
A NOTE ON SIMULTANEOUS CONGRUENCES, II:
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TREVOR D. WOOLEY∗

Abstract. When p is a prime number, and k1, . . . , kt are natural numbers
with 1 ⩽ k1 < k2 < ⋅ ⋅ ⋅ < kt < p, we show that the simultaneous congru-

ences
∑t

1 x
kj

i ≡
∑t

1 y
kj

i (mod p) (1 ⩽ j ⩽ t), possess at most k1 . . . ktp
t

solutions with 1 ⩽ xi, yi ⩽ p (1 ⩽ i ⩽ t). Analogous conclusions are
provided when one or more of the exponents ki are negative.

1. Introduction

In a paper devoted to generalisations of Gauss sums published in 1932,
Mordell [11] obtained upper bounds for exponential sums over finite fields
through estimates for their mean values. Although eclipsed by Weil’s resolu-
tion of the Riemann Hypothesis for curves over finite fields (see [13]), Mordell’s
approach motivates Vinogradov’s use [12] of mean values in estimating Weyl
sums and their generalisations, and as such leaves an indelible mark on the
literature. Weil’s estimates are worse than trivial when the degree of the expo-
nential sum is large compared to the associated prime modulus, and in recent
years much effort has been expended on deriving estimates that remain non-
trivial for larger degrees (see [1], [2], [4], [5], [6], [7], [10], and [16]). The bulk
of this work revisits Mordell’s original approach, and is based on an estimate
for the number of solutions of certain polynomial congruences equivalent to
a mean value estimate (see [11], equation (16)). Mordell’s proof of this es-
timate involves notions of independent parameters and unstated elements of
elimination theory that are vestiges of a bygone era prior to the development
of modern algebraic geometry. As such, the mathematical reader of today will
likely demand some renovation of this proof going beyond a lick of paint to
a certain amount of structural reinforcement. Our object in this note is to
address the latter concerns, at the same time providing an estimate sharper
than that due to Mordell that is, in many respects, best possible. Improved
estimates for certain associated exponential sums are immediate corollaries of
our sharper bounds.

Before announcing our conclusions, we must introduce some notation. When
q is a power of a prime number p, we denote by Fq the finite field having q
elements. Let t be a natural number, and suppose that k1, . . . , kt are posi-
tive integers. We write Nt(q;k) for the number of solutions of the system of
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equations

x
kj
1 + ⋅ ⋅ ⋅+ x

kj
t = x

kj
t+1 + ⋅ ⋅ ⋅+ x

kj
2t (1 ⩽ j ⩽ t), (1.1)

with x ∈ F2t
q . In view of the relation aq = a, valid for each element a of Fq, it

is apparent that there is no loss of generality in supposing that

1 ⩽ k1 < k2 < ⋅ ⋅ ⋅ < kt < q. (1.2)

Furthermore, since the characteristic of Fq is p, for each natural number l one
has

(xl1 + xl2 + ⋅ ⋅ ⋅+ xlt)
p = xlp1 + xlp2 + ⋅ ⋅ ⋅+ xlpt .

Thus we see that there is in addition no loss of generality in restricting attention
to systems (1.1) for which p ∤ kj (1 ⩽ j ⩽ t).

Theorem 1.1. Suppose that k1, . . . , kt are integers with p ∤ kj (1 ⩽ j ⩽ t),
and satisfying the condition (1.2). Then one has

Nt(q;k) ⩽ k1k2 . . . ktq
t. (1.3)

In the situation in which q is a prime number, the estimate (16) of Mordell
[11] supplies the bound

Nt(q;k) ⩽
(2t)!

(t!)2
k1k2 . . . ktq

t.

Under the same circumstances, Cochrane and Pinner (see Lemma 3.1 of [6])
provide an estimate analogous to this upper bound of Mordell, save that the
right hand side is multiplied by a factor 4/t2. Their proof avoids Mordell’s
result, instead applying a version of Bézout’s theorem for non-singular solu-
tions of polynomial congruences due to the author [15], and as such provides a
robust proof of Mordell’s estimate. The conclusion of Theorem 1.1 is superior
to both the estimates of Mordell and of Cochrane and Pinner. Moreover, as is
apparent from the discussion of Example 3.1 of [6], when k is a fixed natural
number with k∣(q − 1), and ki = ik (1 ⩽ i ⩽ t), one has the lower bound

Nt(q;k) ⩾ k1k2 . . . kt(q
t +Ot(q

t−1)),

and thus the inequality (1.3) is asymptotically sharp. In some sense, therefore,
the conclusion of Theorem 1.1 is best possible. We should note in this context
that in the special case in which t = 2 and q is a prime number, the conclusion
of Theorem 1.1 is derived in Lemma 7 of [14], and is also recorded rather later
in Lemma 3.2 of [6].

Consider next the situation analogous to that described in the preamble to
Theorem 1.1 in which the exponents k1, . . . , kt are now non-zero integers, but
potentially not all of the same sign. In this situation, we define Mt(q;k) to
be the number of solutions of the system of equations (1.1) with x ∈ (F×q )2t.
Here, we may suppose without loss that

−q < k1 < k2 < ⋅ ⋅ ⋅ < kt < q, (1.4)

that p ∤ kj (1 ⩽ j ⩽ t), and further that

(q − 1) ∤ (ki − kj) (1 ⩽ i < j ⩽ t). (1.5)
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Finally, it is convenient to put

li =

{
ki, when ki > 0,

t∣ki∣, when ki < 0,

and

mi =

{
ki, when ki > 0,

(2t− 1)∣ki∣, when ki < 0.

Theorem 1.2. Suppose that k1, . . . , kt are integers with p ∤ kj (1 ⩽ j ⩽ t),
and satisfying the conditions (1.4) and (1.5). Then one has the estimates

Mt(q;k) ⩽ m1m2 . . .mt(q − 1)t,

Mt(q;k) ⩽ 22t∣k1k2 . . . kt∣(q − 1)t,

Mt(q;k) ⩽ (t+ 1)l1l2 . . . lt(q − 1)t.

By way of comparison, when q is a prime number, the estimate (16) of
Mordell [11] essentially provides the bound

Mt(q;k) ⩽
(2t)!

(t!)2
l1 . . . lt(q − 1)t. (1.6)

One may verify that the third estimate of Theorem 1.2 is superior to (1.6)
for every natural number t exceeding 1. Moreover, the second estimate of
Theorem 1.2 will be superior to the third whenever t > 2, and the number
of the exponents ki that are negative is more than about (2 log 2)t/ log t. We
should also remark that Lemma 3.2 of Cochrane and Pinner [6] establishes
an estimate matching the first provided by Theorem 1.2 in those special cases
wherein t = 2 and q is prime.

We finish by recording some consequences of Theorems 1.1 and 1.2 for ex-
ponential sums. Let � be a Dirichlet character modulo p, and write ep(z)
for e2�iz/p. Then, when a ∈ (F×p )t, we define the Laurent polynomial f(x) =

a1x
k1 + ⋅ ⋅ ⋅+ atx

kt , and also the mixed exponential sum

S(�, f) =
∑
x∈F×

p

�(x)ep(f(x)).

Corollary 1.3. When k1, . . . kt are non-zero integers with p ∤ kj (1 ⩽ j ⩽ t),
and satisfying 1 ⩽ k1 < k2 < ⋅ ⋅ ⋅ < kt < p, one has

∣S(�, f)∣ ⩽ (k1 . . . kt)
1/t2p1−1/(2t). (1.7)

Meanwhile, when instead −p < k1 < k2 < ⋅ ⋅ ⋅ < kt < p and p ∤ (ki − kj) for
1 ⩽ i < j ⩽ t, then one has the estimates

∣S(�, f)∣ ⩽ (m1m2 . . .mt)
1/t2p1−1/(2t),

∣S(�, f)∣ ⩽ 22/t∣k1 . . . kt∣1/t
2

p1−1/(2t), (1.8)

∣S(�, f)∣ ⩽ (t+ 1)1/t
2

(l1 . . . lt)
1/t2p1−1/(2t). (1.9)
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For comparison, Theorem 1.1 of Cochrane and Pinner [6] provides the bound

∣S(�, f)∣ ⩽ 22/t(l1 . . . lt)
1/t2p1−1/(2t). (1.10)

This is weaker than the estimate (1.9) in all cases, since t + 1 < 4t for every
natural number t. It is also weaker than (1.8) whenever there is a change of
sign amongst the ki. Finally, in circumstances wherein the ki are all of the
same sign, the estimate (1.7) yields bounds superior to those of (1.10) by a
factor 22/t. See [4] and [5] for refinements in special cases that may prove
superior to the estimates of Corollary 1.3.

Although the conclusion of Theorem 1.1 is, in some sense, best possible, it
is not apparent what the truth may be for the analogous situation examined
in Theorem 1.2, in which the exponents are of mixed sign. Let w be a natural
number, put t = 2w, and write

a = (−w, 1− w, . . . ,−2,−1, 1, 2, . . . , w − 1, w).

Then by considering solutions x of (1.1) in which (xk1, . . . , x
k
2w) is a permutation

of (xk2w+1, . . . , x
k
4w), one finds that when q is large and k∣(q − 1), one has

M2w(q; ka) ⩾ (2w)!k2w(q − 1)2w +Ok,w(q2w−1).

Consequently, the bound

Mt(q;k) ⩽ Ct∣k1 . . . kt∣(q − 1)t

cannot hold in general when Ct <
(

t
[t/2]

)
.

The author is grateful to the referee for useful comments.

2. Counting solutions of equations in finite fields

In this section we bound Nt(q;k) and Mt(q;k) by making use of rough data
available from modern versions of Bézout’s theorem, in combination with crude
but robust estimates for the number of Fq-rational points on algebraic varieties
made available only relatively recently. We begin with a direct consequence of
Bézout’s theorem. In this context, we write deg(W ) for the degree of a variety
W , and Fq for the algebraic closure of Fq.

Lemma 2.1. Suppose that fi(x) ∈ Fq[x1, . . . , xs] is a polynomial of degree
di for 1 ⩽ i ⩽ t. Let V1, . . . , Vℎ ⊂ As be the components of the complete
intersection defined by the system of equations fi(x) = 0 (1 ⩽ i ⩽ t). Then

ℎ∑
i=1

deg(Vi) ⩽ d1d2 . . . dt.

Proof. Let Y be a variety in ℙn, and let H be a hypersurface not containing Y .
Also, let Z1, . . . , Zm be the irreducible components of Y ∩H, and let i(Y,H;Zj)
denote the intersection multiplicity of the varieties Y and H along Zj. Then
according to Theorem 7.7 of Chapter 1 of Harsthorne [8], one has

m∑
j=1

i(Y,H;Zj) degZj = (deg Y )(degH).
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But i(Y,H;Zj) ⩾ 1 for each j, and so it follows by induction that for the
complete intersection defined by the t polynomials in question, one has

ℎ∑
i=1

deg(Vi) ⩽
t∏
i=1

deg(fi) = d1d2 . . . dt.

□

Next we provide an upper bound for the number of Fq-rational points on a
variety of given degree and dimension.

Lemma 2.2. Let V ⊂ As be an Fq-variety of dimension r ⩾ 0 and degree �.
Then one has

card(V ∩ Fsq) ⩽ �qr,

and also

card(V ∩ (F×q )s) ⩽ �(q − 1)r.

Proof. The first estimate is supplied by Lemma 2.1 of Cafure and Matera [3].
The second estimate may be established using an immediate modification of
the argument of the proof of the latter lemma. For when 1 ⩽ i ⩽ s, we may
take Wi ⊂ As to be the Fq-hypersurface defined by xq−1i − 1. Then we have
V ∩ (F×q )s = V ∩W1∩⋅ ⋅ ⋅∩Ws, and so from the argument underlying the proof
of Proposition 2.3 of [9], we obtain the inequality

card(V ∩ (F×q )s) ⩽ deg(V ∩W1 ∩ ⋅ ⋅ ⋅ ∩Ws) ⩽ �(q − 1)r.

This completes the proof of the lemma. □

By combining Lemmata 2.1 and 2.2, we obtain an estimate for the number
of Fq-rational points on a complete intersection.

Lemma 2.3. Suppose that fi(x) ∈ Fq[x1, . . . , xs] is a polynomial of degree

di for 1 ⩽ i ⩽ t. Let V1, . . . , Vn be the components in Fsq of the complete
intersection V defined by the system of equations fi(x) = 0 (1 ⩽ i ⩽ t), and
denote by Ur the union of the components V1, . . . , Vn having dimension not
exceeding r. Then

card(Ur ∩ Fsq) ⩽ d1d2 . . . dtq
r.

In the analogous situation wherein we consider the complete intersection in

(F×q )s, one has instead

card(Ur ∩ (F×q )s) ⩽ d1d2 . . . dt(q − 1)r.

Proof. Suppose that Vi1 , . . . , Vil are the components of V having dimension not
exceeding r. Then Ur is the union of Vi1 , . . . , Vil , so by first applying Lemma
2.2, and then Lemma 2.1, we obtain

card(Ur ∩ Fsq) ⩽
l∑

j=1

deg(Vij)q
r ⩽ qr

n∑
i=1

deg(Vi) ⩽ d1d2 . . . dtq
r.

The second conclusion of the lemma follows in like manner. □
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In order to discuss the singular locus of the complete intersection (1.1),
we require a lemma concerning the rank of matrices of Vandermonde type.
Suppose that k1, . . . , kt are distinct integers, and that s is a natural number
with s ⩾ t. When i1, . . . , it are natural numbers with 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < it ⩽
s, we define the determinant

Δi(x;k) = det(x
kj−1
il

)1⩽j,l⩽t.

Also, when ki > 0 (1 ⩽ i ⩽ t), we define Xs(k) to be the set of points x ∈ Fsq
satisfying the system of equations

Δi(x;k) = 0 (1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < it ⩽ s). (2.1)

Likewise, without condition on k, we define Ys(k) to be the set of points

x ∈ (F×q )s satisfying the system of equations (2.1).

Lemma 2.4. (i) Suppose that k1, . . . , kt are integers with 1 ⩽ k1 < ⋅ ⋅ ⋅ < kt <
q, and that s ⩾ t. Then the components of the complete intersection Xs(k)
have dimension at most t− 1;

(ii) Suppose that k1, . . . , kt are integers with −q < k1 < ⋅ ⋅ ⋅ < kt < q, and
further that (q − 1)∣(ki − kj) for no indices i and j with 1 ⩽ i < j ⩽ t. Then
for s ⩾ t, the components of the complete intersection Ys(k) have dimension
at most t− 1.

Proof. The proof of part (ii) of the lemma may be applied, mutatis mutandis,
to establish part (i); all that is required is to include 0 as a possible value of each
coordinate. We therefore consider only part (ii), and assume the hypotheses
ambient in that part of the lemma.

Consider the subset Ys(k) ⊂ (F×q )s defined by the vanishing of all the (t×t)-
determinants (2.1). The elements x of Ys(k) may be classified according to

the dimension of the linear space spanned by the column vectors (x
kj−1
i )1⩽j⩽t

for 1 ⩽ i ⩽ s. This space must have affine dimension at most t − 1 for
every element x of Ys(k), for if the dimension were larger, then one could find
a non-vanishing (t × t)-determinant Δi(x;k), contradicting the definition of
Ys(k).

Let m be an integer with 1 ⩽ m ⩽ t − 1, consider indices il (1 ⩽ l ⩽ m)
with

1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < im ⩽ s, (2.2)

and suppose that the column vectors (x
kj−1
il

)1⩽j⩽t are linearly independent for
1 ⩽ l ⩽ m. Write Tm(i) for the set of points x ∈ Ys(k) satisfying the property

that for 1 ⩽ i ⩽ s, all of the column vectors (x
kj−1
i )1⩽j⩽t belong to the linear

space spanned by vectors of the above type, and let Y
(m)
s (k) denote the union

of the sets Tm(i) over all choices of i satisfying (2.2). Then one finds that Ys(k)

is the union of Y
(1)
s (k),Y

(2)
s (k), . . . ,Y

(t−1)
s (k). Moreover, for 1 ⩽ m ⩽ t − 1,

the set Tm(i) is determined by the non-vanishing of at least one (m × m)-
determinant involving the variables xi1 , . . . , xim , together with the vanishing
of all ((m+ 1)× (m+ 1))-determinants obtained by adjoining another variable
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xi with i ∕∈ {i1, . . . , im}. The determinants in question here are of submatrices
of the matrix

(x
kj−1
i )1⩽j⩽t

1⩽i⩽s
.

It follows that each xi with i ∕∈ {i1, . . . , im} satisfies a non-trivial polynomial
equation determined by xi1 , . . . , xim . We therefore deduce that the components

of Y
(m)
s (k) have affine dimension at most m, whence the components of Ys(k)

have affine dimension at most t−1. This completes the proof of the lemma. □

We are now equipped to establish the principal conclusions of this note.

The proof of Theorem 1.1. Suppose that k1, . . . , kt are natural numbers with
1 ⩽ k1 < k2 < ⋅ ⋅ ⋅ < kt. Recall from the discussion in the preamble to the
statement of Theorem 1.1 that we may suppose, without loss of generality, that
kt < q and p ∤ ki (1 ⩽ i ⩽ t). Consider the complete intersection Z defined

by the simultaneous equations (1.1) with x ∈ F2t

q . Note that Z is defined
by a system of t polynomial equations, of respective degrees k1, . . . , kt, in 2t
variables. Let Z1, . . . ,Zd be the distinct components of Z. We claim that the
affine dimension of each component Zi is at most t. If such were not the case
for the component Zi, then the intersection (1.1) must be improper, and Zi
must belong to the singular locus of Z. The latter is contained within the set

of points x ∈ F2t

q satisfying the simultaneous equations

det(kjx
kj−1
il

)1⩽j,l⩽t = 0,

with 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < it ⩽ 2t. Since p ∤ kj (1 ⩽ j ⩽ t), it follows that this
singular locus is contained in the set X2t(k) defined in the preamble to Lemma
2.4. It therefore follows from Lemma 2.4(i) that the component Zi in question
must have dimension at most t− 1, contradicting our earlier hypothesis.

We have shown that the components Z1, . . . ,Zd of Z each have dimension
at most t, and so we may infer from Lemma 2.3 that

Nt(q;k) = card(Z ∩ F2t
q ) ⩽ k1k2 . . . ktq

t.

This completes the proof of Theorem 1.1. □

The proof of Theorem 1.2. Suppose now that k1, . . . , kt are non-zero integers
with −q < k1 < k2 < ⋅ ⋅ ⋅ < kt < q for which (q−1) ∤ (ki−kj) for 1 ⩽ i < j ⩽ t.
There is again no loss of generality in supposing that p ∤ ki (1 ⩽ i ⩽ t). We
suppose that ki < 0 for 1 ⩽ i ⩽ u and ki > 0 for u + 1 ⩽ i ⩽ t. Here,
there is no loss of generality in supposing that u ⩾ 1 and t > u, for otherwise
the conclusion of Theorem 1.1 delivers the desired estimate, if necessary by
replacing xi by x−1i for 1 ⩽ i ⩽ 2t. It is convenient for the purpose of concision
to introduce the notational device of writing

x̌i =
∏

1⩽l⩽2t
l ∕=i

xl (1 ⩽ i ⩽ 2t).
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In addition, we write �j for −kj. Then by clearing denominators, it is apparent
that Mt(q;k) counts the number of solutions of the system

t∑
i=1

x̌
�j
i =

2t∑
i=t+1

x̌
�j
i (1 ⩽ j ⩽ u), (2.3)

t∑
i=1

x
kj
i =

2t∑
i=t+1

x
kj
i (u+ 1 ⩽ j ⩽ t), (2.4)

with x ∈ (F×q )2t. Notice here that, in view of the definition of x̌i, the degree
of the jth equation in (2.3) is (2t− 1)∣kj∣ = mj.

The system (2.3), (2.4) is defined by a system of t polynomial equations, of
respective degrees m1, . . . ,mt, in 2t variables. Let Z be the complete inter-

section defined by the system (2.3), (2.4) with x ∈ (F×q )2t, and let Z1, . . . ,Zd
be the distinct components of Z. We claim that the affine dimension of each
component Zi is at most t. If such were not the case for the component Zi,
then the intersection defined by (2.3), (2.4) must be improper, and Zi must
belong to the singular locus of Z. Notice that for 1 ⩽ j ⩽ u, one has

∂

∂yi

(
t∑
l=1

y̌
�j
l −

2t∑
l=t+1

y̌
�j
l

)
= �jy

−1
i

(
t∑
l=1

y̌
�j
l −

2t∑
l=t+1

y̌
�j
l − !y̌

�j
i

)
,

where ! is 1 for 1 ⩽ i ⩽ t, and −1 for t + 1 ⩽ i ⩽ 2t. Thus, when x satisfies
(2.3), (2.4), we find that[

∂

∂yi

(
t∑
l=1

y̌
�j
l −

2t∑
l=t+1

y̌
�j
l

)]
y=x

= −!�jx−1i x̌
�j
i = −!�jx

kj−1
i (x1x2 . . . x2t)

�j .

Consequently, by considering the Jacobian determinants arising from the sys-
tem (2.3), (2.4), and noting that x1x2 . . . x2t ∕= 0, we find that the singular

locus of Z is contained within the set of points x ∈ (F×q )2t satisfying the
simultaneous equations

k1k2 . . . kt det(x
kj−1
il

)1⩽l,j⩽t = 0, (2.5)

with 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < it ⩽ 2t. According to Lemma 2.4(ii), the set of

points x ∈ (F×q )2t satisfying (2.5) has dimension at most t − 1, contradicting
our earlier hypothesis.

We have shown as before that the components Z1, . . . ,Zd of Z each have
dimension at most t, and so we may infer from Lemma 2.3 that

Mt(q;k) = card(Z ∩ (F×q )2t) ⩽ m1m2 . . .mt(q − 1)t.

This completes the proof of the first estimate of Theorem 1.2.

We next seek to establish the third estimate of Theorem 1.2. On this occa-
sion, we introduce the notational device of writing

x̂i =
∏
0⩽l⩽t
l ∕=i

xl (1 ⩽ i ⩽ t),
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and
x̂i =

∏
t+1⩽l⩽2t+1

l ∕=i

xl (t+ 1 ⩽ i ⩽ 2t).

We again write �j for −kj. Finally, we define Lt(q;k) to be the number of
solutions of the system of equations

t∏
i=0

xi =
2t+1∏
i=t+1

xi, (2.6)

t∑
i=1

x̂
�j
i =

2t∑
i=t+1

x̂
�j
i (1 ⩽ j ⩽ u), (2.7)

t∑
i=1

x
kj
i =

2t∑
i=t+1

x
kj
i (u+ 1 ⩽ j ⩽ t), (2.8)

with x ∈ (F×q )2t+2. Notice here that in view of the definition of x̂i, the degree
of the jth equation in (2.7) is t∣kj∣ = lj.

Given a solution x of the system (1.1) counted by Mt(q;k), one has both
x1 . . . xt ∕= 0 and xt+1 . . . x2t ∕= 0. Then given x0 ∈ F×q , there is a unique
element x2t+1 in F×q for which the equation (2.6) holds. Given such a (2t+ 2)-
tuple x, we may multiply the equations of (1.1) with 1 ⩽ j ⩽ u by the non-zero
factor (x0x1 . . . xt)

�j on the left hand side, and by (xt+1 . . . x2tx2t+1)
�j on the

right hand side. In view of the relation (2.6), this is the same non-zero factor,
and so we obtain the equivalent equations (2.7). In this way we find not only
that the system (2.6)-(2.8) is satisfied, but further that

Lt(q;k) = (q − 1)Mt(q;k). (2.9)

Recall the definition of the integers li (1 ⩽ i ⩽ t) given in the preamble
to the statement of Theorem 1.2. Then keeping in mind the definition of x̂i,
we find that the system (2.6)-(2.8) is defined by a system of t+ 1 polynomial
equations, of respective degrees t+1 and l1, . . . , lt, in 2t+2 variables. Let Z be

the complete intersection defined by the system (2.6)-(2.8) with x ∈ (F×q )2t+2,
and let Z1, . . . ,Zd be the distinct components of Z. We claim that the affine
dimension of each component Zi is at most t + 1. If such were not the case
for the component Zi, then the intersection defined by (2.6)-(2.8) must be
improper, and Zi must belong to the singular locus of Z. Notice that when x
satisfies (2.6), one has[

∂

∂yi

(
t∏
l=0

yl −
2t+1∏
l=t+1

yl

)]
y=x

= !x−1i

t∏
l=0

xl,

where ! is 1 for 0 ⩽ i ⩽ t, and −1 for t+1 ⩽ i ⩽ 2t+1. Next, when 1 ⩽ j ⩽ u
and x satisfies (2.6)-(2.8), write

�j(x) =
t∑
l=1

x̂
�j
l =

2t∑
l=t+1

x̂
�j
l .
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Then, when 1 ⩽ i ⩽ t, one has[
∂

∂yi

(
t∑
l=1

ŷ
�j
l −

2t∑
l=t+1

ŷ
�j
l

)]
y=x

=

[
�jy

−1
i

(
t∑
l=1

ŷ
�j
l − ŷ

�j
i

)]
y=x

= �jx
−1
i �j(x)− �jx

kj−1
i (x0x1 . . . xt)

�j .

Likewise, when t+ 1 ⩽ i ⩽ 2t, one finds that[
∂

∂yi

(
t∑
l=1

ŷ
�j
l −

2t∑
l=t+1

ŷ
�j
l

)]
y=x

= −�jx−1i �j(x) + �jx
kj−1
i (x0x1 . . . xt)

�j .

In addition, [
∂

∂y0

(
t∑
l=1

ŷ
�j
l −

2t∑
l=t+1

ŷ
�j
l

)]
y=x

= �jx
−1
0 �j(x).

We extend the definition of �j(x) by setting �j(x) = 0 for u + 1 < j ⩽ 2t.
Then, when 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < it ⩽ 2t, we define the determinant Ξ(i) =
Ξk(x; i) by

Ξ(i) = det

(
x−10 uT

v A

)
,

where u and v are the column vectors

u = (x−1il )1⩽l⩽t, v = (x−10 �j(x))1⩽j⩽t,

and

A =
(
−xkj−1il

(x0x1 . . . xt)
�j + x−1il �j(x)

)
1⩽l,j⩽t

.

Given a singular point x ∈ (F×q )2t+2 on Z, the determinant Ξk(x; i) must van-
ish for 1 ⩽ i1 < i2 < ⋅ ⋅ ⋅ < it ⩽ 2t. In order to see this, one has only to note
that x0x1 . . . xt = xt+1 . . . x2tx2t+1 ∕= 0, and to observe that the Jacobian de-
terminant, corresponding to the partial derivatives indexed by x0, xi1 , . . . , xit ,
vanishes if and only if Ξ(i) = 0. For 1 ⩽ l ⩽ t, we may subtract the first
column multiplied by x0x

−1
il

from the (l + 1)th column. In this way we find
that

Ξ(i) = det

(
x−10 O
v B

)
,

where

B =
(
−xkj−1il

(x0x1 . . . xt)
�j
)
1⩽l,j⩽t

.

But then Ξ(i) = x−10 det(B), and hence Ξ(i) vanishes if and only if

det(x
kj−1
il

)1⩽l,j⩽t = 0.

From the above discussion, we find that if Zi has dimension exceeding t+ 1,

then the set of points (x1, x2, . . . , x2t) ∈ (F×q )2t, for which (x0, x1, . . . , x2t+1)
lies on Zi, must be contained in Y2t(k). From Lemma 2.4(ii), this set has
dimension at most t − 1. But the equation (2.6) ensures that x0 is uniquely
determined from x2t+1 together with a given choice of (x1, x2, . . . , x2t), and so
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Zi can have dimension at most (t − 1) + 1 = t. This contradicts our earlier
hypothesis that dim(Zi) > t+ 1.

We have shown on this occasion that the components Z1, . . . ,Zd each have
dimension at most t+ 1, so by Lemma 2.3 we deduce that

Lt(q;k) = card(Z ∩ (F×q )2t+2) ⩽ (t+ 1)l1l2 . . . lt(q − 1)t+1.

Consequently, the relation (2.9) delivers the estimate

Mt(q;k) ⩽ (t+ 1)l1l2 . . . lt(q − 1)t,

and this confirms the third estimate of Theorem 1.2.

An alternative approach is required to establish the second estimate of The-
orem 1.2. Given a solution x ∈ (F×q )2t of the system (1.1), there is a unique

element y ∈ (F×q )2t for which xiyi = 1 (1 ⩽ i ⩽ 2t). Consequently, if we define
Kt(q;k) to be the number of solutions of the system of equations

t∑
i=1

(y
�j
i − y

�j
t+i) = 0 (1 ⩽ j ⩽ u), (2.10)

t∑
i=1

(x
kj
i − x

kj
t+i) = 0 (u+ 1 ⩽ j ⩽ t), (2.11)

xlyl = 1 (1 ⩽ l ⩽ 2t), (2.12)

with x,y ∈ (F×q )2t, then one finds that

Kt(q;k) = Mt(q;k). (2.13)

Let Z be the complete intersection defined by the system (2.10)-(2.12) with
x,y ∈ (F×q )2t. Let Z1, . . . ,Zd be the distinct components of Z. We claim
that the affine dimension of each component Zi is at most t. If such were
not the case, then the intersection defined by (2.10)-(2.12) must be improper,
and Zi must belong to the singular locus of Z. The Jacobian determinants
corresponding to the system (2.10)-(2.12) are not particularly simple to de-
scribe, and so we must introduce some additional notation. The system
(2.10)-(2.12) possesses 3t equations and 4t variables. Let ℎ1, . . . , ℎt be in-
tegers with 1 ⩽ ℎ1 < ℎ2 < ⋅ ⋅ ⋅ < ℎt ⩽ 2t, and write ℋ = {ℎ1, . . . , ℎt} and
define ℐ = ℐ(ℋ) by ℐ = {1, . . . , 2t} ∖ ℋ. Then ℐ is a set of integers i1, . . . , it
with 1 ⩽ i1 < ⋅ ⋅ ⋅ < it ⩽ 2t. For each set ℋ of the above type, we define the
Jacobian determinant Υ(ℋ) = Υk(x;ℋ) by

Υ(ℋ) = det

⎛⎜⎜⎝
A O B
O C O
O O F
D E O

⎞⎟⎟⎠ ,

where A, B, C are the diagonal matrices

A = diag(yℎ)ℎ∈ℋ, B = diag(xℎ)ℎ∈ℋ, C = diag(yi)i∈ℐ(ℋ),
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and D, E, F are the generalised Vandermonde matrices

D = (kjx
kj−1
ℎl

) 1⩽l⩽t
u+1⩽j⩽t

, E = (kjx
kj−1
il

) 1⩽l⩽t
u+1⩽j⩽t

, F = (�jy
�j−1
ℎl

) 1⩽l⩽t
1⩽j⩽u

.

That Υ(ℋ) is indeed a Jacobian determinant may be seen by rearranging
the equations comprising (2.10)-(2.12) to correspond to the rows of Υ(ℋ),
so that the first t equations become xℎyℎ = 1 (ℎ ∈ ℋ), the next t become
xiyi = 1 (i ∈ ℐ(ℋ)), and the final t become the t equations of (2.10) and
(2.11). Likewise, we rearrange the partial derivatives so that the first t columns
of Υ(ℋ) correspond to the partial derivatives ∂/∂xℎ (ℎ ∈ ℋ), the second
t correspond to the partial derivatives ∂/∂xi (i ∈ ℐ(ℋ)), and the third t
correspond to the partial derivatives ∂/∂yℎ (ℎ ∈ ℋ). It follows, in particular,
that if Zi has dimension exceeding t, then its points satisfy the system of
equations xiyi = 1 (1 ⩽ i ⩽ 2t), and

Υ(ℋ) = 0 (ℋ = {ℎ1, . . . , ℎt} ⊂ {1, 2, . . . , 2t}).

One has

det(Υ(ℋ)) = det(C) det

⎛⎝A B
O F
D O

⎞⎠ .

For 1 ⩽ l ⩽ t, we may subtract xℎly
−1
ℎl

times the lth column of the last
determinant from the (t+ l)th column, without affecting its value. In this way,
we find that

det(Υ(ℋ)) = det(C) det

⎛⎝A O
O F
D G

⎞⎠ ,

where

G = (kjx
kj
ℎl
y−1ℎl ) 1⩽l⩽t

u+1⩽j⩽t
.

Making use of the relations xiyi = 1 (1 ⩽ i ⩽ 2t), we find that

det(Υ(ℋ)) = ± det(A) det(C) det(kjx
kj
ℎl
y−1ℎl )1⩽l,j⩽t

= ±k1 . . . kt
(∏
ℎ∈ℋ

xℎ

)( ∏
i∈ℐ(ℋ)

yi

)
det
(
x
kj−1
ℎl

)
1⩽l,j⩽t

.

From the above discussion, we find that if Zi has dimension exceeding t, then

the set of points x ∈ (F×q )2t, for which (x,y) lies on Zi, must be contained
in Y2t(k). But Lemma 2.4(ii) shows that the latter has dimension at most
t − 1. Since for (x,y) ∈ Zi one has xiyi = 1 (1 ⩽ i ⩽ 2t), each coordinate yi
is uniquely determined from xi, whence Zi itself can have dimension at most
t− 1, contradicting our early hypothesis.

The components Z1, . . . ,Zd of Z therefore each have dimension at most t,
whence by Lemma 2.3 we obtain the estimate

Kt(q;k) = card(Z ∩ (F×q )4t) ⩽ 22t�1 . . . �uku+1 . . . kt(q − 1)t.
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In view of (2.13), the second estimate for Mt(q;k) asserted by Theorem 1.2
follows on recalling that �i = −ki. This completes our account of the proof of
Theorem 1.2. □

The conclusions of Corollary 1.3 follow at once from Theorems 1.1 and 1.2
by means of the argument of Theorem 1.2 of Cochrane and Pinner [6]. Under
the hypotheses of Corollary 1.3, the estimate of Cochrane and Pinner shows
that

∣S(�, f)∣ < (p− 1)1−2/tp1/(2t)M1/t2 ,

where M = Nt(p;k) when ki > 0 (1 ⩽ i ⩽ t), and otherwise M = Mt(p;k). In
the first instance, Theorem 1.1 delivers the bound

∣S(�, f)∣ < p1−3/(2t)(k1k2 . . . ktp
t)1/t

2

= (k1 . . . kt)
1/t2p1−1/(2t).

If the exponents ki are not all positive, then one obtains in like manner the
remaining estimates of Corollary 1.3 as immediate corollaries of Theorem 1.2.
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Genève, Geneva, 1982.

[10] A. A. Karatsuba, Estimates of complete trigonometric sums, Mat. Zametki 1 (1967),
199–208.

[11] L. J. Mordell, On a sum analogous to Gauss’s sum, Quart. J. Math. Oxford 3 (1932),
161–167.

[12] I. M. Vinogradov, New estimates for Weyl sums, Dokl. Akad. Nauk SSSR 8 (1935),
195–198.

[13] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA 34 (1948), 204–207.
[14] T. D. Wooley, On simultaneous additive equations, III, Mathematika 37 (1990), 85–96.
[15] T. D. Wooley, A note on simultaneous congruences, J. Number Theory 58 (1996),

288–297.
[16] H. B. Yu, Estimates for complete exponential sums of special types, Math. Proc. Cam-

bridge Philos. Soc. 131 (2001), 321–326.



14 TREVOR D. WOOLEY

TDW: School of Mathematics, University of Bristol, University Walk,
Clifton, Bristol BS8 1TW, United Kingdom

E-mail address: matdw@bristol.ac.uk


