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Abstract. We derive a new minor arc bound, suitable for applications
associated with Waring’s problem, from Vinogradov’s mean value theorem.
In this way, the conjectured asymptotic formula in Waring’s problem is
established for sums of s kth powers of natural numbers when k > 6 and
s > 2k2 − 11.

1. Introduction

A brief review of the progress achieved in nearly a century of development of
the Hardy-Littlewood (circle) method reveals that a substantial part has orig-
inated in work devoted to the challenge of establishing the asymptotic formula
in Waring’s problem. Estimates associated with the latter problem have very
recently been significantly improved, as a consequence of the author’s work
[13] concerning Vinogradov’s mean value theorem. As we remarked in that
paper, the scale of recent improvements opens new avenues for investigation,
and it is the goal of this paper to indicate what may nowadays be achieved.
Along the way we establish further improvements in the number of variables
required to establish the asymptotic formula in Waring’s problem.

When s and k are natural numbers, denote by Rs,k(n) the number of repre-
sentations of a positive integer n as the sum of s positive integral kth powers.
Motivated by a heuristic application of the circle method, one expects that
when k > 3 and s > k + 1, then

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 + o(ns/k−1), (1.1)

where

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ark/q)
)s
e(−na/q), (1.2)

and e(z) denotes e2πiz. It is worth noting at this point that, subject to modest
congruence conditions on n, one has 1 � Ss,k(n) � nε (see [10, Chapter 4]).

We take G̃(k) to be the least integer t with the property that, for all s > t,
and all sufficiently large natural numbers n, one has the asymptotic formula

(1.1). In §3 of this paper, we establish the upper bound for G̃(k) recorded in
the following theorem.
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Theorem 1.1. Let k be a natural number with k > 2. Then one has

G̃(k) 6 2k2 + 1− max
16j6k−1

2j6k(2k+1)

⌈
2kj − 2j

k + 1− j

⌉
. (1.3)

Here, as usual, we write dθe for the smallest integer no smaller than θ.

Corollary 1.2. One has G̃(7) 6 86, and when k > 8 one has G̃(k) 6 2k2−11.
Moreover, for all natural numbers k with k > 2, one has

G̃(k) 6 2k2 − 2

[
log k

log 2

]
.

For comparison, we note that Vaughan [8], [9] has shown that G̃(k) 6 2k

for k > 3, and that Boklan [1] has established the bound G̃(k) 6 7
8
2k (k > 6).

In addition, Theorem 1.4 of the author’s very recent work [13] shows that

G̃(k) 6 2k2 + 2k − 3 for every natural number k with k > 2. The conclusion
of Corollary 1.2 supersedes these bounds when k > 7. We note that when

k = 6, the conclusion of Theorem 1.1 shows that G̃(6) 6 59, and comes

within ε of the bound G̃(6) 6 58, whereas [1] shows that G̃(6) 6 56. Work
predating the advances of [13], meanwhile, delivers weaker bounds. Thus, the

aforementioned work of Boklan [1] shows that G̃(7) 6 112, G̃(8) 6 224, and

Ford [4] established the bounds G̃(9) 6 393, G̃(10) 6 551, ..., G̃(20) 6 2703,

and G̃(k) 6 k2(log k + log log k + O(1)) when k is large. These bounds have
been improved slightly in work of Parsell [7], and Boklan and Wooley [2] have

obtained further modest improvements, so that one has the bounds G̃(9) 6
365, G̃(10) 6 497, ..., G̃(20) 6 2534, with the same asymptotic bound for G̃(k)
when k is large. The conclusion of Corollary 1.2 yields the superior bounds

G̃(7) 6 86, G̃(8) 6 117, G̃(9) 6 151, G̃(10) 6 189, ..., G̃(20) 6 789 and

G̃(k) 6 2k2 + 2− 2(log k)/(log 2).

Our proof of Theorem 1.1 in §3 makes use of an auxiliary mean value esti-
mate of independent interest, and this we establish in §2. When X is a large
positive number, define the exponential sum g(α) = gk(α;X) by

gk(α;X) =
∑

16x6X

e(αxk). (1.4)

Also, define the set of minor arcs m = mk to be the set of real numbers α ∈ [0, 1)
satisfying the property that, whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and
|qα− a| 6 (2k)−1X1−k, then q > (2k)−1X.

Theorem 1.3. Suppose that s > k(k + 1). Then for each ε > 0, one has∫
m

|gk(α;X)|2s dα� X2s−k−1+ε. (1.5)
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Hitherto, in order to establish a bound of the shape (1.5), one would first
seek an estimate of the form∫ 1

0

|gk(α;X)|2t dα� X2t−k+ε, (1.6)

for some natural number t, and then apply a variant of Weyl’s inequality via
the trivial estimate∫

m

|gk(α;X)|2t+2u dα 6

(
sup
α∈m
|gk(α;X)|

)2u ∫ 1

0

|gk(α;X)|2t dα. (1.7)

For example, if one applies [13, Theorem 1.5], then one finds that

sup
α∈m
|gk(α;X)| � X1−σ(k)+ε,

with σ(k)−1 = 2k(k − 1). In addition, the bound (1.6) is supplied by [13,
Corollary 10.2] for t > k2 + k − 2. From (1.7) one would therefore obtain
the desired conclusion (1.5) with s = t + u provided that t > k2 + k − 2 and
u > k(k − 1), whence it suffices to take s > 2k2 − 2. In this way one sees
that Theorem 1.3 is unexpectedly strong. Indeed, in terms of the condition
imposed on s, the conclusion of Theorem 1.3 is superior to all bounds available
hitherto for k > 6. The relative strength of Theorem 1.3 is of utility in the
author’s work joint with Vaughan [11] concerning higher order terms in the
asymptotic formula in Waring’s problem.

A second consequence of the estimate supplied by Theorem 1.3 concerns
slim exceptional sets for the asymptotic formula in Waring’s problem, and this
topic we explore in §5. We measure the frequency with which the anticipated
formula (1.1) fails as follows. When ψ(t) is a function of a positive variable t,

we denote by Ẽs,k(N ;ψ) the number of integers n, with 1 6 n 6 N , for which∣∣∣Rs,k(n)− Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1

∣∣∣ > ns/k−1ψ(n)−1. (1.8)

It is convenient here, and in what follows, to refer to a function ψ(t) as being
a sedately increasing function when ψ(t) is a function of a positive variable t,
increasing monotonically to infinity, and satisfying the condition that when t
is large, one has ψ(t) = O(tδ) for a positive number δ sufficiently small in the

ambient context. Finally, we define G̃+(k) to be the least positive integer s for

which Ẽs,k(N ;ψ) = o(N) for some function ψ(t) increasing to infinity with t.
In §5 we establish the following theorem.

Theorem 1.4. One has G̃+(k) 6 k2− [(log k)/(log 2)]. Furthermore, one has

G̃+(7) 6 43, and when k > 8 one has G̃+(k) 6 k2 − 5. Finally, suppose that
k > 3 and that ψ(t) is a sedately increasing function. Then for each ε > 0,
one has

Ẽs,k(N ;ψ)� N1−1/k+εψ(N)2, for s > k(k + 1), (1.9)

and

Ẽs,k(N ;ψ)� N1−2/k+εψ(N)4, for s > k(k + 1) + 2k−3. (1.10)
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Sharper conclusions than those reported in (1.9) and (1.10) may be ob-
tained when s > k(k + 1), and s > k(k + 1) + 2k−3, respectively. How-
ever, we have chosen simplicity of exposition over excessive detail here. These
conclusions are superior to those described in the discussion associated with
Kawada and Wooley [6, Theorems 1.4, 1.5 and 1.6]. It follows from the

latter that Ẽs,k(N ;ψ) � N1−1/k+εψ(N)4 for s > s0(k), where s0(6) = 43,
s0(7) = 84, s0(8) = 164. In contrast, the estimate (1.9) of Theorem 1.4
delivers such conclusions with s0(6) = 42, s0(7) = 56 and s0(8) = 72. Sim-
ilarly, one finds from the above-cited discussion of Kawada and Wooley that

Ẽs,k(N ;ψ) � N1−2/k+εψ(N)4 for s > s1(k), where s1(6) = 51, s1(7) = 100,
s1(8) = 196. Here, the estimate (1.10) of Theorem 1.4 provides such conclu-
sions with s1(6) = 50, s1(7) = 72, s1(8) = 104. The estimates supplied by
[13, Theorem 1.5 and Corollary 10.2], meanwhile, lead in (1.7) to the permis-
sible exponent s1(k) = 2k2, and this proves superior to the conclusion (1.10)
supplied by Theorem 1.4 for k > 10.

Throughout the letter ε will denote a sufficiently small positive number. We
use � and � to denote Vinogradov’s well-known notation, implicit constants
depending at most on ε, unless otherwise indicated. In an effort to simplify
our analysis, we adopt the convention that whenever ε appears in a statement,
then we are implicitly asserting that for each ε > 0, the statement holds for
sufficiently large values of the main parameter. Note that the “value” of ε
may consequently change from statement to statement, and hence also the
dependence of implicit constants on ε. Finally, from time to time, we make
use of vector notation in a slightly unconventional manner. Thus, we may
write a 6 z 6 b to denote that a 6 zi 6 b for 1 6 i 6 t, and z − a to
denote the t-tuple (z1− a, . . . , zt− a). Confusion should not arise if the reader
interprets similar statements in like manner.

2. A minor arc estimate

Our goal in this section is to establish the minor arc estimate recorded in
Theorem 1.3. Our strategy involves adapting the argument of §10 of [13] to
an analogous treatment restricted to minor arcs only. We must first introduce
some notation. Define the exponential sums f(α) = fk(α;X) and F (β, θ) =
Fk(β, θ;X) by

fk(α;X) =
∑

16x6X

e(α1x+ . . .+ αkx
k)

and

Fk(β, θ;X) =
∑

16x6X

e(β1x+ . . .+ βk−2x
k−2 + θxk).

Recall also the definition (1.4) of the exponential sum g(α) = gk(α;X). In
addition, define the mean value Js,k(X) by

Js,k(X) =

∮
|fk(α;X)|2s dα. (2.1)
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We will omit the subscript k in what follows, since implicit will be the conven-
tion that all exponential sums have arguments of degree k. Here and elsewhere
we adopt the convention that, given a measurable function H : [0, 1)r → C,
for some natural number r, then∮

H(θ) dθ =

∫
[0,1)r

H(θ) dθ.

Finally, it is convenient to define

σs,j(x) =
s∑
i=1

(xji − x
j
s+i) (1 6 j 6 k).

Theorem 2.1. One has∫
m

|gk(α;X)|2s dα� X
1
2
k(k−1)−1(logX)2s+1Js,k(2X).

Proof. We begin by reinterpreting the mean value involving g(α) in terms of
an analogous one involving F (β, θ). Observe first that when h ∈ Zk−2, one
has ∫

m

∮
|F (β, θ)|2se(−β1h1 − . . .− βk−2hk−2) dβ dθ

=
∑

16x6X

δ(x,h)

∫
m

e(θσs,k(x)) dθ,

where

δ(x,h) =
k−2∏
j=1

(∫ 1

0

e(βj(σs,j(x)− hj)) dβj

)
.

By orthogonality, one has∫ 1

0

e(βj(σs,j(x)− hj)) dβj =

{
1, when σs,j(x) = hj,

0, when σs,j(x) 6= hj.

When 1 6 x 6 X, moreover, one has |σs,j(x)| 6 sXj (1 6 j 6 k − 2), and so∑
|h1|6sX

· · ·
∑

|hk−2|6sXk−2

δ(x,h) = 1.

Consequently, on noting that∑
16x6X

e(θσs,k(x)) = |g(θ)|2s,
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we deduce that∑
|h1|6sX

· · ·
∑

|hk−2|6sXk−2

∫
m

∮
|F (β, θ)|2se(−β1h1 − . . .− βk−2hk−2) dβ dθ

=

∫
m

∑
16x6X

(∑
h

δ(x,h)
)
e(θσs,k(x)) dθ

=

∫
m

|g(θ)|2s dθ.

It therefore follows from the triangle inequality that∫
m

|g(α)|2s dα 6
∑
|h1|6sX

· · ·
∑

|hk−2|6sXk−2

∫
m

∮
|F (β, θ)|2s dβ dθ

� X
1
2
(k−1)(k−2)

∫
m

∮
|F (β, θ)|2s dβ dθ. (2.2)

An argument similar to that employed in the last paragraph permits us to
show in addition that∫

m

∮
|F (β; θ)|2s dβ dθ =

∑
|h|6sXk−1

∫
m

∮
|f(α, θ)|2se(−αk−1h) dα dθ. (2.3)

Here, for the sake of clarity, we note that

f(α, θ) = f(α1, α2, . . . , αk−1, θ).

Observe next that by shifting the variable of summation, for each integer y
one has

f(α) =
∑

1+y6x6X+y

e(ψ(x− y;α)), (2.4)

where
ψ(z;α) = α1z + . . .+ αkz

k.

But as a consequence of the Binomial Theorem, if we adopt the convention
that α0 = 0, then we may write ψ(x− y;α) in the shape

ψ(x− y;α) =
k∑
i=0

βix
i,

where

βi =
k∑
j=i

(
j

i

)
(−y)j−iαj (0 6 i 6 k).

Write
K(γ) =

∑
16z6X

e(−γz). (2.5)

Then we deduce from (2.4) that when 1 6 y 6 X, one has

f(α) =

∫ 1

0

fy(α; γ)K(γ) dγ, (2.6)



WARING’S PROBLEM 7

in which we have written

fy(α; γ) =
∑

16x62X

e(ψ(x− y;α) + γ(x− y)). (2.7)

Define

Fy(α, θ;γ) =
s∏
i=1

fy(α, θ; γi)fy(−α,−θ;−γs+i).

Then on substituting (2.6) into (2.3), we deduce that when 1 6 y 6 X, one
has ∫

m

∮
|F (β; θ)|2s dβ dθ =

∑
|h|6sXk−1

∮
Ih(γ, y)K̃(γ) dγ, (2.8)

where

Ih(γ, y) =

∫
m

∮
Fy(α, θ;γ)e(−αk−1h) dα dθ (2.9)

and

K̃(γ) =
s∏
i=1

K(γi)K(−γs+i).

By orthogonality, one finds that∮
Fy(α, θ;γ)e(−αk−1h) dα =

∑
16x62X

∆(θ,γ, h, y), (2.10)

where ∆(θ,γ, h, y) is equal to

e(θσs,k(x−y)+γ1(x1−y)+ . . .+γs(xs−y)−γs+1(xs+1−y)− . . .−γ2s(x2s−y)),

when
s∑
i=1

((xi − y)j − (xs+i − y)j) = 0 (1 6 j 6 k − 2)

s∑
i=1

((xi − y)k−1 − (xs+i − y)k−1) = h,

(2.11)

and otherwise ∆(θ,γ, h, y) is equal to 0.

By applying the Binomial Theorem, one discerns that whenever the system
(2.11) is satisfied for the 2s-tuple x, then

s∑
i=1

(xji − x
j
s+i) = 0 (1 6 j 6 k − 2)

s∑
i=1

(xk−1i − xk−1s+i ) = h,

and hence

σs,k(x− y) =
s∑
i=1

((xi − y)k − (xs+i − y)k) = σs,k(x)− khy.
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Then it follows from (2.10) that∮
Fy(α, θ;γ)e(−αk−1h) dα = ωy,γ

∮
F0(α, θ;γ)e(−khyθ − hαk−1) dα,

where ωy,γ = e(−(γ1 + . . .+ γs− γs+1− . . .− γ2s)y). From here, we are led via
(2.9) to the relation∑
|h|6sXk−1

Ih(γ; y) = ωy,γ

∫
m

∮
F0(α, θ;γ)

∑
|h|6sXk−1

e(−khyθ − hαk−1) dα dθ

�
∫
m

∮
|F0(α, θ;γ)|min{Xk−1, ‖kyθ + αk−1‖−1} dα dθ.

We may consequently conclude thus far that

X−1
∑

16y6X

∑
|h|6sXk−1

Ih(γ; y)�
∫
m

∮
|F0(α, θ;γ)|Ψ(θ, αk−1) dα dθ, (2.12)

where

Ψ(θ, αk−1) = X−1
∑

16y6X

min{Xk−1, ‖kyθ + αk−1‖−1}.

Suppose that θ ∈ R, and that b ∈ Z and r ∈ N satisfy (b, r) = 1 and
|θ− b/r| 6 r−2. Then as in the discussion leading to [13, equation (10.6)], one
finds that

Ψ(θ, αk−1)� Xk−1(X−1 + r−1 + rX−k)(log(2r)). (2.13)

By Dirichlet’s approximation theorem, given θ ∈ m, one may find b ∈ Z and
r ∈ N with (b, r) = 1, |rθ − b| 6 (2k)−1X1−k and r 6 2kXk−1. The definition
of m ensures that r > (2k)−1X, and hence it follows from (2.13) that

sup
θ∈m

Ψ(θ, αk−1)� Xk−2 logX.

On recalling (2.7) and substituting this estimate into (2.12), and then applying
Hölder’s inequality, one finds that

X−1
∑

16y6X

∑
|h|6sXk−1

Ih(γ; y)

� Xk−2(logX)
2s∏
i=1

(∫
m

∮
|f0(α, θ; γi)|2s dα dθ

)1/(2s)
6 Xk−2(logX) sup

γ∈[0,1)

∫ 1

0

∮
|f0(α, θ; γ)|2s dα dθ

= Xk−2(logX)

∮
|fk(α; 2X)|2s dα.
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We therefore deduce from (2.1) and (2.8) that∫
m

∮
|F (β; θ)|2s dβ dθ = X−1

∑
16y6X

∫
m

∮
|F (β; θ)|2s dβ dθ

� Xk−2(logX)Js,k(2X)

∮
|K̃(γ)| dγ. (2.14)

On recalling (2.5), we find that∫ 1

0

|K(γ)| dγ 6
∫ 1

0

min{X, ‖γ‖−1} dγ � logX,

and hence ∮
|K̃(γ)| dγ � (logX)2s.

On substituting this estimate into (2.14), we conclude that∫
m

∮
|F (β; θ)|2s dβ dθ � Xk−2(logX)2s+1Js,k(2X),

whence (2.2) delivers the upper bound∫
m

|g(α)|2s dα� X
1
2
(k+1)(k−2)(logX)2s+1Js,k(2X).

The conclusion of the theorem is now immediate. �

Theorem 1.1 of [13] shows that when s > k(k + 1), one has

Js,k(2X)� X2s− 1
2
k(k+1)+ε.

Then under the same condition on s, it follows from Theorem 2.1 that∫
m

|gk(α;X)|2s dα� X
1
2
k(k−1)−1+ε(X2s− 1

2
k(k+1)+ε)� X2s−k−1+ε.

This establishes the conclusion of Theorem 1.3.

3. The asymptotic formula

Equipped with the upper bound supplied by Theorem 1.3, the argument
leading to Theorem 1.1 is essentially routine. We begin by deriving a less
precocious minor arc estimate. In this context, for each natural number k, we
define the positive integer s0(j) = s0(k, j) by means of the relation

s0(k, j) = 2k2 + 1−
⌈

2kj − 2j

k + 1− j

⌉
.

We then put

s1(k) = min
16j6k−1

2j6k(2k+1)

s0(k, j).
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Lemma 3.1. Suppose that s is a natural number with s > s1(k). Then there
exists a positive number δ with the property that∫

m

|gk(α;X)|s dα� Xs−k−δ.

Proof. Let l be a natural number with 1 6 l 6 k. Then by Hua’s lemma (see
[10, Lemma 2.5]), one has∫ 1

0

|g(α)|2l dα� X2l−l+ε. (3.1)

Let j be a natural number with 1 6 j 6 k − 1 and 2j 6 k(2k + 1), and write

t0(j) = 2k2 − 2kj − 2j

k + 1− j
and δ(j) = s0(j)− t0(j).

Then we find that 0 < δ(j) 6 1. By Hölder’s inequality, we have∫
m

|g(α)|s0(j) dα 6
(∫

m

|g(α)|2k(k+1) dα
)a(∫ 1

0

|g(α)|2j dα
)b
,

where

a =
k − j

k + 1− j
+

δ(j)

2k(k + 1)− 2j

and

b =
1

k + 1− j
− δ(j)

2k(k + 1)− 2j
.

Note, in particular, that the hypothesis 2j 6 k(2k + 1) ensures that b > 0.
Then by (3.1) and the conclusion of Theorem 1.3, we obtain the bound∫

m

|g(α)|s0(j) dα� Xε(X2k(k+1)−k−1)a(X2j−j)b � Xs0(j)−k−η+ε,

where

η = a− (k − j)b =
( k + 1− j

2k(k + 1)− 2j

)
δ(j) > 0.

From the definition of s1(k), we may therefore conclude that there is a positive
number η for which ∫

m

|g(α)|s1(k) dα� Xs1(k)−k−η+ε,

and the conclusion of the lemma follows on making use of the trivial estimate
|g(α)| 6 X. �

We are now equipped to establish Theorem 1.1. Consider a large integer
n, and put X = [n1/k]. Recall the definition of the minor arcs m from the
preamble to Theorem 1.3. The complement M = Mk of the minor arcs mk

within the unit interval [0, 1) is given by the union of the arcs

Mk(q, a) = {α ∈ [0, 1) : |qα− a| 6 (2k)−1X1−k},
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with 0 6 a 6 q 6 (2k)−1X and (a, q) = 1. We take s > s1(k), so that

s > 2k2 + 1− max
16j6k−1

2j6k(2k+1)

⌈
2kj − 2j

k + 1− j

⌉
.

Then by Lemma 3.1 and the triangle inequality, we have∫
m

g(α)se(−nα) dα 6 Xs−s1(k)
∫
m

|g(α)|s1(k) dα� Xs−k−δ,

for some positive number δ. Meanwhile, the methods of [10, §4.4] show that
under the same conditions on s one has∫

M

g(α)se(−nα) dα =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 + o(ns/k−1),

where the singular series Ss,k(n) is defined as in (1.2). Thus we deduce that
for s > s1(k), one has

Rs,k(n) =

∫
M

g(α)se(−nα) dα +

∫
m

g(α)se(−nα) dα

=
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 + o(ns/k−1).

We may therefore conclude that G̃(k) 6 s1(k), and this completes the proof
of Theorem 1.1.

The corollary to Theorem 1.1 is easily established by direct computation.

When k = 7 one obtains the estimate G̃(7) 6 86 by noting that the maximum
in (1.3) corresponds to the choice j = 5. Meanwhile, on taking j = 6, we find
that for k > 10 one has

2kj − 2j

k + 1− j
=

12k − 64

k − 5
= 12− 4

k − 5
> 11.

The same lower bound follows by direct computation for k = 8 and 9 by setting
j = 5. Thus, when k > 8, one has the upper bound

G̃(k) 6 (2k2 + 1)− 12 = 2k2 − 11.

Finally, on taking j = [(log k)/(log 2)] + 1, we find that 2j−1 6 k, and hence

2kj − 2j

k + 1− j
= 2j −

(2j + 2j − 2j2

k + 1− j

)
> 2j − 2,

since one has 2j−1 + j − j2 6 k + j − j2 < k + 1 − j for j > 2. We therefore
find from Theorem 1.1 that with this choice of j, one has

G̃(k) 6 2k2 + 1− (2j − 1) = 2k2 − 2

[
log k

log 2

]
.

This completes the proof of Corollary 1.2.
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4. Further consequences of the new minor arc bounds

The mean value Js,k(X) defined in (2.1) is the central object of attention
associated with Vinogradov’s mean value theorem. A consideration of diagonal
solutions, together with the product of local densities, suggests that when
k > 3 one should have

Js,k(X)� Xs +X2s− 1
2
k(k+1). (4.1)

For well over half a century, progress towards the conjectured estimate (4.1)
was so glacial that a serious consideration of its consequences for upper bounds

for such quantities as G̃(k) would have seemed premature. However, with
the author’s very recent work [13], the landscape has been transformed. The
estimate (4.1) is now known to hold for s > k2 + k + 1, only a factor 2
away from the smallest exponent s for which the non-diagonal contribution
would dominate the diagonal. Previously, such a bound was accessible only for
s > (1 + o(1))k2 log k. With such progress in the air, one may feel optimistic
enough to hope that the conjecture (4.1) is within reach. We therefore feel

justified in noting the consequences of the conjectured bound (4.1) for G̃(k).

Theorem 4.1. Suppose that k > 3 and the upper bound (4.1) holds. Then
one has

G̃(k) 6 k2 + 1− max
16j6k−1
2j6k2

⌈
kj − 2j

k + 1− j

⌉
. (4.2)

In particular, one has G̃(4) 6 15, G̃(k) 6 k2 − 2 (k > 5), G̃(k) 6 k2 − 3

(k > 8), G̃(k) 6 k2 − 4 (k > 17), and

G̃(k) 6 k2 + 1−
[

log k

log 2

]
(k > 3).

Proof. We imitate the proof of Lemma 3.1, and the discussion that follows,
noting that in view of the estimate (4.1), it follows from Theorem 2.1 that
when s > 1

2
k(k + 1), one has the conditional upper bound∫

m

|gk(α;X)|2s dα� X2s−k−1+ε.

The computations implicit in the consequences of (4.2) are easily completed
by imitating those described at the end of §3. �

The conclusions of Theorem 4.1 are superior to the unconditional estimates
currently available whenever k > 4. The main competitor for small values of

k are the bounds G̃(k) 6 2k due to Vaughan [8, 9]. While the latter bound is

superseded by the conditional bounds G̃(4) 6 15 and G̃(5) 6 23 of Theorem

4.1, the upper bound G̃(3) 6 8 of Vaughan remains unchallenged.

A further consequence of Theorem 1.3 concerns the density of integral solu-
tions of diagonal Diophantine equations. When s and k are natural numbers,
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and ai (1 6 i 6 s) are integers, we write

φ(x) =
s∑
i=1

aix
k
i ,

and we consider the Diophantine equation φ(x) = 0. We write N(B) for the
number of integral solutions of the equation φ(x) = 0 with |x| 6 B. Associated
with this equation are the (formal) real and p-adic densities. When L > 0,
define

λL(η) =

{
L(1− L|η|), when |η| 6 L−1,

0, otherwise.

The limit

σ∞ = lim
L→∞

∫
|ξ|61

λL(φ(ξ)) dξ,

when it exists, is called the real density. Meanwhile, given a natural number
q, we write

M(q) = card{x ∈ (Z/qZ)s : φ(x) ≡ 0 (mod q)}.
For each prime number p, we then put

σp = lim
H→∞

pH(1−s)M(pH),

provided that this limit exists, and refer to σp as the p-adic density.

Theorem 4.2. Let s and k be natural numbers with k > 3 and

s > 2k2 + 1− max
16j6k−1

2j6k(2k+1)

⌈
2kj − 2j

k + 1− j

⌉
.

Suppose that ai (1 6 i 6 s) are non-zero integers. Then one has

N(B) ∼ σ∞

(∏
p

σp

)
Bs−k.

Note that the p-adic solubility of the equation φ(x) = 0 is assured by the
work of Davenport and Lewis [3] for s > k2 + 1. The proof of Theorem 4.2 is
routine from the upper bound presented in Lemma 3.1. One may verify that
the methods of [10, Chapters 2 and 4] suffice in combination with Lemma 3.1
to deliver the desired asymptotic formula. Indeed, such a strategy is sketched
in [10, §§9.1 and 9.2]. Conditional improvements along the lines of Theorem
4.1 follow without any great effort.

5. Exceptional sets and the asymptotic formula

Our approach to the problem of bounding exceptional sets is modelled on
that applied in our recent work with Kawada [6]. We consider integers k and
s with k > 2 and s > k + 1. Suppose that N is a large positive integer, and
let ψ(t) be a sedately increasing function. We denote by Zs,k(N) the set of
integers n with N/2 < n 6 N for which the inequality (1.8) holds, and we
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abbreviate card(Zs,k(N)) to Z = Zs,k. Next, write X = Xk for [N1/k], and
recall the definition (1.4) of the exponential sum g(α) = gk(α;X). Also, let
mk and Mk be defined, respectively, as in the preamble to the statement of
Theorem 1.3, and that of the proof of Theorem 1.1 in §3. Then the argument
of [12] leading to equation (2.5) of that paper shows that there exist complex
numbers ηn = ηn(s, k), with |ηn| = 1, satisfying the condition that, with the
exponential sum K(α) = Ks,k(α) defined by

Ks,k(α) =
∑

n∈Zs,k(N)

ηn(s, k)e(nα),

one has ∫
m

|g(α)sK(α)| dα� N s/k−1ψ(N)−1Z. (5.1)

We begin by bounding G̃+(k). Define the natural number u0(j) = u0(k, j)
by means of the relation

u0(k, j) = k2 + 1−
⌈
kj − 2j−1

k + 1− j

⌉
,

and then put
u1(k) = min

16j6k−1
2j6k(2k+1)

u0(k, j).

Suppose that s > u1(k). Then an application of Schwarz’s inequality leads
from (5.1) to the upper bound

N s/k−1ψ(N)−1Z �
(∫

m

|g(α)|2s dα
)1/2(∫ 1

0

|K(α)|2 dα
)1/2

. (5.2)

But Parseval’s identity shows that∫ 1

0

|K(α)|2 dα =
∑

n∈Zs,k(N)

1 6 Z. (5.3)

Furthermore, since

2u0(k, j) > 2k2 − 2kj − 2j

k + 1− j
,

one finds just as in the argument of the proof of Lemma 3.1 that there exists
a positive number δ with the property that∫

m

|g(α)|2s dα� X2s−k−δ.

Thus, on recalling that X = [N1/k], we deduce that

N s/k−1ψ(N)−1Z � (N2s/k−1−δ/k)1/2Z1/2,

whence Z � N1−δ/kψ(N)2. Suppose that ψ(N) grows sufficiently slowly, say
ψ(N) = O(N δ/(3k)), as we are at liberty to assume. Then one concludes by
summing over dyadic intervals for N that

Ẽs,k(N ;ψ)� N1−δ/(4k) = o(N),
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and hence G̃+(k) 6 u1(k). The remaining conclusions of Theorem 1.4 con-

cerning the quantity G̃+(k) follow with some computation much as those con-

cerning G̃(k) in §3.

Suppose next that k > 3 and s > k(k + 1). Then it follows from Theorem
1.3 that ∫

m

|g(α)|2s dα� X2s−k−1+ε.

On substituting this estimate along with (5.3) into (5.2), we find on this occa-
sion that

N s/k−1ψ(N)−1Z � (N (2s−1)/k−1+ε)1/2Z1/2,

whence
Z � N1−1/k+εψ(N)2.

The estimate (1.9) is confirmed by summing over dyadic intervals.

Finally, we consider the situation with k > 3 and s > k(k + 1) + 2k−3. In
this situation we apply Schwarz’s inequality in an alternate manner to (5.1),
obtaining the upper bound

N s/k−1ψ(N)−1Z �
(∫

m

|g(α)|2s−2k−2

dα
)1/2(∫ 1

0

|g(α)2
k−2

K(α)2| dα
)1/2

.

Since 2s− 2k−2 > 2k(k + 1), we may again apply Theorem 1.3 to obtain∫
m

|g(α)|2s−2k−2

dα� X2s−2k−2−k−1+ε.

Meanwhile, as an immediate consequence of [5, Lemma 6.1], one finds that∫ 1

0

|g(α)2
k−2

K(α)2| dα� X2k−2−1Z +X2k−2−k/2+εZ3/2.

Hence we deduce that

N s/k−1ψ(N)−1Z �N ε(N2s/k−1−(2k−2+1)/k)1/2

× (N (2k−2−1)/kZ +N2k−2/k−1/2Z3/2)1/2

�N s/k−1+ε((N1−2/k)1/2Z1/2 + (N1−2/k)1/4Z3/4),

whence
Z � N1−2/k+εψ(N)4.

Thus the final conclusion (1.10) of Theorem 1.4 has been established, and this
completes the proof of the theorem.

References

[1] K. D. Boklan, The asymptotic formula in Waring’s problem, Mathematika 41 (1994),
329–347.

[2] K. D. Boklan and T. D. Wooley, On Weyl sums for smaller exponents, Funct. Approx.
Comment. Math., to appear.

[3] H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. Ser.
A 274 (1963), 443–460.

[4] K. B. Ford, New estimates for mean values of Weyl sums, Internat. Math. Res. Notices
(1995), 155–171.



16 TREVOR D. WOOLEY

[5] K. Kawada and T. D. Wooley, Relations between exceptional sets for additive problems,
J. London Math. Soc. (2) 82 (2010), 437–458.

[6] K. Kawada and T. D. Wooley, Davenport’s method and slim exceptional sets: the as-
ymptotic formulae in Waring’s problem, Mathematika 56 (2010), 305–321.

[7] S. T. Parsell, On the Bombieri-Korobov estimate for Weyl sums, Acta Arith. 138 (2009),
363–372.

[8] R. C. Vaughan, On Waring’s problem for cubes, J. Reine Angew. Math. 365 (1986),
122–170.

[9] R. C. Vaughan, On Waring’s problem for smaller exponents, II, Mathematika 33 (1986),
6–22.

[10] R. C. Vaughan, The Hardy-Littlewood method, 2nd edition, Cambridge University Press,
Cambridge, 1997.

[11] R. C. Vaughan and T. D. Wooley, The higher order terms in the asymptotic formula in
Waring’s problem, in preparation.

[12] T. D. Wooley, Slim exceptional sets and the asymptotic formula in Waring’s problem,
Math. Proc. Cambridge Philos. Soc. 134 (2003), 193–206.

[13] T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing, submitted,
arXiv:1101.0574.

School of Mathematics, University of Bristol, University Walk, Clifton,
Bristol BS8 1TW, United Kingdom

E-mail address: matdw@bristol.ac.uk


