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Abstract. We investigate the number of integral solutions possessed by a pair of diag-
onal cubic equations in a large box. Provided that the number of variables in the system
is at least fourteen, and in addition the number of variables in any non-trivial linear com-
bination of the underlying forms is at least eight, we obtain an asymptotic formula for
the number of integral solutions consistent with the product of local densities associated
with the system.

1. Introduction

The work of Davenport and Lewis [11] concerning pairs of diagonal cubic equations
inaugurated the investigation of systems of additive equations in the large. Let ai, bi
(1 ⩽ i ⩽ s) be integers, and consider the pair of diophantine equations

a1x
3
1 + ⋅ ⋅ ⋅+ asx

3
s = b1x

3
1 + ⋅ ⋅ ⋅+ bsx

3
s = 0. (1.1)

Then Davenport and Lewis [11] established that the system (1.1) possesses a solution
x ∈ ℤs ∖ {0} provided only that s ⩾ 18. The latter condition has subsequently been
improved by Cook [9] to s ⩾ 17, and by Vaughan [15] to s ⩾ 16. Subject to a 7-adic
solubility hypothesis, this condition was improved further by Baker and Brüdern [1] to
s ⩾ 15, by the first author [3] to s ⩾ 14, and most recently by the present authors [8]
to s ⩾ 13. Further progress would entail both negotiating arbitrarily many potential
p-adic obstacles to solubility, as well as performing the miracle of extracting better than
square-root cancellation on the minor arcs in an application of the circle method for cubic
equations.

Amongst these opera on the topic, only Cook [9] supplies (for systems satisfying ap-
propriate rank conditions) the expected asymptotic formula for the number N(P ) =
N(P ; a,b) of integral solutions of the system (1.1) with x ∈ [−P, P ]s. To be precise,
when s ⩾ 17 and no coefficient ratio ai/bi is repeated more than s−9 times for 1 ⩽ i ⩽ s,
Cook shows that

N(P ; a,b) = ℭ(a,b)P s−6 + o(P s−6), (1.2)

where ℭ(a,b) denotes the product of local densities. We note that one may write ℭ(a,b)
in the form v∞

∏
p vp, in which v∞ is the area of the manifold defined by (1.1) in the box

[−1, 1]s, and

vp = lim
ℎ→∞

pℎ(2−s)M(pℎ), (1.3)
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where M(q) denotes the number of solutions of the system of congruences

a1x
3
1 + ⋅ ⋅ ⋅+ asx

3
s ≡ b1x

3
1 + ⋅ ⋅ ⋅+ bsx

3
s ≡ 0 (mod q),

with 1 ⩽ xi ⩽ q (1 ⩽ i ⩽ s). Here we note that by making use of the celebrated work
of Vaughan [16] concerning sums of eight cubes, it is possible to derive the anticipated
asymptotic formula whenever s ⩾ 16, provided that no coefficient ratio is repeated more
than s − 8 times. In the present paper we establish this asymptotic formula whenever
s ⩾ 14, provided only that the system (1.1) satisfies appropriate rank conditions.

Before announcing our conclusions we introduce an invariant q0 associated with the
system (1.1) by defining

q0 = min
(c,d)∈ℤ2∖{0}

card{1 ⩽ j ⩽ s : caj + dbj ∕= 0}.

Theorem 1.1. Suppose that s ⩾ 14. Then for any choice of coefficients (aj, bj) ∈ ℤ2∖{0}
(1 ⩽ j ⩽ s) for which q0 ⩾ 8, the asymptotic formula (1.2) holds for the simultaneous
equations (1.1).

The conclusion of Theorem 1.1 may be compared with the special case k = 3 of Theorem
1.1 of Brüdern and Wooley [6], wherein a similar result is obtained with s ⩾ 15 in place
of the above condition s ⩾ 14. When s ⩾ 13, meanwhile, the principal conclusions of
[7] and [8] supply the lower bound N(P ; a,b) ≫ ℭ(a,b)P s−6, of the anticipated order
of magnitude, whenever q0 ⩾ 7. As already noted above, the earlier work of Cook, as
modified by Vaughan’s methods, is subject to the more onerous constraint s ⩾ 16. We
remark also that by considering equations containing disjoint sets of variables, one finds
that the hypotheses of the theorem concerning the invariant q0 of the system cannot be
weakened without first establishing the validity of the anticipated asymptotic formula
for a single diagonal cubic equation in fewer than 8 variables. Finally, we should point
out that work of Cook [10] shows for s ⩾ 13 that the system (1.1) possesses non-trivial
p-adic solutions whenever p ∕= 7, and that earlier work of Davenport and Lewis [11]
establishes such for every prime p provided that s ⩾ 16. In the circumstances dictated
by the hypotheses of Theorem 1.1, it follows that the product of local densities ℭ(a,b) is
bounded away from zero subject only to the 7-adic solubility of the system (1.1).

Our proof of Theorem 1.1 makes use of a mean value estimate for a fourteenth moment
of Weyl sums. Subject to rank conditions on the underlying coefficient matrix, recent work
of the authors [4], [6] establishes such an estimate that would miss a variant of Theorem
1.1 by only " in the exponent, with " > 0 arbitrarily small. By carefully modifying
the argument applied in our recent work on paucity problems [5], we are able to make
additional savings large enough to obtain an estimate of sufficient strength to establish
Theorem 1.1. This strategy involves bounding in mean square certain Fourier coefficients
restricted to a thin set. We discuss such matters in §2 below. With this mean value
estimate in hand, and some routine preparation in §3, the proof of Theorem 1.1 is a fairly
routine application of the Hardy-Littlewood method that we bring to completion in §4.

Throughout, the letter " will denote a sufficiently small positive number, and P will
be a large real number. We use ≪ and ≫ to denote Vinogradov’s notation. In an
effort to simplify our account, whenever " appears in a statement, we assert that the
statement holds for every positive number ". The “value” of " may consequently change
from statement to statement.
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2. Restricted mean square estimates for Fourier coefficients

In this section we establish an estimate for a certain fourteenth moment of cubic Weyl
sums, our strategy being to interpret this moment as a restricted mean square of Fourier
coefficients. We consider a real-valued function F in L2([0, 1)), extended in the natural
way to a periodic function on ℝ with period 1. When B ⊆ [0, 1) is measurable, we put

R(n;B) =

∫
B

F (
)e(−n
)d
,

where, as usual, we write e(z) for e2�iz. Also, we denote by �(n) the number of represen-
tations of the integer n in the shape n = x3 − y3, with ∣x∣, ∣y∣ ⩽ P . It is convenient then
to write C for the set of integers n, with 1 ⩽ ∣n∣ ⩽ 2P 3, for which �(n) > 2, so that n nec-
essarily possesses more than one essentially distinct representation in the aforementioned
manner. In addition, we put C0 = C ∪ {0}.

Lemma 2.1. Whenever ℎ is a fixed non-zero integer and B ⊆ [0, 1) is measurable, one
has∑

n∈ℤ

�(n)∣R(ℎn;B)∣2 ≪ P

(∫
B

F (
) d


)2

+

∫
B

F (
)2 d
 + P "
∑
n∈C

∣R(ℎn;B)∣2. (2.1)

Proof. On noting that �(0) = O(P ), one finds that the contribution to the sum on the
left hand side of (2.1) arising from the term n = 0, say T0, satisfies

T0 ≪ P ∣R(0;B)∣2 = P

(∫
B

F (
) d


)2

. (2.2)

When n ∈ ℤ∖C0, meanwhile, we have �(n) = O(1), and thus we find that the contribution,
T1, of such terms within (2.1) satisfies

T1 ≪
∑

n∈ℤ∖C0

∣R(ℎn;B)∣2 ⩽
∑
m∈ℤ

∣R(m;B)∣2.

An application of Bessel’s inequality therefore reveals that

T1 ≪
∫
B

F (
)2 d
. (2.3)

Finally, when n ∕= 0, a divisor function estimate yields �(n) = O(∣n∣"), and so the contri-
bution arising from the terms with n ∈ C, say T2, satisfies

T2 ≪ P "
∑
n∈C

∣R(ℎn;B)∣2. (2.4)

The conclusion of the lemma now follows by summing the estimates (2.2), (2.3) and
(2.4). □

When P is a large positive number, let

f(
) =
∑
∣x∣⩽P

e(
x3). (2.5)

In our application of Lemma 2.1 that establishes the promised mean value estimate, we
take F (
) = ∣f(l
)∣6 for a fixed non-zero integer l. It transpires that the first two terms on
the right hand side of (2.1) are well-controlled, but that the third term has the potential
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to be larger than the desired bound by a factor of P ". We therefore concentrate on this
last term, and apply slim-stout technology in order to bound its contribution. In order
to facilitate this discussion, when l ∈ ℤ and B ⊆ [0, 1) is measurable, we now put

 l(n;B) =

∫
B

∣f(l
)∣6e(−n
) d
.

Also, given a positive number Q with 1 ⩽ Q ⩽ P , we define two sets of major arcs M(Q)
and N(Q) to be the respective unions of the intervals

M(q, a) = {� ∈ [0, 1) : ∣q�− a∣ ⩽ QP−3}
and

N(q, a) = {� ∈ [0, 1) : ∣�− a/q∣ ⩽ QP−3},
with 0 ⩽ a ⩽ q ⩽ Q and (a, q) = 1. We then put m(Q) = [0, 1) ∖M(Q) and n(Q) =
[0, 1) ∖N(Q).

In advance of a lemma that provides a mean square estimate for  l(n;B), it is con-
venient to record an elementary property of the sets M(Q), m(Q), N(Q) and n(Q) for
differing values of Q.

Lemma 2.2. Suppose that Q is a positive number with 1 ⩽ Q ⩽ P and that l is a fixed
positive integer. Then the following hold.

(a) Whenever � is a real number with � ∈M(Q) modulo 1, one has l� ∈M(lQ) modulo
1 and, for each integer k, one has (� + k)/l ∈M(lQ) modulo 1.

(b) Whenever � is a real number with � ∈ m(Q) modulo 1, one has l� ∈ m(Q/l) modulo
1 and, for each integer k, one has (� + k)/l ∈ m(Q/l) modulo 1.

The same conclusions hold when M is replaced by N throughout, and likewise when m
is replaced by n.

Proof. The proof of the lemma in the situation in which N replaces M in statement (a),
and n replaces m in statement (b), is a trivial modification of the argument that follows.
We therefore concentrate on the explicitly recorded assertions and leave the modifications
necessary to address the sets N and n to the reader.

Suppose first that � is a real number with � ∈M(Q) modulo 1. Then there exist a ∈ ℤ
and q ∈ ℕ with (a, q) = 1, q ⩽ Q and ∣q�− a∣ ⩽ QP−3. Consequently, one has

∣q(l�)− al∣ ⩽ lQP−3 with q ⩽ Q,

whence l� ∈M(lQ) modulo 1. In addition, for each integer k one has∣∣∣∣ql(� + k

l

)
− (qk + a)

∣∣∣∣ = ∣q�− a∣ ⩽ QP−3 with ql ⩽ lQ,

whence (� + k)/l ∈ M(lQ) modulo 1. This confirms the assertions of part (a) of the
lemma.

Next, if � is a real number for which either l� ∈M(Q/l) modulo 1, or for some integer
k one has (�+ k)/l ∈M(Q/l) modulo 1, it follows from part (a) that � ∈M(Q) modulo
1. The assertion of part (b) consequently follows from the observation that m(Q) is the
complement of M(Q) within [0, 1). □

For the sake of concision, we now abbreviate M(P 3/4) to M1 and likewise m(P 3/4) to
m1.
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Lemma 2.3. Suppose that ℎ and l are fixed non-zero integers. Then whenever B ⊆ m1

is measurable, one has ∑
n∈C

∣ l(ℎn;B)∣2 ≪ P 47/6+".

Proof. When T is a non-negative real number, we write Z(T ) for the set of integers n ∈ C
for which T < ∣ l(ℎn;B)∣ ⩽ 2T , and then abbreviate card(Z(T )) to Z(T ). Also, when
n ∈ Z(T ) we define �(n) by means of the relation ∣ l(ℎn;B)∣ = �(n) l(ℎn;B), and then
put

KT (�) =
∑

n∈Z(T )

�(n)e(ℎn�).

It follows that∫
B

∣f(l
)∣6KT (−
) d
 =
∑

n∈Z(T )

�(n)

∫
B

∣f(l
)∣6e(−ℎn
) d


=
∑

n∈Z(T )

�(n) l(ℎn;B) =
∑

n∈Z(T )

∣ l(ℎn;B)∣

> TZ(T ).

By Schwarz’s inequality, one therefore deduces that

TZ(T ) < I
1/2
1 I

1/2
2 , (2.6)

where

I1 =

∫ 1

0

∣f(l
)KT (
)∣2 d
 and I2 =

∫
B

∣f(l
)∣10d
.

By orthogonality, the integral I1 is bounded above by the number of solutions of the
diophantine equation l(x31− x32) = ℎ(n1−n2), with ∣x1∣, ∣x2∣ ⩽ P and n1, n2 ∈ Z(T ). The
number of diagonal solutions of this equation, wherein x1 = x2 and n1 = n2, is plainly
O(PZ(T )). For each of the O(Z(T )2) fixed choices of n1 and n2 with n1 ∕= n2, meanwhile,
it follows from a divisor function estimate that the number of choices for x1 and x2, with
l(x31 − x32) equal to the fixed non-zero integer ℎ(n1 − n2), is O(P "). Thus we see that

I1 ≪ PZ(T ) + P "Z(T )2. (2.7)

With a future application in mind, we estimate I2 with greater precision than is war-
ranted by the purpose at hand. Observe first that by combining the refined estimates of
Hall and Tenenbaum [12] for Hooley’s Δ-function with the proof of Lemma 1 of Vaughan
[16], one has the estimate

sup

∈B
∣f(l
)∣ ⩽ sup


∈m1

∣f(l
)∣ ≪ sup

∈m(l−1P 3/4)

∣f(
)∣ ≪ P 3/4(logP )1/4+". (2.8)

Here we have made use of Lemma 2.2(b) in order to justify the second of this string of
asymptotic inequalities. Next, by referring to Boklan [2], a second application of Lemma
2.2(b) yields the upper bound∫

B

∣f(l
)∣8 d
 ⩽
∫
m1

∣f(l
)∣8 d
 ≪
∫
m(l−1P 3/4)

∣f(
)∣8 d
 ≪ P 5(logP )"−3. (2.9)
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The estimates (2.8) and (2.9) together imply that

I2 ⩽

(
sup

∈B
∣f(l
)∣

)2 ∫
B

∣f(l
)∣8 d
 ≪ P 13/2. (2.10)

On substituting (2.7) and (2.10) into (2.6), we arrive at the estimate

TZ(T )≪ P "(PZ(T ) + Z(T )2)1/2(P 13/2)1/2.

Given any fixed positive number �, therefore, it follows that for T > P 13/4+� one has
Z(T )≪ P 15/2+"T−2. On summing over the contributions arising from all available inter-
vals of the type T < ∣ l(ℎn;B)∣ ⩽ 2T with T > P 13/4+�, we find that∑

n∈C
∣ l(ℎn;B)∣>P 13/4+�

∣ l(ℎn;B)∣2 ≪ P " max
P 13/4+�<T⩽(2P+1)6

(
T 2Z(T )

)
≪ P 15/2+". (2.11)

But it follows from Theorem 1 of Heath-Brown [13] that card(C) = O(P 4/3+") (see the
discussion leading to the estimate (9.10) of Wooley [19] for an account of this estimate).
We may therefore infer that∑

n∈C
∣ l(ℎn;B)∣⩽P 13/4+�

∣ l(ℎn;B)∣2 ≪ P 4/3+"(P 13/4+�)2 ≪ P 47/6+3�. (2.12)

The conclusion of the lemma is now immediate from (2.11) and (2.12). □

We are now equipped to establish the mean square estimate for certain Fourier coeffi-
cients that is crucial in our proof of the promised fourteenth moment of exponential sums.
In this context, when � is a fixed positive number, we now write M2,� for M(�(logP )3)
and m2,� for m(�(logP )3), and to save space we abbreviate M1 ∖M2,� to P�.

Lemma 2.4. Suppose that ℎ and l are fixed non-zero integers, and that � is a fixed positive
number. Then whenever B ⊆ m2,� is measurable, one has∑

n∈ℤ

�(n)∣ l(ℎn;B)∣2 ≪ P 8(logP )"−2.

Proof. Since m2,� is the union of m1 and M1 ∖M2,�, and B ⊆ m2,�, we see that∑
n∈ℤ

�(n)∣ l(ℎn;B)∣2 ≪
∑
n∈ℤ

�(n)∣ l(ℎn;m1)∣2 +
∑
n∈ℤ

�(n)∣ l(ℎn;P�)∣2. (2.13)

The estimation of the first term on the right hand side of (2.13) is completed swiftly via
Lemma 2.1, as we now demonstrate. We set ∣F (
)∣ = ∣f(l
)∣6 in our application of the
latter lemma, and begin by noting that from (2.8) and (2.9) one has∫

m1

∣f(l
)∣12 d
 ⩽
(

sup

∈m1

∣f(l
)∣
)4 ∫

m1

∣f(l
)∣8 d
 ≪ P 8(logP )"−2. (2.14)

Next, on recalling the estimate ∫ 1

0

∣f(l
)∣4 d
 ≪ P 2,
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which, on considering the underlying diophantine equation, is an immediate consequence
of Theorem 3 of Hooley [14], we deduce from (2.9) in combination with Schwarz’s inequal-
ity that ∫

m1

∣f(l
)∣6 d
 ⩽
(∫ 1

0

∣f(l
)∣4 d

)1/2(∫

m1

∣f(l
)∣8 d

)1/2

≪ P 7/2(logP )"−3/2. (2.15)

Applying (2.14) and (2.15) in combination with Lemma 2.3 within Lemma 2.1, we con-
clude that∑

n∈ℤ

�(n)∣ l(ℎn;m1)∣2 ≪ P
(
P 7/2(logP )"−3/2

)2
+ P 8(logP )"−2 + P 47/6+"

≪ P 8(logP )"−2. (2.16)

The second term on the right hand side of (2.13) may be estimated using major arc
technology familiar to modern practitioners of the circle method. First, an application
of Lemma 5.1 of Vaughan [17] in combination with the triangle inequality confirms that
whenever ∣n∣ ⩽ P 3, one has

∣ l(ℎn;P�)∣ ⩽
∫
M1∖M2,�

∣f(l
)∣6 d
 ≪ P 3(logP )"−1.

Next, on recalling the definition of �(n), we deduce that∑
n∈ℤ

�(n)∣ l(ℎn;P�)∣2 ≪ (P 3(logP )"−1)2
∑
n∈ℤ

�(n)≪ P 8(logP )2"−2.

The proof of the lemma is now completed by substituting the latter estimate together
with (2.16) into (2.13). □

We are at last prepared to establish the fundamental mean value estimate of this paper.
In this context we define a two dimensional Hardy-Littlewood dissection as follows. Given
a positive number Q with 1 ⩽ Q ⩽ P , we define the set of major arcs W(Q) to be the
union of the boxes

W(q, a, b) = {(�, �) ∈ [0, 1)2 : ∣�− a/q∣ ⩽ QP−3 and ∣� − b/q∣ ⩽ QP−3},
with 0 ⩽ a, b ⩽ q ⩽ Q and (q, a, b) = 1. We also define the set of minor arcs w(Q) by
putting w(Q) = [0, 1)2 ∖W(Q). We remark for future reference that N(Q1/2)×N(Q1/2) ⊆
W(Q), as is easily verified, and thus

w(Q) ⊆
(
n(Q1/2)× n(Q1/2)

)
∪
(
n(Q1/2)×N(Q1/2)

)
∪
(
N(Q1/2)× n(Q1/2)

)
. (2.17)

It is convenient in what follows to define the linear forms Λj by

Λj = aj� + bj� (1 ⩽ j ⩽ s). (2.18)

In addition, we put X = (logP )6 and abbreviate w(X) to w, and W(X) to W.

Theorem 2.5. Suppose that Λu, Λv and Λw are pairwise linearly independent linear forms
in � and �. Then one has∫∫

w

∣f(Λu)
6f(Λv)

6f(Λw)2∣ d� d� ≪ P 8(logP )"−1. (2.19)



8 J. BRÜDERN AND T. D. WOOLEY

Proof. We begin by investigating the change of variables (�, �) 7→ (Λu,Λv), and its effect
on the range of integration w(X). Consider then a positive parameter Q, and the linear
combinations avΛu − auΛv and bvΛu − buΛv. Define

Ω′ = max
1⩽i⩽j⩽s

{∣ai∣+ ∣aj∣ , ∣bi∣+ ∣bj∣},

write C = aubv − avbu, and put Ω = Ω′∣C∣. Note here that the hypotheses of the lemma
ensure that Ω is non-zero. One may check that whenever (Λu,Λv) ∈ W(Ω−1Q) mod-
ulo 1, then necessarily C(�, �) ∈ W(Ω′Ω−1Q) modulo 1. But in such circumstances,
an argument paralleling that of the proof of part (a) of Lemma 2.2 shows that (�, �) ∈
W(∣C∣Ω′Ω−1Q) = W(Q). Consequently, whenever (�, �) ∈ w(Q) modulo 1, one neces-
sarily has (Λu,Λv) ∈ w(Ω−1Q) modulo 1. Furthermore, whenever (Λu,Λv) ∈ w(Ω−1Q)
modulo 1, one has C−1(Λu,Λv) ∈ w(∣C∣−1Ω−1Q) modulo 1. We note also that on writing
A = awbv − avbw and B = aubw − awbu, one has CΛw = AΛu +BΛv. Here, in view of the
hypotheses of the lemma, neither A nor B is zero.

We now write

u = w(Ω−1X) and v = w(∣C∣−1Ω−1X).

Then in view of the above discussion, we may make use of the periodicity (with period 1)
of the integrand on the left hand side of (2.19), and change variables, so as to obtain the
relation ∫∫

w

∣f(Λu)
6f(Λv)

6f(Λw)2∣ d� d�

≪
∫∫

u

∣f(Λu)
6f(Λv)

6f(C−1(AΛu +BΛv))
2∣ dΛu dΛv.

On putting � = C−1Λu and � = C−1Λv, and making a second change of variables, we
arrive at the estimate∫∫

u

∣f(Λu)
6f(Λv)

6f(C−1(AΛu +BΛv))
2∣ dΛudΛv

≪
∫∫

v

∣f(C�)6f(C�)6f(A� +B�)2∣ d� d�.

Put

X = N((Ω∣C∣)−1/2X1/2) and x = n((Ω∣C∣)−1/2X1/2).

Then on recalling (2.17), we deduce that∫∫
w

∣f(Λu)
6f(Λv)

6f(Λw)2∣ d� d� ≪ I(x, x) + I(x,X) + I(X, x), (2.20)

where we have written

I(A,ℬ) =

∫
A

∫
ℬ
∣f(C�)6f(C�)6f(A� +B�)2∣ d� d�.
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We enter the final phase of the proof by rewriting the integral I(A,ℬ) in a form
amenable to Lemma 2.4. We observe that

I(A,ℬ) =
∑
∣x∣⩽P

∑
∣y∣⩽P

∫
A
∣f(C�)∣6e(−A(x3 − y3)�) d�

∫
ℬ
∣f(C�)∣6e(−B(x3 − y3)�) d�

=
∑
n∈ℤ

�(n) C(An;A) C(Bn;ℬ).

An application of Cauchy’s inequality now reveals that

I(A,ℬ) ⩽ JC,A(A)1/2JC,B(ℬ)1/2, (2.21)

where
JS,T (C) =

∑
n∈ℤ

�(n)∣ S(Tn; C)∣2.

On recalling that X = (logP )6, we see that x = m2,� with � = (Ω∣C∣)−1/2, and thus it
follows from Lemma 2.4 that JC,T (x) = O(P 8(logP )"−2) for T = A,B. Meanwhile, the
estimate  C(Tn;X) = O(P 3) follows from the methods underlying the proof of Lemma 5.1
of Vaughan [17]. Thus, again recalling the definition of �(n), one finds that for T = A,B,
one has

JC,T (X)≪ (P 3)2
∑
n∈ℤ

�(n)≪ P 8.

It therefore follows from (2.20) and (2.21) that∫
w

∣f(Λu)
6f(Λv)

6f(Λw)2∣ d� d� ≪ (P 8(logP )"−2)1/2(P 8)1/2,

and the conclusion of the theorem is now immediate. □

3. Preparation for the circle method

Our purpose in this and the next section of this paper is to prove Theorem 1.1. In
view of the hypotheses of the theorem, we may suppose henceforth that q0 ⩾ 8. With
the coefficient pairs (aj, bj) ∈ ℤ2 ∖ {0} (1 ⩽ j ⩽ s), we associate both the linear forms Λj

defined in (2.18) and the two linear forms L1(�) and L2(�) defined for � ∈ ℝs by

L1(�) =
s∑
j=1

aj�j and L2(�) =
s∑
j=1

bj�j. (3.1)

We say that two forms Λi and Λj are equivalent when there exists a non-zero ratio-
nal number � with Λi = �Λj. This notion defines an equivalence relation on the set
{Λ1,Λ2, . . . ,Λs}, and we refer to the number of elements in the equivalence class [Λj] con-
taining the form Λj as its multiplicity. Suppose that the s forms Λj (1 ⩽ j ⩽ s) fall into T
equivalence classes, and that the multiplicities of these classes are R1, R2, . . . , RT . By re-
labelling variables if necessary, there is no loss in supposing that R1 ⩾ R2 ⩾ . . . ⩾ RT ⩾ 1.
Further, in view of our hypothesis that q0 ⩾ 8, it is apparent that we may assume without
loss of generality that R1 ⩽ s− 8, and hence that R2 +R3 + ⋅ ⋅ ⋅+RT ⩾ 8.

We distinguish three cases according to the number of variables and the arrangement of
the multiplicities of the forms. We refer to a system (1.1) as being of type I when T = 2,
as being of type II when T = 3 and R3 = 1, and as being of type III in the remaining
cases wherein T ⩾ 3 and s−R1−R2 ⩾ 2. We defer the treatment of systems of type I to
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the final paragraph of §4 below, confining our attention in the remainder of §3 to systems
of types II and III.

Suppose first that the system (1.1) is of type III with s ⩾ 14 and q0 ⩾ 8. We consider
fixed subsets S0 and S1 of {1, . . . , s} with card(S0) = 13, card(S1) = 14 and S0 ⊂ S1. We
may suppose that the 14 forms Λj (j ∈ S1) fall into t equivalence classes, and that the
multiplicities of the representatives of these classes are r1, . . . , rt. By relabelling variables
if necessary, there is no loss in supposing that r1 ⩾ r2 ⩾ . . . ⩾ rt ⩾ 1. Then on recalling
the additional conditions s ⩾ 14, T ⩾ 3 and s − R1 − R2 ⩾ 2, we may plainly make a
choice for S1 in such a manner that t ⩾ 3, 1 ⩽ r1 ⩽ 6 and 14− r1− r2 ⩾ 2. Furthermore,
it is trivially apparent that we may choose the subset S0 of S1 in such a manner that
the maximum multiplicity of the representatives of the 13 forms Λj (j ∈ S0) is at most
six amongst the latter forms. In view of our earlier condition r1 ⩾ r2 ⩾ . . . ⩾ rt ⩾ 1,
moreover, one has also the constraint rt ⩽ 4.

Suppose next that the system (1.1) is of type II with s ⩾ 14 and q0 ⩾ 8. Then one
has T = 3 and R3 = 1, and so the hypothesis q0 ⩾ 8 implies that one necessarily has
R1 ⩾ R2 ⩾ 7 and s ⩾ 15. In this case we consider fixed subsets S0 and S2 of {1, . . . , s}
with card(S0) = 13, card(S2) = 15 and S0 ⊂ S2. We may suppose that the 15 forms Λj

(j ∈ S2) fall into 3 equivalence classes, and that the multiplicities of the representatives
of these classes are r1, r2, r3. By relabelling variables if necessary, there is no loss in
supposing that (r1, r2, r3) = (7, 7, 1). In particular, we may make a subsequent choice
for S0 ⊂ S2 so that the maximum multiplicity of the representatives of the 13 forms Λj

(j ∈ S0) is again at most six amongst the latter forms.
In each of the above situations, one may relabel variables in the system (1.1), and

likewise in (2.18) and (3.1), so that the set Sl becomes {1, 2, . . . , 13 + l} (l = 0, 1, 2), and
so that Λ1 becomes a form in the first equivalence class counted by r1, and Λ2 becomes
a form in the second equivalence class counted by r2. Some simplifying transformations
ease the analysis of the singular integral, and here we follow the pattern of our earlier
work [7], [8]. First, by taking suitable integral linear combinations of the equations (1.1),
we may suppose without loss that b1 = a2 = 0. Since we may suppose that a1b2 ∕= 0, the
simultaneous equations

L1(�) = L2(�) = 0 (3.2)

possess a solution � with �j ∕= 0 (1 ⩽ j ⩽ s). Applying the substitution xj → −xj for
those indices j with 1 ⩽ j ⩽ s for which �j < 0, neither the solubility of the system (1.1)
nor the corresponding function N(P ), are affected, and yet the transformed linear system
associated with the equations (3.2) has a solution � with �j > 0 (1 ⩽ j ⩽ s). In addition,
the homogeneity of the system (3.2) ensures that a solution of the latter type may be
chosen with � ∈ (0, 1)s. We now fix the solution �.

We next introduce some additional generating functions required in our application of
the circle method. We employ the classical Weyl sum f(�) defined already in (2.5). In
addition, for each natural number m with m ⩽ s, we define the generating functions

Hm(�, �) =
m∏
j=1

f(Λj) and Gm(�, �) =
s∏

j=m+1

f(Λj). (3.3)

Here, in circumstances in which m = s, the last product is empty and interpreted as
unity. We note the trivial decomposition Hs(�, �) = Hm(�, �)Gm(�, �) (m ⩽ s). From
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orthogonality we now have the relation

N(P ; a,b) =

∫ 1

0

∫ 1

0

Hs(�, �) d� d�. (3.4)

The contribution of the major arcs within the integral on the right hand side of (3.4) is
easily estimated by making use of work from our previous paper [8].

Lemma 3.1. Suppose that the system (1.1) is of type II or III with s ⩾ 13 and q0 ⩾ 7.
Then one has ∫∫

W

Hs(�, �) d� d� = ℭ(a,b)P s−6 + o(P s−6).

Moreover, provided that the system (1.1) possesses a non-trivial 7-adic solution, one has
ℭ(a,b)≫ 1.

Proof. We begin by introducing some notation in order to discuss the approximant to the
generating function f on the major arcs W. Let

S(q, r) =

q∑
l=1

e(rl3/q) and Si(q, c, d) = S(q, aic+ bid) (1 ⩽ i ⩽ s).

Also, for 1 ⩽ j ⩽ s put �j = aj� + bj�, and write wj(�, �) for w(�j), where

w(�) =

∫ P

−P
e(�
3) d
.

As a consequence of Theorem 4.1 of Vaughan [18], whenever (�, �) ∈W(q, c, d) ⊆W, one
has

f(Λj)− q−1Sj(q, c, d)wj(�− c/q, � − d/q)≪ X1/2+" (1 ⩽ j ⩽ s). (3.5)

On recalling the definition (3.3), and writing

W (�, �) =
s∏
j=1

w(�j) and U(q, c, d) = q−s
s∏
j=1

Sj(q, c, d),

we deduce from (3.5) that the estimate

Hs(�, �)− U(q, c, d)W (�− c/q, � − d/q)≪ P s−1X1/2+" (3.6)

holds uniformly in (�, �) ∈W(q, c, d) ⊆W.
We next introduce truncated versions of the singular integral and singular series, which

we define respectively by

J (Y ) =

∫∫
B(Y )

W (�, �) d� d� and S(Y ) =
∑

1⩽q⩽Y

A(q), (3.7)

in which we have written B(Y ) for the box [−Y P−3, Y P−3]2, and where

A(q) =

q∑
c=1

q∑
d=1

(c,d,q)=1

U(q, c, d).
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The measure of the major arcs W(X) is O(X5P−6), so on recalling that X = (logP )6

and integrating over W, we infer from (3.6) that∫∫
W

Hs(�, �) d� d� −S(X)J (X)≪ P s−13/2. (3.8)

We discuss the truncated versions of the singular series and singular integral defined in
(3.7) by making use of the analysis underlying Lemmata 12 and 13 of [8]. We note here
that in the formulation of the latter, the exponential sums corresponding to the forms
Λ2, . . . ,Λs are smooth Weyl sums rather than the present classical Weyl sums. This
deviation from [8] demands at most cosmetic alterations to the argument of §7 of that
paper, and we spare the reader the details. An examination of the proofs of these lemmata
will confirm that it is sufficient that the maximum multiplicity of any of Λ1,Λ2, . . . ,Λ13

is at most six amongst the latter forms. Since we assume that r1 ⩽ 6, such is already
guaranteed by the discussion in the preamble to the statement of our lemma. Putting

J =

∫ ∞
−∞

∫ ∞
−∞

W (�, �) d� d�,

we find that the argument of the proof of Lemma 13 of [8] yields the estimate

J − J (X)≪ P s−6X−1.

Moreover, one finds that J = v∞P
s−6, with v∞ defined as in the discussion surrounding

(1.2) above. Meanwhile, with vp defined for each prime number p via the relation (1.3),
it transpires that Lemma 12 of [8] supplies the formula

S(X)−
∏
p

vp ≪ X−1/4.

The asymptotic formula claimed in the statement of the lemma therefore follows at once
from (3.8). That ℭ(a,b) ≫ 1 whenever the system (1.1) possesses a non-trivial 7-adic
solution is immediate from the aforementioned lemmata, on recalling our definition of the
real s-tuple �. This completes the proof of the lemma. □

4. The minor arc estimate

We next seek to establish the upper bound∫∫
w

Hs(�, �) d� d� = o(P s−6). (4.1)

Making use of the conclusion of Lemma 3.1 and recalling that [0, 1)2 ∖w = W, it follows
from (4.1) that ∫ 1

0

∫ 1

0

Hs(�, �) d� d� = ℭ(a,b)P s−6 + o(P s−6),

and the conclusion of Theorem 1.1 is delivered by (3.4). We begin by recalling an ele-
mentary observation from our earlier work, the proof of which is self-evident (see Lemma
5 of [8]).
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Lemma 4.1. Let k and N be natural numbers, and suppose that B ⊆ ℝk is measurable.
Let !i(z) (0 ⩽ i ⩽ N) be complex-valued functions of B. Then whenever the functions
∣!0(z)!j(z)N ∣ (1 ⩽ j ⩽ N) are integrable on B, one has the upper bound∫

B

∣!0(z)!1(z) . . . !N(z)∣ dz ⩽ N max
1⩽j⩽N

∫
B

∣!0(z)!j(z)N ∣ dz.

It is convenient in what follows to abbreviate, for each index m, the expression ∣f(Λm)∣
simply to fm, and likewise ∣Gm(�, �)∣ to Gm.

Lemma 4.2. Suppose that the system (1.1) is of type III with s ⩾ 14 and q0 ⩾ 8. Then
in the setting described in §3, one has∫∫

w

∣Hs(�, �)∣ d� d� ≪ P s−6(logP )"−1.

Proof. We begin with some simplifying analytic observations. Write ℒ = {Λ1, . . . ,Λ14},
and recall that the number of equivalence classes in ℒ is t ⩾ 3. By relabelling indices if

necessary, we may suppose that representatives of these classes are Λ̃i ∈ ℒ (1 ⩽ i ⩽ t),

and also that for each index i, the multiplicity of Λ̃i amongst the elements of the set
ℒ is ri. Then according to the discussion of the previous section, we may suppose that

Λ1 ∈ [Λ̃1], and that

1 ⩽ rt ⩽ rt−1 ⩽ . . . ⩽ r1 ⩽ 6 and r2 + r3 + ⋅ ⋅ ⋅+ rt = 14− r1. (4.2)

Next, for a given index i with 1 ⩽ i ⩽ 14, consider the linear forms Λlj (1 ⩽ j ⩽ ri)

equivalent to Λ̃i from the set ℒ. Apply Lemma 4.1 with N = ri, with flj in place of !j

(1 ⩽ j ⩽ N), and with !0 replaced by the product of those fm with Λm ∕∈ [Λ̃i] (1 ⩽ m ⩽
14), multiplied by G14(�, �). We see that there is no loss of generality in supposing that

Λlj = Λ̃i (1 ⩽ j ⩽ ri). By repeating this argument for successive equivalence classes, it

follows that with a suitable choice of equivalence class representatives Λ̃m (1 ⩽ m ⩽ t),
one has ∫∫

w

∣Hs(�, �)∣ d� d� ≪
∫∫

w

G14f̃
r1
1 f̃

r2
2 . . . f̃ rtt d� d�, (4.3)

where we have abbreviated ∣f(Λ̃m)∣ to f̃m for each m.
We next apply a device employed in the proof of Lemma 6 of [8]. Let � be a non-

negative integer, and suppose that rt−1 = rt + � < 6. Then we may apply Lemma 4.1

with N = � + 2, with f̃t−1 in place of !i (1 ⩽ i ⩽ � + 1) and f̃t in place of !N , and with
!0 set equal to

G14f̃
r1
1 f̃

r2
2 . . . f̃

rt−2

t−2 f̃
rt−1−�−1
t−1 f̃ rt−1t .

Here, and in what follows, we interpret the vanishing of any exponent as indicating that
the associated exponential sum is deleted from the product. In this way, we obtain
an upper bound of the shape (4.3), subject to the constraints (4.2), wherein either the
parameter rt is reduced, or else the parameter t is reduced. By repeating this process,
therefore, we ultimately arrive at a situation in which t = 3 and rt−1 = 6, and then the
constraints (4.2) imply that necessarily (r1, r2, . . . , rt) = (6, 6, 2).
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On recalling (3.3) and (4.3), and making a trivial estimate for G14, we may conclude
at this point that ∫∫

w

∣Hs(�, �)∣ d� d� ≪ P s−14
∫∫

w

f̃ 6
1 f̃

6
2 f̃

2
3 d� d�.

Making use of Theorem 2.5 in order to estimate the integral on the right hand side of this
inequality, we obtain the estimate∫∫

w

∣Hs(�, �)∣ d� d� ≪ P s−14(P 8(logP )"−1),

and the conclusion of Lemma 4.2 follows at once. □

The proof of Theorem 1.1 for systems of type III is now immediate from the discussion
in the preamble to the statement of Lemma 4.1. Having completed our discussion of
systems of type III, we turn next to systems of type II. In this context, we remark that
the discussion of §3 shows that a type II system with q0 ⩾ 8 necessarily has at least 15
variables.

Lemma 4.3. Suppose that the system (1.1) is of type II with s ⩾ 15 and q0 ⩾ 8. Then
in the setting described in §3, one has∫∫

w

∣Hs(�, �)∣ d� d� ≪ P s−6(logP )"−1/2.

Proof. We begin by following the discussion initiating the proof of Lemma 4.2. In this way,

we see that with a suitable choice of equivalence class representatives Λ̃m (1 ⩽ m ⩽ t),
one has ∫∫

w

∣Hs(�, �)∣ d� d� ≪
∫∫

w

G15f̃
r1
1 f̃

r2
2 f̃

r3
3 d� d�.

Here, we have employed the same convention regarding the meaning of f̃m as in the proof
of Lemma 4.2. We note also that the discussion of type II systems in §3 reveals that
(r1, r2, r3) = (7, 7, 1). An application of Schwarz’s inequality, in combination with the
trivial estimate G15 = O(P s−15), therefore yields∫∫

w

∣Hs(�, �)∣ d� d� ≪ P s−15K1/2
1 K

1/2
2 , (4.4)

where

K1 =

∫∫
w

f̃ 6
1 f̃

6
2 f̃

2
3 d� d� and K2 =

∫ 1

0

∫ 1

0

f̃ 8
1 f̃

8
2 d� d�. (4.5)

On recalling the hypothesis that b1 = a2 = 0, we see that for suitable non-zero integers
a, b, c, d, one has

f̃1 = ∣f(a�)∣, f̃2 = ∣f(b�)∣ and f̃3 = ∣f(c� + d�)∣.
On considering the underlying diophantine equations, it therefore follows from (4.5) to-
gether with Theorem 2 of Vaughan [16] that K2 ≪ (P 5)2. We now substitute this estimate
together with the conclusion of Theorem 2.5 into (4.4) to obtain∫∫

w

∣Hs(�, �)∣ d� d� ≪ P s−15(P 8(logP )"−1)1/2(P 10)1/2,

and the conclusion of the lemma follows immediately. □
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The proof of Theorem 1.1 for systems of type II now follows at once from the discussion
in the preamble to the statement of Lemma 4.1. All that remains is to establish Theorem
1.1 for systems of type I. But given a system of type I with q0 ⩾ 8, one has T = 2 and
R1 ⩾ R2 ⩾ 8. In view of the hypothesis that b1 = a2 = 0, we may relabel variables in such
a manner that for 1 ⩽ i ⩽ R1 one has Λi = ai�, and so that for R1 < j ⩽ R1 + R2 one
has Λj = bj�. Classical methods (see Chapter 4 of Vaughan [18]) provide the asymptotic
formula (∫

M1

R1∏
i=1

f(ai�) d�

)(∫
M1

R1+R2∏
j=R1+1

f(bj�) d�

)
= ℭ(a,b)P s−6 + o(P s−6).

In addition, when (U,V) is one of (m1,m1), (M1,m1) and (m1,M1), the methods of
Vaughan [16] (see (2.9) above) supply the upper bound(∫

U

R1∏
i=1

f(ai�) d�

)(∫
V

R1+R2∏
j=R1+1

f(bj�) d�

)
≪ (PR1−3)(PR2−3)(logP )"−1.

Thus we find that

N(P ; a,b) =

(∫ 1

0

R1∏
i=1

f(ai�) d�

)(∫ 1

0

R1+R2∏
j=R1+1

f(bj�) d�

)
= ℭ(a,b)P s−6 + o(P s−6).

This establishes Theorem 1.1 for type I systems, and completes the proof of the theorem.
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