z)|

logP

)
,

where the supremum is over z with 1 6 zi 6 P (1 6 i 6 k−d) and J(Ψ; z) 6= 0.
Plainly, there exists a positive integer l = l(A, k), independent of P , such that
Ω < kl. Then, with θ a real number with 0 < θ 6 1/k, we take P(θ) to be the
set consisting of the smallest [2kl/θ] + 1 prime numbers exceeding P θ. Upon
taking P sufficiently large, we have P θ < p < 2P θ for each p ∈ P(θ).
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When 0 6 d 6 k, denote by Ks,d(P,Q; Ψ) the number of integral solutions
of the system

k−d∗∑
n=1

(Ψi(zn)−Ψi(wn)) +
s∑

m=1

(xim − yim) = 0 (1 6 i 6 k),

with

1 6 zn, wn 6 P (1 6 n 6 k − d∗), 1 6 xm, ym 6 Q (1 6 m 6 s). (3.3)

Also, when p ∈ P(θ), define Ls,d(P,Q; θ; p; Ψ) to be the number of integral
solutions of the system

k−d∗∑
n=1

(Ψi(zn)−Ψi(wn)) + pi
s∑

m=1

(
uim − vim

)
= 0 (1 6 i 6 k),

with z,w satisfying (3.3), and

0 < um, vm 6 QP−θ (1 6 m 6 s), zn ≡ wn (mod pk) (1 6 n 6 k).

We then put
Ls,d(P,Q; θ; Ψ) = max

p∈P(θ)
Ls,d(P,Q; θ; p; Ψ).

We are, at last, prepared to state the fundamental lemma.

Lemma 3.4. Suppose that s > d > 1, P θ 6 Q 6 P , and that (Ψ) is a system
of type (d, P,A). Then there exists a system (Φ) of the same type for which

Ks,d(P,Q; Ψ)�θ,A P
k−d∗Js,k(Q) + P (2s+ω(k,d∗)−d∗)θLs,d(P,Q; θ; Φ).

Proof. The argument of the proof of [15, Lemma 3.1] may be applied in the
present context, the modified definitions of Ks and Ls generating only super-
ficial differences. �

We add to this lemma an initial procedure to initiate the iteration.

Lemma 3.5. There exists a system (Φ) of type (0, P, 1) such that

Js+k−1,k(P )� P k−1Js,k(P ) + P (2s+ω(k,1)−1)θLs,0(P, P ; θ; Φ).

Proof. The argument leading to [15, equation (3.15)] ensures that

Js+k−1,k(P )� T1 + p2s−2 max
16x6p

T2(x), (3.4)

where

T1 =

∫
Tk
|fk(2α;P )2fk(α;P )2s+2k−6| dα,

and T2(x) denotes the number of solutions of the system of equations

k∑
n=1

(zin − win) + pi
s−1∑
m=1

(uim − vim) = 0 (1 6 i 6 k), (3.5)

with −x/p < um, vm 6 (P − x)/p (1 6 m 6 s − 1), and 1 6 zn, wn 6 P
(1 6 n 6 k) subject to (J(Ψ; z), p) = (J(Ψ; w), p) = 1. The reader should
inspect part (i) of the proof of [15, Lemma 3.1], together with [15, equation
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(3.10)], for the necessary ideas, and should note that in the present context we
take Ψi(z) = zi (1 6 i 6 k). Thus the system (Ψ) is of type (0, P, 1).

In view of the non-singularity hypothesis imposed on z and w, the system
of congruences

k∑
n=1

zin ≡
k∑

n=1

win (mod p) (1 6 i 6 k),

implicit in (3.5), imply that the sets {z1, . . . , zk} and {w1, . . . , wk} are equal
modulo p. There is no loss of generality in supposing then that zn ≡ wn
(mod p) (1 6 n 6 k), provided that we inflate our estimates by the combi-
natorial factor k!, which is harmless. The non-singularity hypothesis ensures,
moreover, that z1, . . . , zk are distinct modulo p, and likewise w1, . . . , wk. The
solutions are now of two types. There are the solutions counted by T2(x) in
which p|zn for some index n, and those in which p|zn for no index n. In the
former case, we relabel variables so that n = k, and then define us and vs by
putting pus = zk and pvs = wk. In the latter case, the number of solutions
may be estimated by applying Hölder’s inequality to an associated mean value
of exponential sums. The strategy here is similar to that which leads to [15,
equation (3.6)]. We have restricted 2s − 2 of the variables to the congruence
class zero modulo p, and we have a further congruence class ξ modulo p for zk
and wk. By applying Hölder’s inequality, we are able to force all of these vari-
ables to lie in the same congruence class modulo p, at the cost of an additional
factor p in our estimates. In this way, one finds that

T2(x)� p max
16ξ6p

T3(ξ), (3.6)

wherein T3(ξ) denotes the number of integral solutions of the system

k−1∑
n=1

(zin − win) +
s∑

m=1

((pum + ξ)i − (pvm + ξ)i) = 0 (1 6 i 6 k), (3.7)

with −ξ/p < um, vm 6 (P − ξ)/p (1 6 m 6 s), and 1 6 zn, wn 6 P (1 6 n 6
k − 1) subject to the additional condition that, with y equal either to z or w,
one has (i) yn 6≡ ξ (mod p) for 1 6 n 6 k− 1, and (ii) yu ≡ yv (mod p) for no
u and v with 1 6 u < v 6 k − 1.

By the Binomial Theorem, the system (3.7) is equivalent to

k−1∑
n=1

((zn − ξ)i − (wn − ξ)i) = pi
s∑

m=1

(uim − vim) (1 6 i 6 k).

For a fixed (k−1)-tuple h, the number of solutions of the system of congruences

k−1∑
n=1

(zn − ξ)i ≡ hi (mod pi) (2 6 i 6 k),

with z satisfying the non-singularity conditions (i) and (ii) above, and 1 6
zn 6 pk (1 6 n 6 k−1), is readily confirmed to be at most (k−1)!p

1
2

(k−1)(k−2).
The critical point here is that there are only k−1 variables instead of the usual
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k. From here we may proceed as in the concluding paragraph of the proof of
[15, Lemma 3.1] to obtain the upper bound

T3(ξ)� P
1
2

(k−1)(k−2)θLs,0(P, P ; θ; Φ),

wherein Φi(z) = (z − ξ)i (1 6 i 6 k) is a system of type (0, P, 1). On
substituting this estimate into (3.6), and thence into (3.4), we deduce that

Js+k−1,k(P )� T1 + P (2s+ω(k,1)−1)θLs,0(P, P ; θ; Φ). (3.8)

It remains at this stage to bound T1. But an immediate modification of the
argument of case (i) of the proof of [15, Lemma 3.1] yields the bound

T1 � (Js+k−1,k(P ))1−2/(k−1)(P k−1Js,k(P ))2/(k−1).

The proof of the lemma is thus completed by reference to (3.8). �

At this point, we define the efficient difference operator ∆∗i by

∆∗i (f(x);h;m) = m−i
(
f(x+ hmk)− f(x)

)
.

When 0 6 d < k − 1, it is useful also to define the exponent

ν(d) =
k − d∗

2(k − d− 1)
.

We require one last lemma before moving on to prove Theorem 3.1.

Lemma 3.6. Suppose that 1 < P θ 6 Q 6 P , and that the system (Φ) is
of type (d, P,A). Write H = P 1−kθ. Then there exists a system (Ξ) of type
(d+ 1, P, k2kA) with the property that

Ls,d(P,Q; θ; Φ)�A P
k−d∗Js,k(QP

−θ)

+Hk−d∗ (Ks,d+1(P,QP−θ; Ξ)
)ν(d) (

Js,k(QP
−θ)
)1−ν(d)

.

Proof. We initially follow the argument of the proof of [15, Lemma 4.1], with
the modified definitions of Ks and Ls = Ls,d(P,Q; θ; Φ) again entailing only
slight and superficial alterations. Thus we deduce that Ls �A U0 +U1, where

U0 = P (Ls)
1−1/(k−d∗) (Js,k(QP−θ))1/(k−d∗)

, (3.9)

and

U1 =
∑
η

∫
Tk

(
k−d∗∏
j=1

∑
16h6H

W (ηjα;h)

)
|f(α;QP−θ)|2s dα. (3.10)

Here, the outer summation is over η ∈ {1,−1}k−d∗ , and

W (α;h) =
∑

16z6P

e (α1Ξ1(z;h; p) + · · ·+ αkΞk(z;h; p)) ,

in which Ξi(z;h; p) = ∆∗i (Φi(z);h; p) (1 6 i 6 k).

If U0 > U1, then Ls � U0, and hence we deduce from (3.9) that

Ls �A P
k−d∗Js,k(QP

−θ).



12 KENT D. BOKLAN AND TREVOR D. WOOLEY

This establishes the conclusion of the lemma unless U1 > U0, in which case
Ls � U1. But in this situation, an application of Hölder’s inequality leads

from (3.10) to the upper bound Ls � Vν(d)
1 V1−ν(d)

2 , where

V1 = H2(k−d−1) max
16h6H

∫
Tk

∣∣W (α;h)2(k−d−1)f(α;QP−θ)2s
∣∣ dα

and

V2 =

∫
Tk

∣∣f(α;QP−θ)
∣∣2s dα.

The desired conclusion in this second case follows upon considering the under-
lying diophantine equations. �

Although we are now prepared to prove Theorem 3.1, we take a respite to
make some comments concerning the variables occurring in its statement. No-
tice first that for each j, s and J , we have φ(j, s, J) 6 1/k. One therefore has
θs 6 1/k, and hence by a simple induction one obtains ∆s 6 max{0,∆s−k} 6
1
2
k(k+ 1). The formula (3.1) therefore yields positive values for the real num-

bers φ∗ and φ, and hence θs > 0. It follows also that λs 6 2s.

We prove Theorem 3.1 by induction on s, the case s = t being assumed. We
presently suppose that the conclusion of the theorem holds with s = t+m(k−1)
for each integer m with 0 6 m 6 l, and then fix s = t + l(k − 1). For ease
of exposition, we write λ for λs, θ = θs+k−1, and φ(j, J) = φ(j, s + k − 1, J),
both with and without decoration by an asterisk. Let j be the least integer
with 1 6 j 6 k for which θ = φ(j, 1). For J = 1, . . . , j define φJ = φ(j, J)
as in the statement of Theorem 3.1. Then, if φJ = 1/k for some J < j, we
have φ(j, J) = φ(J, J), and one finds successively that φ(j, r) = φ(J, r) for
r = J, J − 1, . . . , 1, contradicting the minimality of j. Thus φJ < 1/k for
J < j. We adopt the notation of writing

Mi = P φi , Hi = PM−k
i , Qi = P (M1 . . .Mi)

−1 (1 6 i 6 j),

and additionally adopt the convention that Q0 = P . We also take AJ to be
a series of sufficiently large (but fixed) real numbers with each ratio AJ/AJ−1

also sufficiently large.

We first prove, inductively, that for J = j − 1, j − 2, . . . , 0, all systems (Φ)
of type (J, P,AJ) satisfy the relation

Ls,J(P,QJ ;φJ+1; Φ)� P k−J∗Qλ
J+1. (3.11)

Observe first that if (Ψ) is of type (j, P,A), then a trivial estimate yields

Ks,j(P,Qj; Ψ)� P 2(k−j∗)Js,k(Qj).

But for all systems (Φ) of type (j−1, P, Aj−1), it follows from Lemma 3.6 that

Ls,j−1(P,Qj−1;φj; Φ)� P k−(j−1)∗Js,k(Qj) + P k−(j−1)∗H
k−(j−1)∗

j Js,k(Qj).

Consequently, on noting that φ(j, j) = 1/k, whence Hj = 1, we deduce that
(3.11) follows in the case J = j − 1.

We next assume that (3.11) holds for J > 1, and deduce the corresponding
result for J − 1. We have just established (3.11) when J = j − 1, so we may
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assume that J 6 j − 1. In these circumstances, Lemma 3.4 shows that all
systems (Ψ) of type (J, P,AJ) satisfy

Ks,J(P,QJ ; Ψ)� P k−J∗Js,k(QJ) +M
2s+ω(k,J∗)−J∗
J+1 P k−J∗Qλ

J+1.

Since λs 6 2s, we infer from our inductive hypothesis that

Js,k(QJ)� Qλ
J = (MJ+1QJ+1)λ 6M2s

J+1Q
λ
J+1,

whence

Ks,J(P,QJ ; Ψ)� P k−J∗M2s
J+1Q

λ
J+1 +M

2s+ω(k,J∗)−J∗
J+1 P k−J∗Qλ

J+1.

Consequently, for all systems (Φ) of type (J − 1, P, AJ−1), it follows from
Lemma 3.6 that

Ls,J−1(P,QJ−1;φJ ; Φ)� T3 + T4, (3.12)

where T3 = P k−(J−1)∗Qλ
J , and

T4 = H
k−(J−1)∗

J (P k−J∗M
2s+ω(k,J∗)−J∗
J+1 Qλ

J+1)ν(J−1)(Qλ
J)1−ν(J−1). (3.13)

We have assumed that φJ < 1/k for J < j, and hence that φJ = φ∗J(j, J).
From (3.1) we therefore find that

(2s+ ω(k, J∗)− J∗ − λ)φJ+1 = (k2 − J∗k + 1
2
J∗(J∗ − 1)−∆s)φ(j, J + 1)

= 2k(k − J∗)φJ − (k − J∗).

We thus deduce from (3.13) that T4 = P k−(J−1)∗Qλ
J , whence (3.12) yields

Ls,J−1(P,QJ−1;φJ ; Φ)� P k−(J−1)∗Qλ
J .

It follows that (3.11) holds with J−1 replacing J , and our secondary inductive
hypothesis holds for J = 0, 1, . . . , j − 1.

We have shown that all systems (Φ) of type (0, P, A0) satisfy

Ls,0(P,Q0;φ1; Φ)� P k−1Qλ
1 ,

so that by Lemma 3.5, one has

Js+k−1,k(P )� P k−1+λ +M
2s+ω(k,1)−1
1 P k−1(P/M1)λ.

Then Js+k−1,k(P )� P k−1+λ + P λ′ , where

λ′ = λ(1− θ) + k − 1 + (2s+ 1
2
k(k − 1)− k)θ

= 2(s+ k − 1)− 1
2
k(k + 1) + ∆s+k−1.

Thus we may conclude that the primary inductive hypothesis holds with s +
k − 1 in place of s, and so the proof of the theorem is complete.
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4. The computations underlying Corollaries 1.2 and 1.3

Our first task in completing the computations required to establish Corol-
laries 1.2 and 1.3 is to compute, for each natural number k with 8 6 k 6 20,
permissible exponents ∆s,k for 1 6 s 6 s∗(k), for a suitably chosen integer
s∗(k). It transpires that one may take s∗(k) = 6k2 for k in the aforementioned
interval. Next, we observe that the estimate Jk+1,k(P ) � P k+1+ε, available
from [6, Lemma 5.4] (and in a much sharper asymptotic form in [12]), implies
via Hölder’s inequality that the exponent ∆s,k = 1

2
k(k + 1)− s is permissible

for 1 6 s 6 k + 1. We initialise our array of permissible exponents ∆s,k by
employing a trivial estimate to deduce that for k + 2 6 s 6 s∗(k), the expo-
nent ∆s,k = 1

2
k(k+ 1)− (k+ 1) is permissible. Our strategy at this point is to

employ Theorem 3.1 to compute new permissible exponents ∆∗s+k−1,k from the
exponents ∆s,k, beginning with the integers s in the interval 1 6 s 6 k + 1,
and then proceeding inductively. For each integer s, we take ∆s,k to be the
smaller of our previous estimate for this quantity, and the newly computed
value ∆∗s,k.

We add two extra devices to the approach outlined in the first paragraph.
First, by employing Hölder’s inequality, one may verify that for 1 6 t 6 k− 1,
the exponent

∆
(1)
s+t,k =

(k − 1− t)∆s,k + t∆s+k−1,k

k − 1

is permissible. If ∆
(1)
s+t,k is smaller than our previously stored estimate for

∆s+t,k, then we may replace the latter by the former. We therefore introduce
this linear interpolation step after computing each ∆s+k−1,k. Finally, we make
use of the estimate from the second author’s work on quasi-diagonal behaviour
[16]. Thus, when 3 6 t 6 k, one may obtain a permissible exponent ∆s+t,k as
follows. We put l = [k/2] and consider integers r and t with max{1, k − r} 6
t < 2l. We then define u = [s(1− t/(2l))−1 + 1], and put

δw = w − 1
2
k(k + 1) + ∆w,k (w = s, u).

Finally, on putting

θ∗ =
2(sδu − uδs)

urt+ 2(sδu − uδs)
and then θ = max{θ∗, 1/r}, we find from [16, equation (4.8)] that the exponent

∆s+t,k = δs(1− θ) + (s+ 1
2
(r + t− k − 1)(r + t− k))θ + 1

2
k(k + 1)− (s+ t)

is permissible. Should any of the exponents obtained through application of
these methods be smaller than our previously stored estimates, then we replace
the latter by the former. Finally, having computed new estimates for ∆s,k for
k + 2 6 s 6 s∗(k), we repeat the computation all over again until we achieve
numerical convergence.

Next, having computed arrays of permissible exponents ∆s,k for 8 6 k 6 20
and 1 6 s 6 s∗(k), we apply Theorem 1.1 to compute the exponent σ(k).
Note that the computation of σ(k) makes use of permissible exponents ∆s,k−1

corresponding to degree k − 1. These calculations are reported in Corollary
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1.2. Finally, in order to calculate upper bounds for G̃(k), we make use of [4,
Lemma 5.4], so that

G̃(k) 6 min
16m6k

min
16s6s∗(k)

d2s+m(m− 1) + ∆s,k/(mσ(k))e.

This calculation involves minimising an expression over the k available choices
for m as well as the variable s. The outcome of these calculations is reported
in Corollary 1.3.
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