
ON WARING’S PROBLEM:
THREE CUBES AND A MINICUBE

JÖRG BRÜDERN AND TREVOR D. WOOLEY∗

Abstract. We establish that almost all natural numbers n are the sum
of four cubes of positive integers, one of which is no larger than n5/36.
The proof makes use of an estimate for a certain eighth moment of cubic
exponential sums, restricted to minor arcs only, of independent interest.

1. Introduction

It was shown by Davenport [6] in 1939 that almost all natural numbers are
the sum of four positive integral cubes, and it is now known that when N is
large, the number of positive integers not exceeding N that fail to be thus
represented is slightly smaller than N37/42 (see [11], [3], [4], [16], [17] for the
most recent developments). Since integers congruent to 4 modulo 9 are never
the sum of three cubes, this conclusion cannot be refined to one involving fewer
summands. A formal application of the circle method predicts an asymptotic
formula for the number of representations as the sum of four positive cubes,
and this would imply that all large integers are thus represented. Indeed, the
same heuristic argument suggests that the fourth cube is almost redundant, in
that it may be replaced by a cube from a sparse sequence without impairing
such conclusions. The purpose of this paper is to investigate representations
by sums of four positive cubes, one of which is small.

When n is a natural number and 0 < � ⩽ 1
3
, we denote by r�(n) the number

of representations of n in the form

n = x31 + x32 + x33 + x34, (1.1)

with x1, x2, x3, x4 natural numbers satisfying x4 ⩽ n�. As intimated above,
one anticipates that r�(n) ∼ Γ(4

3
)3S(n)n�, where S(n) is the familiar singu-

lar series associated with sums of four cubes. We recall in this context that
S(n)≫ 1 (see, for example, Exercise 3 of §4.6 of [14]), and hence it is expected
that r�(n) ⩾ 1 when n is large. We are able to confirm this expectation for
values of � rather smaller than 1

7
, at least, for almost all n.

Theorem 1.1. When � ⩾ 5
36
, one has r�(n) ⩾ 1 for almost all n.
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The methods of this paper are capable of showing that the conclusion of
this theorem remains valid when � is slightly smaller than 0.13884, whereas
5
36
> 0.13888. For comparison, it is apparent that whenever n is represented

in the shape (1.1), then xi ⩽ n1/3 (1 ⩽ i ⩽ 4), and so the conclusion is trivial
for � ⩾ 1

3
. One may interpret Theorem 1.1 as asserting that almost all large

integers possess a (formal) representation as the sum of at most 3.417 positive
cubes. Meanwhile, Theorem 1 of [5] shows that almost all large integers not
congruent to 5 modulo 9 are the sum of three positive integral cubes and a
sixth power, a conclusion tantamount to one involving 3.5 cubes.

In §6, we show that the anticipated asymptotic formula holds almost always
for sums of three cubes and a minicube.

Theorem 1.2. Suppose that 1
4
< � ⩽ 1

3
. Then, for almost all n, one has

r�(n) = Γ(4
3
)3S(n)n� +O(n�(log n)−1).

A conclusion equivalent to this theorem in the unrestricted situation with
� = 1

3
can be extracted from Theorem 3 of Vaughan [11] by incorporating

refinements due to Boklan [1]. We remark that it is unnecessary to restrict the
minicube implicit in the representation of n in Theorem 1.2 to be bounded by
a pure power n�, and that this hypothesis may be removed with some technical
elaboration of our basic argument.

We prove Theorems 1.1 and 1.2 using the Hardy-Littlewood method, begin-
ning in §2 with some auxiliary mean value estimates. In §3, we establish an
upper bound for a certain eighth moment of cubic exponential sums restricted
to minor arcs, an estimate of independent interest. The reader is directed to
Theorem 3.1 for details. We lay the foundations for an application of the circle
method in §4, deriving a lower bound for the contribution of the major arcs.
Then, in §5, we apply Bessel’s inequality to relate the exceptional set to a
minor arc estimate. Following two pruning processes, the proof of Theorem
1.1 is complete. Although complicated by the limited availability of full-length
generating functions to be applied in the analysis of the major arcs, the proof
of Theorem 1.2 in §6 is essentially routine. Finally, in §7, we briefly discuss the
representation of large natural numbers as the sum of seven positive integral
cubes, one of which is restricted to be a minicube.

Throughout, we reserve the letter " to denote a sufficiently small positive
number, and we use P to denote a positive number sufficiently large in terms
of ". The implicit constants in Vinogradov’s well-known notation ≪ and ≫
will depend at most on ", unless otherwise indicated. Whenever " appears in
a statement, either implicitly or explicitly, we assert that the statement holds
for each " > 0. Note that the “value” of " may consequently change from
statement to statement. Finally, throughout this paper, a variable denoted by
the letter p should be interpreted as denoting a prime number congruent to 2
modulo 3.

The authors are grateful to the referee for useful comments.
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2. Catalytic lemmata

As is to be expected when considering problems in which one or more vari-
ables are shortened, mean values involving diminishing ranges play a prominent
rôle in the arguments that follow. We collect together these basic estimates in
this section, and begin now by introducing the cast of exponential sums. We
take P to be our basic parameter, a large real number, and then take Q to be
an auxiliary parameter with 1 ⩽ Q ⩽ P , to be chosen in due course. Next, we
define

f(�) =
∑

P<x⩽2P

e(�x3) and g(�) =
∑

Q<y⩽2Q

e(�y3), (2.1)

where, here and throughout, we write e(z) for e2�iz. Also, with � fixed to be
a sufficiently small positive number, we define the set of X�-smooth numbers
not exceeding X by

A(X) = {n ∈ [1, X] ∩ ℤ : $ prime and $∣n⇒ $ ⩽ X�}.
We then take R to be a positive number with R ⩽ Q, and put

ℎ(�) =
∑

z∈A(R)

e(�z3).

We record for future reference the estimate∫ 1

0

∣ℎ(�)∣6 d�≪ R13/4−� , (2.2)

which holds for any positive number � with �−1 > 852+16
√

2833 = 1703.6 . . .,
as a consequence of Theorem 1.2 of [17].

Our purpose in this section is to record estimates for the three mean values

T1 =

∫ 1

0

∣f(�)2g(�)2ℎ(�)6∣ d�, (2.3)

T2 =

∫ 1

0

∣f(�)2g(�)4∣ d�, (2.4)

T3 =

∫ 1

0

∣f(�)g(�)ℎ(�)∣2 d�, (2.5)

of use in our subsequent deliberations. We begin with an analysis of T1 via an
auxiliary estimate.

Lemma 2.1. Whenever R ⩽ Q2/3, one has∫ 1

0

∣g(�)2ℎ(�)6∣ d�≪ QR13/4−� .

Proof. On considering the underlying diophantine equation, the mean value in
question counts the number of integral solutions of the equation

y31 − y32 = z31 − z32 + z33 − z34 + z35 − z36 , (2.6)

with
Q < y1, y2 ⩽ 2Q and zi ∈ A(R) (1 ⩽ i ⩽ 6). (2.7)
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When y1 > y2, the left hand side of this equation exceeds 3Q2, whereas the
right hand side is always smaller than 3R3. Since R3 ⩽ Q2, we conclude that
all solutions y, z of (2.6) satisfy y1 = y2, whence∫ 1

0

∣g(�)2ℎ(�)6∣ d� ⩽ Q

∫ 1

0

∣ℎ(�)∣6 d�.

The desired conclusion now follows from (2.2). □

Lemma 2.2. Suppose that Q = P 5/6 and P 4/11 ⩽ R ⩽ P 14/33−�/6. Then one
has

T1 ≪ P 1+"QR13/4−� .

Proof. By considering the diophantine equation underlying the mean value
(2.3), we find that T1 counts the number of integral solutions of the equation

x31 − x32 = y31 − y32 + z31 − z32 + z33 − z34 + z35 − z36 , (2.8)

with P < x1, x2 ⩽ 2P , and y, z as in (2.7). On making use of Lemma 2.1, one
discerns that the diagonal contribution I0, arising from those solutions of (2.8)
counted by T1 in which x1 = x2, satisfies

I0 ≪ PQR13/4−� . (2.9)

For the remaining solutions, it suffices by symmetry to consider the situation
wherein x1 > x2. On substituting ℎ = x1 − x2, one deduces from (2.8) that

3ℎP 2 < (2Q)3 + 3R3 < 9P 5/2,

whence ℎ < 3P 1/2. Consequently, a consideration of the underlying diophan-
tine equation reveals that the contribution of such solutions is at most

I1 =

∫ 1

0

Ψ(�)∣g(�)2ℎ(�)6∣ d�, (2.10)

where

Ψ(�) =
∑

1⩽ℎ<3P 1/2

∑
P<x⩽2P

e(�ℎ(3x2 + 3xℎ+ ℎ2)).

We estimate the integral (2.10) by using the Hardy-Littlewood method.
When a ∈ ℤ and q ∈ ℕ, define the auxiliary major arcs N(q, a) by putting

N(q, a) = {� ∈ [0, 1) : ∣q�− a∣ ⩽ PQ−3},
and then take N to be the union of the arcs N(q, a) with 0 ⩽ a ⩽ q ⩽ P and
(a, q) = 1. Next, define Υ(�) for � ∈ [0, 1) by taking

Υ(�) = (q +Q3∣q�− a∣)−1,
when � ∈ N(q, a) ⊆ N, and otherwise by putting Υ(�) = 0. Then, as a conse-
quence of the lemma in Vaughan [10] combined with a standard transference
principle (see Exercise 2 of §2.8 of [14]), one finds that whenever a ∈ ℤ and
q ∈ ℕ satisfy (a, q) = 1 and ∣�− a/q∣ ⩽ q−2, one has

Ψ(�)≪ P 3/2+"
(
(q +Q3∣q�− a∣)−1 + P−1 + (q +Q3∣q�− a∣)P−5/2

)1/2
.
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Hence, on applying Dirichlet’s approximation theorem and recalling that Q =
P 5/6, one swiftly arrives at the estimate

Ψ(�)≪ P 3/2+"Υ(�)1/2 + P 1+",

valid uniformly for � ∈ [0, 1). Substituting this upper bound into (2.10), and
again applying Lemma 2.1, we conclude that

I1 ≪ P 1+"QR13/4−� + P 3/2+"I2, (2.11)

where

I2 =

∫ 1

0

Υ(�)1/2∣g(�)2ℎ(�)6∣ d�. (2.12)

Next, given a natural number q, we define q1 to be the largest integer whose
cube divides q, and then put q0 = q/q31. The function �(q) defined by taking

�(q) = q
−1/2
0 q−11 is multiplicative. For future use we define the function g+(�)

for � ∈ [0, 1) by putting

g+(�) = q�(q)QΥ(�), (2.13)

when � ∈ N(q, a) ⊆ N, and otherwise by taking g+(�) = 0. On referring to
Theorem 4.1 and Lemmata 4.3, 4.4, 4.5 and 6.2 of [14], one readily confirms
that the estimate

g(�)≪ P "g+(�) + P 1/2+" (2.14)

holds uniformly for � ∈ N. Substituting this bound into (2.12), we deduce
that

I2 ≪ P 1/2+"I3 + P "I4, (2.15)

where

I3 =

∫ 1

0

Υ(�)1/2∣g(�)ℎ(�)6∣ d� (2.16)

and

I4 =

∫ 1

0

Υ(�)1/2∣g+(�)g(�)ℎ(�)6∣ d�. (2.17)

Our investigation of I3 begins with the application of Lemma 2 of [2]. By
hypothesis, we have R ⩾ P 4/11, and thus we are led via (2.2) to the bound∫ 1

0

Υ(�)∣ℎ(�)∣6 d�≪ Q"−3
(
P

∫ 1

0

∣ℎ(�)∣6 d� +R6
)
≪ Q"−3R6. (2.18)

Applying Schwarz’s inequality to (2.16), and then applying Lemma 2.1, we
therefore see that

I3 ⩽

(∫ 1

0

Υ(�)∣ℎ(�)∣6 d�
)1/2(∫ 1

0

∣g(�)2ℎ(�)6∣ d�
)1/2

≪ (Q"−3R6)1/2(QR13/4−� )1/2. (2.19)
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We turn our attention next to I4. On recalling (2.12), a trivial estimate
for ℎ(�) in combination with an application of Hölder’s inequality conveys us
from (2.17) to the bound

I4 ⩽

(
R6

∫ 1

0

g+(�)4 d�

)1/4(∫ 1

0

Υ(�)∣ℎ(�)∣6 d�
)1/4

I
1/2
2 .

In view of our definition (2.13), a routine computation confirms that∫ 1

0

g+(�)4 d�≪ P "Q.

Consequently, on recalling (2.18), we obtain the upper bound

I4 ≪ P "Q−1/2R3I
1/2
2 .

Again making use of the hypothesis R ⩾ P 4/11, we therefore see from (2.15)
and (2.19) that

I2 ≪ P 1/2+"Q−1R37/8−�/2 + P "Q−1R6 ≪ P "Q−1R6.

We substitute this estimate into (2.11) to obtain

I1 ≪ P 1+"QR13/4−� + P 3/2+"Q−1R6.

A modest computation confirms that the first term here dominates under the
hypothesis that R ⩽ P 14/33−�/6, and thus the conclusion of the lemma follows
by reference to (2.9). □

We next supply an estimate for T2 by combining routine diminishing ranges
arguments.

Lemma 2.3. When 1 ⩽ Q ⩽ P , one has

T2 ≪ P "(PQ2 + P−1Q9/2).

Moreover, provided that P 4/5 ⩽ Q ⩽ P , one has

T2 ≪ P "(PQ2 + P−3/2Q5).

In particular, when 1 ⩽ Q ⩽ P 5/6, one has T2 ≪ P 1+"Q2.

Proof. Write M = PQ−1 and H = PM−3. Then the argument leading to
equation (4) of [10] takes us from (2.4) to the estimate

T2 ≪ P 1+"Q2 +

∫ 1

0

Φ(�)∣g(�)∣4 d�,

where
Φ(�) =

∑
1⩽ℎ⩽6H

∑
P<x⩽2P

e(�ℎ(3x2 + 3xℎ+ ℎ2)).

A simple modification of the familiar proof of Hua’s lemma (see, for example,
the argument on page 438 of [16]) shows that∫ 1

0

∣Φ(�)∣4 d�≪ H3P 2+".
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Thus, by applying Hölder’s inequality in combination with Hua’s lemma (see
Lemma 2.5 of [14]), we deduce that

T2 ≪ P 1+"Q2 +

(∫ 1

0

∣Φ(�)∣4 d�
)1/4(∫ 1

0

∣g(�)∣8 d�
)1/4(∫ 1

0

∣g(�)∣4 d�
)1/2

≪ P 1+"Q2 + P "(H3P 2)1/4(Q5)1/4(Q2)1/2

≪ P "(PQ2 + P−1Q9/2).

This confirms the first conclusion of the lemma.

Suppose next that P 4/5 ⩽ Q ⩽ P . In this situation, the argument of
the lemma of [10] shows that when � ∈ ℝ and a ∈ ℤ and q ∈ ℕ satisfy
∣�− a/q∣ ⩽ q−2 and (a, q) = 1, then

Φ(�)≪ P "(HPq−1/2 +HP 1/2 +H1/2q1/2).

Thus, following the argument on pages 19 and 20 of [10], we see that

T2 ≪ P 1+"Q2 + P 1/2+"HQ2 + P "
∑

1⩽q⩽P

(HPQq−5/6 + P 2q−1/2)

≪ P 1+"Q2 + P 1/2+"HQ2(P 2/3Q−1 +M5P−1 + 1).

When P 4/5 ⩽ Q ⩽ P , we therefore conclude that

T2 ≪ P 1+"Q2 + P 1/2+"HQ2,

an estimate which yields the second conclusion of the lemma.

The final assertion of the lemma follows from the first when Q ⩽ P 4/5, and
from the second when P 4/5 ⩽ Q ⩽ P 5/6. □

We finish this section by swiftly disposing of the mean value T3.

Lemma 2.4. Suppose that R ⩽ Q ⩽ P 5/6. Then one has

T3 ≪ P 1+"QR.

Proof. Since R ⩽ Q ⩽ P 5/6, if we first apply Schwarz’s inequality to (2.5), and
then make use of the final estimate of Lemma 2.3, we obtain

T3 ⩽

(∫ 1

0

∣f(�)2g(�)4∣ d�
)1/2(∫ 1

0

∣f(�)2ℎ(�)4∣ d�
)1/2

≪ P "(PQ2)1/2(PR2)1/2.

The desired conclusion follows. □

3. An auxiliary minor arc estimate

An active ingredient in our argument is an auxiliary minor arc estimate
derived by analytic differencing. This section is devoted to the proof of an
estimate for a certain eighth moment of cubic exponential sums that has arisen
in a weaker form in the earlier work of Vaughan [13]. We must first introduce
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some notation. Let P be a large real number, and let Y be a real number with
P 1/8 ⩽ Y ⩽ P 1/7. Also, when X and Z are positive numbers, define

A∗(X,Z) = {n ∈ ℤ ∩ [1, X] : $ prime and $∣n⇒ $ ⩽ Z�},
and put ℬ(X,Z) = A∗(2X,Z) ∖ A∗(X,Z). Note that A(X) = A∗(X,X).
Define the exponential sums kp(�) = kp(�;Y ) and K(�) = K(�;Y ) by

kp(�;Y ) =
∑

w∈ℬ(P/p,2P/Y )

e(�w3) and K(�;Y ) =
∑

Y <p⩽2Y

kp(p
3�;Y ). (3.1)

Also, write

fp(�) =
∑

P<x⩽2P
(x,p)=1

e(�x3) and lp(�) =
∑

P/p<u⩽2P/p

e(�u3). (3.2)

We next introduce a set of major and minor arcs suitable for our analysis.
When X is a real parameter with 1 ⩽ X ⩽ P 3/2, we define

M(q, a;X) = {� ∈ [0, 1) : ∣q�− a∣ ⩽ XP−3},
and then take M(X) to be the union of the arcs M(q, a;X) with 0 ⩽ a ⩽ q ⩽ X
and (a, q) = 1. We then put m(X) = [0, 1) ∖M(X).

The key theorem of this section provides a bound for the eighth moment

T(Y ) =

∫
m(PY 3)

∣f(�)2K(�)6∣ d�. (3.3)

Theorem 3.1. Whenever P 1/8 ⩽ Y ⩽ P 1/7, one has

T(Y )≪ P 19/4Y −3/4(P/Y )"−� + P 9/2+"Y.

We remark that Vaughan [13] has analysed the mean value (3.3) in the spe-
cial case Y = P 1/8. In this restricted situation, the antepenultimate display of
§5 of [13] supplies a bound similar to that given by Theorem 3.1, though weaker
by a factor exceeding Y 1/2. The estimate supplied by our theorem matches
in strength the bounds made available, by the interwoven arrangements of
generating functions, applied in the arguments leading to the sharpest avail-
able estimates for the exceptional set in Waring’s problem for sums of four
cubes (see [4]). The latter arguments fail to capture the expected number of
solutions, since the generating functions applied do not have full density, a
deficiency that is absent from the bound summarised below in Corollary 3.2.

Proof. Our argument involves a careful consideration of the possible prime
factors implicit in the generating functions K(�) that are common to the
exponential sums f(�) lying within the mean value in question. It is convenient
throughout to write m = m(PY 3). Furthermore, within this proof, summations
over the variable p will denote sums over prime numbers p with p ≡ 2 (mod 3)
and Y < p ⩽ 2Y .

On recalling (3.2), we see that for any prime number p, one has

f(�) = fp(�) + lp(p
3�). (3.4)



WARING’S PROBLEM FOR CUBES 9

Consequently, it follows from (3.1) that

f(�)2K(�) =
∑
p

f(�)2kp(p
3�)

≪
∑
p

(∣fp(�)2kp(p
3�)∣+ ∣lp(p3�)2kp(p

3�)∣).

On substituting the latter relation into (3.3), we find that

T(Y )≪ T1 + T2, (3.5)

where

T1 =

∫
m

∣K(�)∣5
∑
p

∣fp(�)2kp(p
3�)∣ d� (3.6)

and

T2 =

∫
m

∣K(�)∣5
∑
p

∣lp(p3�)2kp(p
3�)∣ d�. (3.7)

An application of Hölder’s inequality reveals that∑
p

∣fp(�)2kp(p
3�)∣ ⩽

(∑
p

∣fp(�)2kp(p
3�)6∣

)1/6(∑
p

∣fp(�)∣2
)5/6

.

Applying Hölder’s inequality a second time, we derive from (3.6) the bound

T1 ⩽ T
1/6
3 T

5/6
4 , (3.8)

where

T3 =
∑
p

∫
m

∣fp(�)2kp(p
3�)6∣ d� (3.9)

and

T4 =

∫
m

∣K(�)∣6
∑
p

∣fp(�)∣2 d�.

We return to the consideration of T3 later in the proof, for this is the central
object of our attention. So far as T4 is concerned, we may make use again of
(3.4) to deduce that

T4 ≪ T5 + T6, (3.10)

where

T5 =
∑
p

∫
m

∣f(�)2K(�)6∣ d�

and

T6 =

∫
m

∣K(�)∣6
∑
p

∣lp(p3�)∣2 d�. (3.11)

In view of (3.3), one has T5 ≪ Y T(Y ). In addition, when Y < p ⩽ 2Y , the
discussion surrounding equation (34) of [13] supplies the estimate

sup
�∈m
∣lp(p3�)∣ ≪ (P/p)3/4+", (3.12)
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and, on considering the underlying diophantine equations, Lemma 2 of [5]
delivers the bound ∫ 1

0

∣K(�)∣6 d�≪ P 3+"Y 2. (3.13)

We therefore deduce from (3.11) that

T6 ≪ P 3/2+"Y −1/2
∫ 1

0

∣K(�)∣6 d�≪ P 9/2+"Y 3/2.

Thus, on substituting this together with our earlier estimate for T5 into (3.10),
we obtain the upper bound

T4 ≪ Y (T(Y ) + P 9/2+"Y 1/2). (3.14)

We turn our attention next to T2, first applying Cauchy’s inequality to
obtain ∑

p

∣lp(p3�)2kp(p
3�)∣ ⩽

(∑
p

∣lp(p3�)∣4
)1/2(∑

p

∣kp(p3�)∣2
)1/2

.

Substituting into (3.7) and recalling (3.12), we discover that

T2 ≪ P 3/2+"Y −1
∫ 1

0

∣K(�)∣5
(∑

p

∣kp(p3�)∣2
)1/2

d�.

An application of Hölder’s inequality therefore reveals that

T2 ≪ P 3/2+"Y −1
(∫ 1

0

∣K(�)∣6 d�
)1/2

T
1/2
7 ,

where

T7 =

∫ 1

0

∣K(�)∣4
∑
p

∣kp(p3�)∣2 d�.

On considering the underlying diophantine equations, one sees that∫ 1

0

∣K(�)∣4
∑
p

∣kp(p3�)∣2 d�≪
∫ 1

0

∣K(�)∣6 d�,

and hence it follows from (3.13) that

T2 ≪ P "(P 3/2Y −1)(P 3Y 2) = P 9/2+"Y. (3.15)

We now substitute (3.8), (3.14) and (3.15) into (3.5) to obtain the upper
bound

T(Y )≪ P 9/2+"Y + (Y 5T3)
1/6T(Y )5/6 + (Y 5T3)

1/6(P 9/2+"Y 1/2)5/6.

We therefore have

T(Y )≪ P 9/2+"Y + Y 5T3 + (Y 5T3)
1/6(P 9/2+"Y 1/2)5/6

≪ P 9/2+"Y + Y 5T3. (3.16)

Write
k∗(�) = max

Y <p⩽2Y
∣kp(�)∣. (3.17)
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Then by applying Lemma 4 of [5], we deduce from (3.9) that

T3 ≪ P 3/2+"Y −5/2
∫ 1

0

k∗(�)6 d�.

The Carleson-Hunt theorem (see Hunt [8], Theorem 1), in combination with
(2.2) above, shows that∫ 1

0

k∗(�)6 d�≪
∫ 1

0

∣∣∣ ∑
w∈A(2P/Y )

e(�w3)
∣∣∣6 d�≪ (P/Y )13/4−� ,

and thus we see that

T3 ≪ P 19/4Y −23/4(P/Y )"−� .

The proof of Theorem 3.1 is completed by substituting this estimate into (3.16).
□

It is convenient to have available a variant of Theorem 3.1 that facilitates
simplifications in associated major arc analyses. We first introduce some ad-
ditional notation. Put J = [1

2
� logP ], and define the exponential sum

K̃(�) =
J∑
j=1

K(�; 2−jY ), (3.18)

and the mean value

T̃(Y ) =

∫
m(PY 3)

∣f(�)2K̃(�)6∣ d�. (3.19)

Corollary 3.2. Whenever P 1/8+�/2 ⩽ Y ⩽ P 1/7, one has

T̃(Y )≪ P 19/4−�/2Y −3/4 + P 9/2+"Y.

Proof. An application of Hölder’s inequality leads from (3.18) to the bound∫
m(PY 3)

∣f(�)2K̃(�)6∣ d�≪ (logP )6 max
1⩽j⩽J

T(2−jY ).

The desired conclusion now follows from Theorem 3.1 with a modicum of
computation. □

4. The application of the circle method

Having equipped ourselves with the tools required in our application of the
Hardy-Littlewood method, our goal in this section is to engineer the framework
required for the application of Bessel’s inequality to the problem of estimating
the exceptional set at hand. Let N be a large positive number, and write

P = (N/4)1/3, Q = P 5/6, Y = P 11/79 and L = (logP )1/10.

We consider a parameter � with 0 ⩽ � ⩽ 1
3
, write � = 3�, and fix R = P �. In

addition, we put J = [1
2
� logP ], as in the previous section. Define �(n) = ��(n)

to be the number of integral representations of n in the form

n = x3 + (pw)3 + y3 + z3,
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with

P < x ⩽ 2P, Q < y ⩽ 2Q, z ∈ A(R),

2−jY < p ⩽ 21−jY and w ∈ ℬ(P/p, 21+jP/Y ) (1 ⩽ j ⩽ J).

Our goal is to establish that, when 362
869
⩽ � ⩽ 14

33
− �

6
, then for almost all values

of n with N < n ⩽ 2N , one has ��(n) ≫ n�−1/18. Since r�(n) ⩾ ��(n), the
conclusion of Theorem 1.1 follows by summing over dyadic intervals.

Next, given a measurable set B ⊆ [0, 1), we define

�(n;B) =

∫
B

f(�)K̃(�)g(�)ℎ(�)e(−n�) d�. (4.1)

By orthogonality, one then has ��(n) = �(n; [0, 1)). We estimate the latter
quantity by means of the circle method. Our argument involves two prun-
ing steps, and we therefore introduce various classes of arcs to facilitate the
analysis. First, when a ∈ ℤ, q ∈ ℕ and (a, q) = 1, we put

P(q, a) = {� ∈ [0, 1) : ∣�− a/q∣ ⩽ LN−1}.

We then define P to be the union of the arcs P(q, a) with 0 ⩽ a ⩽ q ⩽ L and
(a, q) = 1, and write p = [0, 1) ∖ P. Next, in the notation introduced in the
previous section prior to the statement of Theorem 3.1, when 1 ⩽ X ⩽ P 3/2,
we define K(X) = M(2X) ∖M(X). In addition, we write

m = m(PY 3), V = M(PY 3) ∖M(P 6/5) and U = M(P 6/5) ∖P.

Finally, it is convenient for future reference to introduce the generating
functions

S(q, a) =

q∑
r=1

e(ar3/q) and v(�) =

∫ 2P

P

e(�3) d. (4.2)

Lemma 4.1. One has �(n;P)≫ n�−1/18 for all integers n satisfying N < n ⩽
2N , with at most O(NL−1/16) possible exceptions.

Proof. By Theorem 4.1 of [14], when a ∈ ℤ, q ∈ ℕ and � ∈ ℝ, one has

f(� + a/q)− q−1S(q, a)v(�)≪ q1/2+"(1 + P 3∣�∣)1/2. (4.3)

Hence, when � ∈ P(q, a) ⊆ P, one sees that

f(�)− q−1S(q, a)v(�− a/q)≪ L1+".

Also, on examining the Taylor expansion of e(�3), one finds in like manner
that when � ∈ P(q, a) ⊆ P, then

g(�)− q−1S(q, a)g(0)≪ LQ4P−3 ≪ Q1/2.

Similarly, it follows from Lemma 8.5 of [15] that for � ∈ P(q, a) ⊆ P, one has

ℎ(�)− q−1S(q, a)ℎ(0)≪ RL−5,
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and that when 1 ⩽ j ⩽ J and 2−jY < p ⩽ 21−jY , there exists a positive
number c, depending only on �, such that

kp(p
3�; 2−jY )− cq−1S(q, ap3)

∫ 2P/p

P/p

e(p33(�− a/q)) d ≪ Pp−1L−5.

We note that when 2−JY < p ⩽ Y and q ⩽ L, one has p ∤ q, and so one
may apply a change of variables to show that S(q, ap3) = S(q, a). Following
another change of variables, one sees that

K̃(�)−
∑

2−JY <p⩽Y

c(pq)−1S(q, a)v(�− a/q)≪ PL−5.

The prime number theorem in arithmetic progressions implies that∑
2−JY <p⩽Y

p−1 =
1

2
log

(
log Y

log(2−JY )

)
+O

(
1

log Y

)
,

and thus we deduce that

K̃(�)− Cq−1S(q, a)v(�− a/q)≪ PL−5,

where

C =
c

2
log

(
22

22− (79 log 2)�

)
> 0.

Next, write

T (q, a) = q−4S(q, a)4 and u(�) = Cv(�)2g(0)ℎ(0). (4.4)

Then, from the above approximations, one discerns that for � ∈ P(q, a) ⊆ P,
one has

f(�)K̃(�)g(�)ℎ(�)− T (q, a)u(�− a/q)≪ P 2QRL−5.

Since the measure of P is O(L3N−1), from (4.1) we reach the formula

�(n;P) = S(n;L)J (n;L) +O(P 2QRN−1L−2), (4.5)

where
S(n;L) =

∑
1⩽q⩽L

A(q, n), (4.6)

in which we have written

A(q, n) =

q∑
a=1

(a,q)=1

T (q, a)e(−na/q),

and

J (n;L) =

∫ L/N

−L/N
u(�)e(−�n) d�.

The expression S(n;L) is a partial sum of the familiar singular series

S(n) =
∞∑
q=1

A(q, n) (4.7)
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associated with sums of four cubes. The standard theory of singular series
establishes that the series S(n) converges absolutely, and satisfies 1≪ S(n)≪
(log log n)4 (see Theorem 4.3 of [14] and equation (1.3) of [9]). Moreover,
on recalling the notation introduced prior to equation (2.13), we find from
Lemmata 2.11 and 4.7 of [14] that A(q, n) ≪ q1/2+"�(q)4(q, n). We therefore
deduce that∑

N<n⩽2N

∣S(n)−S(n;L)∣ ⩽
∑

N<n⩽2N

∞∑
q=1

(q/L)1/8∣A(q, n)∣

≪ L−1/8
∞∑
q=1

q2/3�(q)4
∑
d∣q

∑
N<n⩽2N
(q,n)=d

(q, n)

≪ NL−1/8
∞∑
q=1

q2/3�(q)4d(q),

where d(q) denotes the number of distinct divisors of q. The final sum over q
converges, since

∞∑
q=1

q2/3�(q)4d(q) =
∏

$ prime

(1 + 2$−4/3 +O($−2))≪ 1,

and hence the inequality ∣S(n) − S(n;L)∣ > L−1/16 can hold for at most
O(NL−1/16) integers n with N < n ⩽ 2N . In particular, one may conclude
that ∣S(n;L)∣ ≫ 1 for all integers n satisfying N < n ⩽ 2N , with at most
O(NL−1/16) possible exceptions.

Integration by parts, meanwhile, confirms the estimate

v(�)≪ P (1 + P 3∣�∣)−1, (4.8)

and hence one has
u(�)≪ P 2QR(1 + P 3∣�∣)−2. (4.9)

It follows that

J (n;L)−
∫ ∞
−∞

u(�)e(−�n) d� ≪ P 2QRN−1L−1.

The last integral here converges absolutely, in view of (4.9). It may therefore be
evaluated by following a standard treatment, such as that described on pages
21 and 22 of [7]. The result is that when N < n ⩽ 2N , the integral is bounded
below by c0P

2QRN−1, where c0 is a certain positive absolute constant. For
the same values of n, it follows that

J (n;L)≫ P 2QRN−1.

On collecting these lower bounds within (4.5), we conclude that one has

�(n;P)≫ P 2QRN−1 ≫ n�−1/18

for all integers n satisfying N < n ⩽ 2N , with at most O(NL−1/16) possible
exceptions. This completes the proof of the lemma. □
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In §5 below, we show that when 362
869
⩽ � ⩽ 14

33
− �

6
, then∑

N<n⩽2N

∣�(n; p)∣2 ≪ N2�+8/9L−1/8, (4.10)

so that ∣�(n; p)∣ ≪ n�−1/18(log n)−1/200 for almost all natural numbers n with
N < n ⩽ 2N . Granted this conclusion, it follows from Lemma 4.1 that for
almost all such n, one has

��(n) = �(n;P) + �(n; p)≫ n�−1/18.

The conclusion of Theorem 1.1 follows on recalling that r�(n) ⩾ ��(n), and
then summing over dyadic intervals.

5. The minor arc contribution

We derive (4.10) by applying Bessel’s inequality, though several pruning
operations are required.

Lemma 5.1. Provided that 362
869
⩽ � ⩽ 14

33
− �

6
, one has∑

N<n⩽2N

∣�(n;m)∣2 ≪ N2�+8/9L−10.

Proof. By Bessel’s inequality, it follows from (4.1) that∑
N<n⩽2N

∣�(n;m)∣2 ⩽
∫
m

∣f(�)K̃(�)g(�)ℎ(�)∣2 d�.

An application of Hölder’s inequality therefore yields the upper bound∑
N<n⩽2N

∣�(n;m)∣2 ⩽ T
1/3
1 T

1/3
2 T̃(Y )1/3,

where T1, T2 and T̃(Y ) are respectively given by (2.3), (2.4) and (3.19). Hence,
by appealing to Lemmata 2.2 and 2.3, and Corollary 3.2, we arrive at the
estimate∑

N<n⩽2N

∣�(n;m)∣2 ≪ P "(PQR13/4−� )1/3(PQ2)1/3(P 19/4−�/2Y −3/4)1/3

≪ P 9/4−�/6+"QR13/12−�/3Y −1/4.

A modest computation now reveals that the conclusion of the lemma holds
provided that

P 37/12R13/12Y −1/4 ⩽ P 8/3R2,

as is guaranteed whenever R ⩾ P 5/11Y −3/11. Consequently, whenever � ⩾
5
11
− 3

79
= 362

869
, the conclusion of the lemma follows. □

We now come to the first pruning step.

Lemma 5.2. Provided that 362
869
⩽ � ⩽ 14

33
− �

6
, one has∑

N<n⩽2N

∣�(n;V)∣2 ≪ N2�+8/9L−10.
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Proof. We begin by estimating the contribution arising from the set K(X). By
Bessel’s inequality, it follows from (4.1) that when 1 ⩽ X ⩽ PY 3, one has∑

N<n⩽2N

∣�(n;K(X))∣2 ⩽ ℐ0, (5.1)

where

ℐ0 =

∫
K(X)

∣f(�)K̃(�)g(�)ℎ(�)∣2 d�. (5.2)

When X ⩾ P 6/5, it is a consequence of (4.3), together with (4.8) and Theorem
4.2 of [14], that

sup
�∈K(X)

∣f(�)∣ ≪ PX−1/3 +X1/2+" ≪ X1/2+".

Under the same hypotheses on X, therefore, an application of Hölder’s in-
equality leads from (5.2) to the estimate

ℐ0 ≪ X1/6+"

∫
K(X)

∣f(�)∣5/3∣K̃(�)g(�)ℎ(�)∣2 d�

⩽ T
1/3
1 T

1/6
2 (X1/2+"ℐ1)1/3

(∫ 1

0

∣K̃(�)2g(�)4∣ d�
)1/6

, (5.3)

where T1 and T2 are given by (2.3) and (2.4), and

ℐ1 =

∫
K(X)

∣f(�)2K̃(�)5∣ d�. (5.4)

But on considering the diophantine equation underlying (2.4), and noting (2.1),
(3.1) and (3.18), we find that

T2 ⩾
∫ 1

0

∣K̃(�)2g(�)4∣ d�,

and so (5.3) becomes

ℐ0 ≪ T
1/3
1 T

1/3
2 (X1/2+"ℐ1)1/3. (5.5)

The expression ℐ1 has been examined already in the course of the proof
of Theorem 3 of [5], although in that treatment the focus is on the situation
wherein X = PY 3. A careful examination of that argument reveals that
whenever P 6/5 ⩽ X ⩽ PY 3, one has the estimate∫

K(X)

∣f(�)2K(�)5∣ d�≪ P 4+�Y −1−�(PY 3/X)1/2, (5.6)

in which we have written � = 3
34
− �

4
. The validity of this claim requires

a few words of justification. First, the estimates on pages 28 and 29 of [5]
remain valid provided only that X > 8Y 3(P/Y )3/4, as is guaranteed whenever
X ⩾ P 6/5 and Y ⩽ P 1/7 (see the discussion prior to equation (5.10) of [5]).
Thus the estimate (5.6) above follows from a satisfactory modification of the
proof of Lemma 4 of [5], and in this proof the set n now becomes the set of
� ∈ [0, 1) with the property that whenever q is a natural number with ∥q�∥ ⩽
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XY −3Q−3, then one has q > XY −3. In this lemma we put S(�) = k∗(�)5,
with k∗(�) defined as in (3.17). Now, in the notation of [5], one finds on the
top of page 27 that the estimate

sup
�∈n

( ∑
1⩽ℎ⩽H

∣F (�ℎ, ;ℎ)∣2
)
≪ HP 1+"(PY 3/X)

holds uniformly in . Likewise, provided that X ⩾ Y 6, one finds that

sup
�∈n

( ∑
1⩽ℎ⩽H

∣Gℎ(�ℎ
3,±ℎ)∣2

)
≪ P "HY.

Thus, on checking the argument on pages 155 and 156 of [11], one concludes
from the argument of the proof of Lemma 4 together with §5 of [5] that∫

K(X)

∣f(�)2K(�)5∣ d�≪ P 3/2+"Y 3/2(PY 3/X)1/2
∫ 1

0

k∗(�)5 d�.

An application of the Carleson-Hunt theorem [8] in combination with Theorem
1.2 of [17] reveals that∫ 1

0

k∗(�)5 d�≪
∫ 1

0

∣∣∣ ∑
w∈A(2P/Y )

e(�w3)
∣∣∣5 d�≪ (P/Y )44/17−2�/7,

and the conclusion (5.6) follows at once.

An application of Hölder’s inequality establishes that

∣K̃(�)∣5 ≪ (logP )5 max
1⩽j⩽J

∣K(�; 2−jY )∣5,

and so we deduce from (5.4) and (5.6) that

ℐ1 ≪ (logP )5 max
1⩽j⩽J

∫
K(X)

∣f(�)2K(�; 2−jY )5∣ d�

≪ P 4+�+"Y −1−�(PY 3/X)1/2. (5.7)

Substituting (5.7) into (5.5) along with the conclusions of Lemmata 2.2 and
2.3, we find that

ℐ0 ≪ P "(PQR13/4−� )1/3(PQ2)1/3(P 9/2+�Y 1/2−�)1/3.

Therefore, provided that P 6/5 ⩽ X ⩽ PY 3, we deduce that

ℐ0 ≪ P 13/6+�/3+"QR13/12−�/3Y 1/6−�/3 ≪ P 3+�/3R13/12−�/4Y 1/6−�/3.

Since Y = P 11/79, we obtain ℐ0 ≪ PQ2R2−�/4Δ, where

Δ = P 37/102R−11/12Y 7/51 = (P 362/869R−1)11/12.

Thus, whenever R ⩾ P � and P 6/5 ⩽ X ⩽ PY 3, one finds from (5.1) that∑
N<n⩽2N

∣�(n;K(X))∣2 ≪ N2�+8/9R−�/4.

The conclusion of the lemma now follows by summing over dyadic intervals
covering the range P 6/5 ⩽ X ⩽ PY 3 for the parameter X, and then recalling
the definition of �. □
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Lemma 5.3. Provided that 362
869
⩽ � ⩽ 14

33
− �

6
, one has∑

N<n⩽2N

∣�(n;U)∣2 ≪ N2�+8/9L−1/8.

Proof. By Bessel’s inequality, it follows from (4.1) that∑
N<n⩽2N

∣�(n;U)∣2 ⩽ J0, (5.8)

where

J0 =

∫
U

∣f(�)K̃(�)g(�)ℎ(�)∣2 d�.

We define the function f ∗(�) for � ∈ [0, 1) by putting

f ∗(�) = q−1S(q, a)v(�− a/q), (5.9)

when � ∈ M(q, a;P 6/5) ⊆ M(P 6/5), and otherwise by taking f ∗(�) = 0.
Referring once again to (4.3), and noting that U ⊆ M(P 6/5), we find that
when � ∈ U, one has

f(�)− f ∗(�)≪ P 3/5+",

whence
J0 ≪ P 6/5+"J1 + J2,

where

J1 =

∫ 1

0

∣K̃(�)g(�)ℎ(�)∣2 d�

and

J2 =

∫
U

∣f ∗(�)K̃(�)g(�)ℎ(�)∣2 d�. (5.10)

But on considering the underlying diophantine equations, it follows from (2.5)
that J1 ⩽ T3, and hence Lemma 2.4 implies that

J0 ≪ P 11/5+"QR + J2. (5.11)

Write

v0(�) =

∫ 2Q

Q

e(�3) d,

and define the function g∗(�) for � ∈ [0, 1) by taking

g∗(�) = q−1S(q, a)v0(�− a/q),
when � ∈M(q, a;P 6/5) ⊆M(P 6/5), and otherwise by setting g∗(�) = 0. Then
it follows from Theorem 4.1 of [14] that when � ∈M(P 6/5), one has

g(�)− g∗(�)≪ P 3/5+".

On making use of this estimate within (5.10), we see that

J2 ≪ P 6/5+"J3 + J4, (5.12)

where

J3 =

∫
U

∣f ∗(�)K̃(�)ℎ(�)∣2 d� (5.13)
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and

J4 =

∫
U

∣f ∗(�)g∗(�)K̃(�)ℎ(�)∣2 d�. (5.14)

Next define Ω(�) for � ∈ [0, 1) by taking

Ω(�) = (q + P 3∣q�− a∣)−1,

when � ∈M(q, a;P 6/5) ⊆M(P 6/5), and otherwise by putting Ω(�) = 0. Then
an inspection of (5.9) leads from (4.8) and Theorem 4.2 of [14] to the bound

f ∗(�)≪ PΩ(�)1/3 ≪ P 6/5Ω(�)1/2.

On substituting this estimate into (5.13) and applying Lemma 2 of [2], we
deduce that

J3 ≪ P 12/5+"

∫
M(P 6/5)

Ω(�)∣K̃(�)ℎ(�)∣2 d�

≪ P "−3/5
(
P 6/5

∫ 1

0

∣K̃(�)ℎ(�)∣2 d� + P 2R2

)
.

A diminishing ranges argument akin to that establishing Lemma 2.1 therefore
shows that whenever P 1/5 ⩽ R ⩽ P 2/3, one has

J3 ≪ P "−3/5(P 11/5R + P 2R2)≪ P 7/5+"R2. (5.15)

Following the argument that led to the relation (2.14), one finds that when
� ∈M(q, a;P 6/5) ⊆M(P 6/5), one has

g∗(�)≪ Qq"�(q) and f ∗(�)≪ Pq1+"�(q)Ω(�).

Consequently, under the same conditions on �, one has

f ∗(�)g∗(�)≪ PQq1+"�(q)2Ω(�)≪ PQΩ(�)1/2.

In particular, whenever � ∈ U one has f ∗(�)g∗(�)≪ PQL−1/2. An application
of Hölder’s inequality therefore leads from (5.14) to the estimate

J4 ≪ ℎ(0)2(PQL−1/2)1/4J 1/4
5 J

3/4
6 , (5.16)

where

J5 =

∫ 1

0

∣K̃(�)∣8 d� and J6 =

∫
U

∣f ∗(�)g∗(�)∣7/3 d�.

From Theorem 2 of [11], one finds that J5 ≪ P 5. Meanwhile, a direct compu-
tation reveals that

J6 ≪ (PQ)7/3

(
∞∑
q=1

q1+"�(q)14/3

)∫ ∞
−∞

(1 + P 3∣�∣)−7/3 d�

≪ (PQ)7/3P−3.

Thus, it follows from (5.16) that

J4 ≪ R2(PQL−1/2)1/4(P 5)1/4((PQ)7/3P−3)3/4 ≪ PQ2R2L−1/8. (5.17)
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On combining (5.17) with (5.12) and (5.15), and then resubstituting into
(5.11), we see that

J0 ≪ P 11/5+"QR + P 13/5+"R2 + PQ2R2L−1/8 ≪ PQ2R2L−1/8,

and the conclusion of the lemma now follows from (5.8). □

The estimate (4.10) is obtained by combining the conclusions of Lemmata
5.1, 5.2 and 5.3. We have p ⊆ m ∪ U ∪V, and so∑

N<n⩽2N

∣�(n; p)∣2 ≪
∑

N<n⩽2N

(
∣�(n;m)∣2 + ∣�(n;U)∣2 + ∣�(n;V)∣2

)
≪ N2�+8/9(L−10 + L−1/8).

In view of the concluding remarks of §4, the proof of Theorem 1.1 is now
complete.

6. The asymptotic formula for sums of four cubes

Our objective in this section is the proof of Theorem 1.2. Experts will find
the argument straightforward, though there are some technical irritations. We
begin by adjusting some of our earlier notation in order to fit the circumstances
at hand. Let N be a large positive number, and write P = (N/4)1/3 and
L = (logP )100. We consider a parameter � with 0 ⩽ � < 1/3, and take R to
be a number with N � ⩽ R ⩽ (2N)�. Define �(n) = ��(n) to be the number of
integral representations of n in the form

n = x31 + x32 + x33 + y3, (6.1)

with xi ∈ ℕ (i = 1, 2, 3) and 1 ⩽ y ⩽ R. Notice that when N < n ⩽ 2N , then
given any representation of n in the shape (6.1), one has

1 ⩽ xi ⩽ (2N)1/3 (i = 1, 2, 3) and max
1⩽i⩽3

xi > (N/4)1/3.

Thus
1 ⩽ xi ⩽ 2P (i = 1, 2, 3) and max

1⩽i⩽3
xi > P.

We define

F (�) =
∑

1⩽x⩽2P

e(�x3), F0(�) =
∑

1⩽y⩽P

e(�y3),

and
G(�) =

∑
1⩽z⩽R

e(�z3).

Then, given a measurable set B ⊆ [0, 1), we define

�(n;B) =

∫
B

(F (�)3 − F0(�)3)G(�)e(−n�) d�. (6.2)

Notice that by orthogonality, one has ��(n) = �(n; [0, 1)) whenever N < n ⩽
2N . Next we define the set of arcs P as in §4, and take N = M(P 3/4) and
n = [0, 1) ∖ N. Finally, we recall the familiar singular series S(n) associated
with sums of four cubes defined above in equation (4.7).
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Lemma 6.1. One has

�(n;P) = Γ(4
3
)3S(n)R +O(RL−1/16)

for all integers n satisfying N < n ⩽ 2N , with at most O(NL−1/16) possible
exceptions.

Proof. Write

w0(�) =

∫ P

0

e(�3) d, w1(�) =

∫ 2P

0

e(�3) d, w2(�) =

∫ R

0

e(�3) d.

Also, define the functions F ∗(�), F ∗0 (�) and G∗(�) for � ∈ [0, 1) by putting

F ∗(�) = q−1S(q, a)w1(�), F ∗0 (�) = q−1S(q, a)w0(�)

and

G∗(�) = q−1S(q, a)w2(�),

when � ∈ P(q, a) ⊆ P, and otherwise set each function to be zero. Then as a
consequence of Theorem 4.1 of [14], when � ∈ P one has

F (�)− F ∗(�)≪ L1/2+", F0(�)− F ∗0 (�)≪ L1/2+",

and

G(�)−G∗(�)≪ L1/2+".

Now define T (q, a) as in (4.4), and put

W (�) = (w1(�)3 − w0(�)3)w2(�).

Then we see that for � ∈ P(q, a) ⊆ P, one has

(F (�)3 − F0(�)3)G(�)− T (q, a)W (�− a/q)≪ P 3L1/2+".

Since the measure of P is O(L3N−1), we deduce from (6.2) that

�(n;P)−S(n;L)J0(n;L)≪ L7/2+", (6.3)

where S(n;L) is defined as in (4.6), and

J0(n;L) =

∫ L/N

−L/N
W (�)e(−�n) d�.

The series S(n;L) has already been considered during the course of the proof
of Lemma 4.1. In particular, it follows that for all integers n with N < n ⩽ 2N ,
one has

∣S(n;L)−S(n)∣ ⩽ L−1/16,

with at most O(NL−1/16) possible exceptions. In addition, for all natural
numbers n, one has 1≪ S(n)≪ (log log n)4. Note that the former conclusion
is robust to the adjustment in our definition of L. Next, recall the definition
(4.2). Then we see that

W (�) = ((v(�) + w0(�))3 − w0(�)3)w2(�)

= (v(�)3 + 3v(�)2w0(�) + 3v(�)w0(�)2)w2(�).
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Then by (4.8) and the bound w0(�) ≪ P (1 + P 3∣�∣)−1/3 that follows from
Theorem 7.3 of [14], we see that

W (�)≪ P 3R(1 + P 3∣�∣)−5/3.

Consequently, one has

J0(n;L)−
∫ ∞
−∞

W (�)e(−�n) d� ≪ P 3RN−1L−2/3.

The last integral may be evaluated in a standard manner (see pages 21 and 22
of [7]). Thus we see that when N < n ⩽ 2N , one has

J0(n;L) = Γ(4
3
)3R +O(RL−2/3)

(compare the discussion of §4 of [18]). On substituting these estimates into
(6.3), we find that

�(n;P) = Γ(4
3
)3S(n)R +O(RL−1/16),

for all integers n satisfying N < n ⩽ 2N , with at most O(NL−1/16) possible
exceptions. The conclusion of the lemma follows. □

Lemma 6.2. Provided that 1
4
< � < 1

3
, one has∑

N<n⩽2N

∣�(n; p)∣2 ≪ NR2L"−1/3.

Proof. An application of Bessel’s inequality leads from (6.2) to the upper bound∑
N<n⩽2N

∣�(n; p)∣2 ≪
∑

N<n⩽2N

∣�(n; n)∣2 +
∑

N<n⩽2N

∣�(n;N ∖P)∣2

⩽ Ξ(n) + Ξ(N ∖P), (6.4)

where for a measurable set B, we write

Ξ(B) =

∫
B

∣(F (�)3 − F0(�)3)G(�)∣2 d�.

It follows from (2.1) that∫
n

∣(F (�)3 − F0(�)3)G(�)∣2 d�≪
∫
n

∣f(�)G(�)∣2(∣F (�)∣4 + ∣F0(�)∣4) d�,

and so an application of Hölder’s inequality reveals that

Ξ(n)≪
(

sup
�∈n
∣f(�)∣

)
(K1 +K2)

1/2K1/2
3 ,

where

K1 =

∫ 1

0

∣F (�)∣8 d�, K2 =

∫ 1

0

∣F0(�)∣8 d�

and

K3 =

∫ 1

0

∣f(�)2G(�)4∣ d�.
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But a modified version of Weyl’s inequality (see, for example, Lemma 1 of [11])
confirms that

sup
�∈n
∣f(�)∣ ≪ P 3/4+".

Thus, on recalling Lemma 2.3 and applying Hua’s lemma (see, for example,
Lemma 2.5 of [14]), one finds that

Ξ(n)≪ P 3/4+"(P 5)1/2(PR2 + P−1R9/2)1/2

≪ P 3+"R2(P 3/4R−1 + (R/P )1/4). (6.5)

It remains to estimate the contribution arising from the set of arcs N ∖P.
Here one may appeal to standard major arc technology (see Lemma 5.1 of [12])
to show that

Ξ(N ∖P)≪
∑

1⩽z1,z2⩽R

∫
N∖P
∣F (�)∣6e(�(z31 − z32)) d�

+
∑

1⩽z1,z2⩽R

∫
N∖P
∣F0(�)∣6e(�(z31 − z32)) d�

≪P 3R2L"−1/3. (6.6)

On substituting (6.5) and (6.6) into (6.4), we therefore deduce that∑
N<n⩽2N

∣�(n; p)∣2 ≪ P 3R2L"−1/3 + P 3+"R2(P 3/4R−1 + (R/P )1/4).

Consequently, when 1
4
< � < 1

3
, the conclusion of the lemma follows on recalling

that R = P 3�. □

We finish this section with the proof of Theorem 1.2. Observe first that
when � = 1

3
, the desired conclusion is an immediate consequence of Theorem

3 of Vaughan [11], provided that one makes use of the refinement to be found
in the main theorem of Boklan [1]. We assume henceforth, therefore, that
1
4
< � < 1

3
. When N � ⩽ R ⩽ (2N)� with � in the latter range, it follows from

Lemma 6.2 that ∑
N<n⩽N+N/(logN)2

∣�(n; p)∣2 ≪ P 3R2(logN)−6.

It follows, in particular, that ∣�(n; p)∣ ≪ R(logN)−1 for all integers n with N <
n ⩽ N+N(logN)−2, with at most O(N(logN)−4) exceptions. In combination
with the conclusion of Lemma 6.1, this shows that

��(n) = �(n; [0, 1)) = Γ(4
3
)3S(n)R +O(R(logN)−1)

for all n with N < n ⩽ N + N(logN)−2, with at most O(N(logN)−4) excep-
tions. Given an interval of the latter type for n, one has

n� = N � +O(N �(logN)−2).

There is therefore a positive constant A with the property that

N � < n� ⩽ N � + AN �(logN)−2.
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Taking R to be first N �, and then N � + AN �(logN)−2, we see that

r�(n) = Γ(4
3
)3S(n)N � +O(N �(logN)−1),

whence

r�(n) = Γ(4
3
)3S(n)n� +O(n�(log n)−1),

for all n with N < n ⩽ N + N(logN)−2, with at most O(N(logN)−4)
exceptions. On summing over the O((logN)3) intervals of this type that
cover [1, 2N ], we find that the total number of exceptions encountered is
O(N(logN)−1), whence the conclusion of Theorem 1.2 follows also when 1

4
<

� < 1
3
.

7. Sums of six cubes and a minicube

Thus far, our conclusions have been of almost-all type. We now briefly
discuss the proof of the following theorem.

Theorem 7.1. All large natural numbers n are the sum of seven cubes of
positive integers, one of which is no larger than n43/168.

We require a simple lemma.

Lemma 7.2. Let N�(X) denote the number of integers n with 1 ⩽ n ⩽ X
that are the sum of three cubes of natural numbers, one of which is at most n�.
Then whenever 0 ⩽ � ⩽ 5

18
, one has

N�(X)≫ X5/8+�+�/9.

Proof. Write P = (X/20)1/3 and R = (X/20)�. Also, let �(n) denote the
number of solutions of the equation

n = x31 + x32 + y3,

with xi ∈ ℬ(P, P ) and 1 ⩽ y ⩽ R. Then by Cauchy’s inequality, one has

N�(X) ⩾
∑

X/10⩽n⩽X
�(n)⩾1

1 ⩾
( ∑
X/10⩽n⩽X

�(n)
)2( ∑

1⩽n⩽X

�(n)2
)−1

. (7.1)

Observe that ∑
X/10⩽n⩽X

�(n)≫ P 2R. (7.2)

Also, in view of the underlying diophantine equation, one has∑
1⩽n⩽X

�(n)2 ⩽
∫ 1

0

∣ℱ(�)4G(�)2∣ d�,

where we have written

ℱ(�) =
∑

x∈ℬ(P,P )

e(�x3).
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By Schwarz’s inequality, we obtain∫ 1

0

∣ℱ(�)4G(�)2∣ d� ⩽
(∫ 1

0

∣ℱ(�)∣6 d�
)1/2(∫ 1

0

∣ℱ(�)2G(�)4∣ d�
)1/2

.

The first integral may be estimated via (2.2), and the second by means of
Lemma 2.3. Thus we deduce that when � ⩽ 5

18
, one has∑

1⩽n⩽X

�(n)2 ≪ (P 13/4−� )1/2(P 1+"R2)1/2. (7.3)

Finally, on substituting (7.2) and (7.3) into (7.1), we conclude that

N�(X)≫ (P 2R)2(P 17/8−�/3R)−1 ≫ P 15/8+�/3R,

thereby completing the proof of the lemma. □

Next, let X be a sufficiently large positive number, and consider an integer
n with X ⩽ n ⩽ 2X. By Lemma 7.2, at least X5/8+�+�/9 of the integers
m with 1 ⩽ m ⩽ X are the sum of three cubes of natural numbers, one of
which is at most m� ⩽ n�. But all the integers n −m, with 1 ⩽ m ⩽ X, are
the sum of four cubes of natural numbers, with at most O(X37/42) exceptions
(see Theorem 1.3 of [17]). Thus, provided that X5/8+�+�/9 > X37/42, then for
at least one value of m with 1 ⩽ m ⩽ X, one finds that m is the sum of
three cubes of natural numbers, one at most n�, and n−m is the sum of four
positive integral cubes, whence n is the sum of six positive integral cubes and
a minicube at most n�. The conclusion of Theorem 7.1 follows on observing
that the above condition is satisfied whenever � ⩾ 43

168
.
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