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Abstract. When k > 1 and s is sufficiently large in terms of k, we derive
an explicit multi-term asymptotic expansion for the number of representa-
tions of a large natural number as the sum of s positive integral kth powers.

1. Introduction

As is usual in Waring’s problem, when k > 1, we letRs(n) denote the number
of representations of n as the sum of s kth powers of positive integers. Then,
as first discovered by Hardy and Littlewood [4], provided that s is sufficiently
large in terms of k, one has the asymptotic formula

Rs(n) ∼ Γ(1 + 1/k)s

Γ(s/k)
Ss(n)ns/k−1 (1.1)

as n→∞, where the singular series Ss(n) is defined by

Ss(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ark/q)
)s
e(−na/q). (1.2)

Here we use the familiar notation e(z) = e2πiz. This asymptotic formula has
been established by the first author [10, 11] for s > 2k (k > 3), and by
the second [14, 15] for s > 2k2 − 2k − 8 (k > 6). Meanwhile, Loh [8] has
demonstrated limitations to the quality of the error term which can be obtained
in the formula (1.1). In this memoir we explain the enigmatic phenomenon
discovered by Loh by showing, for the first time, that there are second and
higher order terms present in the asymptotic expansion of Rs(n). These new
terms resemble the main term, though for odd k there are intriguing differences.

Suppose that n is a natural number sufficiently large in terms of s and k,
and define P = n1/k. Let M denote the union of the major arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 P/(2kn)},
with 0 6 a 6 q 6 P and (a, q) = 1, and define the minor arcs m by means of
the relation m = [0, 1) \M. In addition, we introduce the Weyl sum

f(α) =
∑

16x6P

e(αxk). (1.3)
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Finally, when ν is a real number, we say that the exponent t is ν-admissible
for k when ∫

m

|f(α)|t dα = o(P t−k−ν) (1.4)

as P → ∞. We note that, given a 0-admissible exponent s0, the asymptotic
formula (1.1) holds whenever s > max{s0, 5, k + 1} (see [13, Theorem 4.4]).

When ν > 1, define the exponent σν(k) by

σν(k) =


2k + 2k−1ν, when 2 6 k 6 5,

2k2 − 2 + 2k−1(ν − 1), when k = 6, 7,

4k − 2 + 2k(k − 2)ν, when k > 8.

Then one may show that the exponent s is ν-admissible for k when s > σν(k).
When 2 6 k 6 5, such follows from the classical approach of [13, Chapters
2, 4]. Indeed, a careful analysis of the methods underlying [10, 11] (incorpo-
rating refinements in [1, 3, 5]) reveals that when k > 3 the exponent 3

2
2k is

1-admissible for k, and likewise that 2k+1 is 2-admissible for k. When k > 8,
on the other hand, the above assertion follows by combining [15, Theorems
10.1 and 11.1], whilst for k = 6, 7 one instead combines [15, Theorem 10.1]
with Weyl’s inequality (see [13, Lemma 2.4]).

In §§2–11 we enhance the familiar analysis of the major arc contribution in
Waring’s problem so as to derive higher order asymptotic expansions of shape

Rs(n) = ns/k−1(C0 + C1n
−1/k + . . .+ CJn

−J/k) + o(n(s−J)/k−1), (1.5)

as n→∞. We divide our results according to whether k is even or odd. Here
and in what follows, we put δk = 1 when k = 2, and δk = 0 when k > 3.

Theorem 1.1. Let k be even and J > 0. Suppose that s is J-admissible for k
and s > (J + 1)(k + 2) + δk. Then one has the asymptotic formula (1.5) with

Cj =
(
−1

2

)j (s
j

)
Γ(1 + 1/k)s−j

Γ((s− j)/k)
Ss−j(n) (0 6 j 6 J). (1.6)

Note that the singular series Ss−j(n) in this statement is defined via (1.2).
We recall that when s > 4, the singular series Ss(n) converges absolutely
and is non-negative. Further, one has Ss(n) � 1 when s > k + 2 + δk, and
Ss(n)� nε when s = k + 1 + δk. It is known that when s > 4k, the singular
series satisfies the lower bound Ss(n) � 1, and that such remains true for
s > 5 when k = 2, for s > 4 when k = 3, and for s > 3

2
k when k is not

a power of 2. This lower bound also holds for the integer n provided that
s > k + 1 + δk and in addition, for every natural number q, the congruence
xk1 + · · · + xks ≡ n (mod q) possesses a solution with (x1, q) = 1 (see the final
sections of [13, Chapters 2 and 4] for an account of such matters).

In order to describe our asymptotic formula when k is odd, we must intro-
duce a modified singular series. When a ∈ Z and q ∈ N, define

S(q, a) =

q∑
r=1

e(ark/q) and T (q, a) =

q∑
r=1

(
1

2
− r

q

)
e(ark/q). (1.7)
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Then, when 0 6 j 6 s, we define the modified singular series

Ss,j(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))s−jT (q, a)je(−na/q). (1.8)

Notice that Ss,0(n) = Ss(n). We demonstrate in Lemma 10.2 that the singular
series Ss,j(n) is absolutely convergent for s > 1

2
(j + 2)(k + 2).

Theorem 1.2. Let k be odd, k > 3 and 0 6 J 6 k. Suppose that the exponent
s is J-admissible for k and s > (J + 1)(k + 2). Then one has the asymptotic
formula (1.5) with

Cj =

(
s

j

)
Γ(1 + 1/k)s−j

Γ((s− j)/k)
Ss,j(n) (0 6 j 6 J). (1.9)

Aficionados of the circle method will anticipate that similar conclusions may
be obtained for almost all integers n under weaker conditions on s.

Theorem 1.3. Let k > 2 and J > 0. Suppose that 2s is 2J-admissible for k
and s > (J + 1)(k + 2) + δk. Then one has the following conclusions.

(i) When k is even, the asymptotic formula (1.5) holds for almost all integers
n with 1 6 n 6 N , with coefficients given by (1.6).

(ii) When k is odd and J 6 k, the asymptotic formula (1.5) holds for almost
all integers n with 1 6 n 6 N , with coefficients given by (1.9).

As we have noted, the main term in the asymptotic formula (1.5) is classi-
cal. This much was established by Hardy and Littlewood [4] in their series of
seminal papers concerning the application of their circle method to Waring’s
problem. Beyond this main term little was known until the work of Loh [8].
This shows that when k > 3, one has

Rk+1(n)− Γ(1 + 1/k)kSk+1(n)n1/k = Ω(n1/(2k)),

and further that for s > k + 2, one has

Rs(n)− Γ(1 + 1/k)s

Γ(s/k)
Ss(n)ns/k−1 = Ω−(n(s−1)/k−1). (1.10)

Theorem 1.1 shows that for even k, the Ω−-result (1.10) is explained precisely
by the presence in the asymptotic formula (1.5) of the secondary term

C1n
(s−1)/k−1 = −1

2
s

Γ(1 + 1/k)s−1

Γ((s− 1)/k)
Ss−1(n)n(s−1)/k−1.

When k is odd, Theorem 1.2 shows instead that one has the secondary term

C1n
(s−1)/k−1 = s

Γ(1 + 1/k)s−1

Γ((s− 1)/k)
Ss,1(n)n(s−1)/k−1.

Presumably, the modified singular series Ss,1(n) is non-zero under modest
conditions, and this would again precisely explain Loh’s discovery. However,
when k is odd this series does not have an interpretation as an Euler product,
and so in general it is not entirely clear how it behaves. In §13 we explore
what can be said concerning the behaviour of Ss,j(n).
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Theorem 1.4. Suppose that k is odd and s > 3
2
k + 3. Let Q be a positive

integer, and let n be a multiple of Q!. Then one has

Ss,1(n) = −1
2
Ss−1(n) +O(Q−1/(2k)).

When k is odd and s > 3
2
k + 3, the singular series Ss−1(n) is positive and

bounded away from zero (see [13, Theorem 4.6]). By taking Q = Q(s, k) to be
sufficiently large in terms of s and k, it therefore follows that −Ss,1(n)� 1 for
a positive proportion of n. If instead one takes Q to grow slowly with n, say
Q =

√
log log n, one has Q! = o(log n), and hence there are at least N/ logN

integers with 1 6 n 6 N for which Ss,1(n) = −1
2
Ss−1(n)+O(1/ log log logN).

Thus Ss,1(n) is frequently very close to −1
2
Ss−1(n). One is tempted to believe

that in fact this is usually the case, but in any case Loh’s conclusion (1.10) is
explained by this observation for odd k.

Finally, we show that the modified singular series Ss,j(n) is often non-zero
for small values of j.

Theorem 1.5. Suppose that j > 0 and s > 1
2
(j + 4)(k + 2). Then there is

a constant Cj > 0 such that, for all sufficiently large x, the number Nj(x) of
integers n with 1 6 n 6 x for which |Ss,j(n)| > Cj satisfies Nj(x) > Cjx.

The reader having a passing familiarity with the theory of modular forms
will recognise that in the case k = 2, corresponding to the representation of
integers as sums of squares, very precise asymptotic formulae are available
involving the Fourier coefficients of Eisenstein series and cusp forms (see, for
example, [6, §11.3]). This observation might prompt speculation that some
exotic generalisation of Eisenstein series and cusp forms might conceivably
describe Rs(n) also when k > 3. When k is even, the asymptotic formula
(1.5) supplied by Theorem 1.1 seems consistent with this speculation, since
each term is given by a classical singular series having an Euler product inter-
pretation. When k is odd, however, the modified singular series Ss,j(n) pose
interesting problems for such an explanation. Perhaps the exponential sums

q∑
r=1

ψ(r/q)e(ark/q),

in which ψ ∈ Z[x] has positive degree, demand further investigation.

This paper is organised as follows. In §§2–6 we examine even k. Follow-
ing some preliminary discussion in §2, we establish basic major arc estimates
in §3. Certain auxiliary estimates require multi-term asymptotic expansions,
and so in §4 we apply Euler-MacLaurin expansions, inserting the output into
corresponding major arc estimates in §5. We complete the proof of Theorem
1.1 in §6 by combining the contributions of these estimates. The treatment of
odd k in §§7–11 mirrors that of even k, though in §10 we briefly discuss the
novel modified singular series Ss,j(n). This establishes Theorem 1.2. In §12 we
discuss exceptional sets, proving Theorem 1.3. Finally, in §13, we investigate
the singular series Ss,j(n) for odd k, establishing Theorems 1.4 and 1.5.
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Our basic parameter is P , a sufficiently large positive number, and we will
normally take P = n1/k. Exceptionally in §12 we will take P = N1/k. In the
o-notation the limiting process will invariably be as P → ∞, or equivalently
n or N → ∞. In this paper, implicit constants in Vinogradov’s notation �
and � may depend on s, k and ε. Whenever ε appears in a statement, either
implicitly or explicitly, we assert that the statement holds for each ε > 0.
Finally, we write ‖θ‖ = min

m∈Z
|θ −m|.

2. Preliminary manœuvres, for even k

Suppose that s and k are natural numbers with s > k > 2 and k even. We
establish the multi-term asymptotic formula claimed in Theorem 1.1 by apply-
ing the Hardy-Littlewood method to analyse a modification of the standard
Waring problem. Let n be a positive integer sufficiently large in terms of s
and k. We recall that P = n1/k, and define R∗s(n) to be the number of integral
representations of n in the shape

n = xk1 + . . .+ xks , (2.1)

with |xi| 6 P (1 6 i 6 s). It is apparent that R∗s(n) is approximately 2sRs(n).
On accounting for the contribution arising from those representations in which
one or more variables are zero, we find that

R∗s(n) =
s∑
r=0

2s−r
(
s

r

)
Rs−r(n), (2.2)

whence

Rs(n) = 2−s
s∑
r=0

(−1)r
(
s

r

)
R∗s−r(n). (2.3)

Indeed, on substituting (2.2) into the right hand side of (2.3), we see that

2−s
s∑
r=0

(−1)r
(
s

r

)
R∗s−r(n) = 2−s

s∑
r=0

(−1)r
(
s

r

) s−r∑
l=0

2s−r−l
(
s− r
l

)
Rs−r−l(n)

=
s∑

u=0

2−u
(
s

u

)
Rs−u(n)

u∑
l=0

(−1)u−l
(
u

l

)
.

The innermost sum on the right hand side is equal to (1− 1)u, and so the only
non-zero term in the outermost sum is that with u = 0. The claimed relation
(2.3) therefore follows. In order to establish Theorem 1.1, it suffices to obtain
a multi-term asymptotic expansion for R∗t (n) when t is close to s. This, it
transpires, is more easily accomplished than the analogous task for Rt(n).

Next, define the generating function

h(α) =
∑
|x|6P

e(αxk), (2.4)
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and, when B ⊆ [0, 1) is measurable, put

R∗t (n;B) =

∫
B

h(α)te(−nα) dα. (2.5)

By orthogonality, we have

R∗t (n) = R∗t (n;M) +R∗t (n;m). (2.6)

The hypotheses of the statement of Theorem 1.1 permit us the assumption
that s is J-admissible for k, and this, in essence, takes care of the analysis of
R∗t (n;m). The lemma below formalises this observation. We note for future
reference that, in view of (1.3) and (2.4), one has the relation

h(α) = 1 + 2f(α). (2.7)

Lemma 2.1. Suppose that J > 0 and s > k + J + 1. Then for 0 6 t 6
s− k − J − 1, one has

R∗t (n; [0, 1))� P s−k−J−1. (2.8)

Suppose instead that s is J-admissible for k and s− k − J 6 t 6 s. Then

R∗t (n;m) = o(P s−k−J). (2.9)

Proof. An application of the triangle inequality within (2.5) leads, via (2.7),
to the bound

R∗t (n;B)� 1 +

∫
B

|f(α)|t dα.

When 0 6 t 6 s − k − J − 1, therefore, the trivial bound |f(α)| 6 P yields
(2.8). When instead s− k−J 6 t 6 s, one finds from Hölder’s inequality that

R∗t (n;m)� 1 +
(∫

m

|f(α)|s dα
)t/s(∫ 1

0

dα
)1−t/s

.

In the first integral on the right hand side, we invoke the hypothesis that s is
J-admissible for k, and apply the associated estimate (1.4) with t replaced by
s. Since t/s 6 1 we obtain (2.9). This completes the proof of the lemma. �

By substituting the conclusions of Lemma 2.1 into (2.3), and noting (2.6),
we deduce that when s is J-admissible and s > k + J + 1, then

Rs(n) = 2−s
k+J∑
r=0

(−1)r
(
s

r

)
R∗s−r(n;M) + o(P s−k−J). (2.10)

Thus it remains to analyse R∗s−r(n;M) for 0 6 r 6 k + J .

3. The major arc contribution truncated, for even k

Our first step in the analysis of R∗s−r(n;M) is the replacement of the gener-
ating function h(α) in (2.5) by a suitable approximation. This requires a little
preparation. Define S(q, a) as in (1.7), and when β ∈ R put

v(β) =

∫ P

0

e(βγk) dγ. (3.1)
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We define f ∗(α) for α ∈M by taking

f ∗(α) = q−1S(q, a)v(α− a/q) when α ∈M(q, a). (3.2)

From [13, Theorem 4.1], it therefore follows that when 0 6 a 6 q 6 P and
(a, q) = 1, one has

sup
α∈M(q,a)

|f(α)− f ∗(α)| � q1/2+ε 6 P 1/2+ε, (3.3)

whence (2.7) yields

sup
α∈M
|h(α)− 2f ∗(α)| � P 1/2+ε. (3.4)

An application of the binomial theorem within (2.5) reveals that for non-
negative integers t, one has

R∗t (n;M) =
t∑
l=0

(
t

l

)
It,l(n), (3.5)

where

It,l(n) =

∫
M

(2f ∗(α))t−l(h(α)− 2f ∗(α))le(−nα) dα. (3.6)

Lemma 3.1. Suppose that k > 2, and that J and r are non-negative integers.
Then whenever l > 2J − 2r and s > max{l + r, k + 2J + 4}, one has

Is−r,l(n) = o(P s−k−J).

Proof. When k = 2, the methods of [13, Chapter 4] deliver the upper bound∫
M

|f ∗(α)|k+2 dα� P 2+ε, (3.7)

a bound that may be confirmed also when k > 3 by the methods underlying
the proof of [12, Lemma 5.1]. We apply this estimate in order to simplify the
estimation of the integral Is−r,l(n).

We begin by considering the situation in which s > k + r + l + 2. Here, by
applying the trivial bound f ∗(α) � P in (3.6), and then utilising (3.4) and
(3.7), we obtain the estimate

Is−r,l(n)�
(

sup
α∈M
|h(α)− 2f ∗(α)|

)l(
P s−k−r−l−2

∫
M

|f ∗(α)|k+2 dα
)

� P s−k−r−l/2+ε.

The hypothesis l > 2J − 2r therefore ensures that

Is−r,l(n)� P s−k−J−1/2+ε = o(P s−k−J).

This completes the proof of the lemma in this first situation.

It remains to consider those circumstances in which

r + l 6 s 6 k + r + l + 1.
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Here we may assume without loss that l > 2J − 2r+ 3, for if instead one were
to have l 6 2J − 2r + 2, then

s 6 k + r + (2J − 2r + 2) + 1 6 k + 2J + 3,

contradicting the hypothesis s > k+ 2J + 4. Note next that the measure of M
is O(P 2−k). Let ω = (s− r− l)/(k+ 2). Then, by applying Hölder’s inequality
to (3.6), we obtain

Is−r,l(n)�
(

sup
α∈M
|h(α)− 2f ∗(α)|

)l(∫
M

|f ∗(α)|k+2 dα
)ω(∫

M

dα
)1−ω

.

We therefore find from (3.4) and (3.7) that Is−r,l(n) = O(P λ+ε), where

λ = s− k − r − 1
2
l + 2− 2(s− r − l)/(k + 2). (3.8)

We now divide into cases.

First, when l > 2J − 2r + 4, it follows from the hypothesis s > l + r that

l > 2J − 2r + 4− 4(s− r − l)/(k + 2),

whence
r + 1

2
l − 2 + 2(s− r − l)/(k + 2) > J.

Thus we deduce from (3.8) that λ < s− k − J , so that Is−r,l(n) = o(P s−k−J).

Otherwise, we have 2J − 2r+ 3 6 l 6 2J − 2r+ 4. Here, if one were to have
s 6 1

4
(k + 2) + r + l, then we obtain

s 6 k + 2J − r + 1
4
(18− 3k) 6 k + 2J + 3,

contradicting the hypothesis s > k+2J+4. Then we have s > 1
4
(k+2)+r+ l,

so from (3.8) we infer that

λ < s− k − r − 1
2
(l − 3) 6 s− k − r − (J − r).

Thus, in this final situation, we again deduce that Is−r,l(n) = o(P s−k−J), and
the proof of the lemma is complete. �

Notice that when s > k + 2J + 4 and r > J , the conclusion of Lemma 3.1
ensures that Is−r,l(n) = o(P s−k−J). Thus, on combining (2.10) and (3.5) with
Lemma 3.1, we deduce that whenever s > k + 2J + 4 one has

Rs(n) = 2−s
J∑
r=0

(−1)r
(
s

r

) 2J−2r∑
l=0

(
s− r
l

)
Is−r,l(n) + o(P s−k−J). (3.9)

4. An auxiliary lemma, for even k

Before proceeding further, we must estimate certain multiple sums over
arithmetic progressions. We first recall two standard tools, beginning with
the Euler-MacLaurin formula. The associated Bernoulli numbers Bκ (κ > 0)
may be defined by putting B0 = 1, B1 = −1

2
, and iterating the relation

Bκ =
κ∑
j=0

(
κ

j

)
Bκ−j (κ > 2).
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The Bernoulli polynomials Bκ(x) may then be defined by taking

Bκ(x) =
κ∑
j=0

(
κ

j

)
Bκ−jx

j (κ > 0).

We write {x} = x−bxc, where bxc denotes the greatest integer no larger than
x, and write dxe for the least integer no smaller than x. It is convenient then
to write βκ(x) = Bκ({x}) for κ > 0.

Lemma 4.1. Let a and b be real numbers with a < b, and let K be a positive
integer. Suppose that F has continuous derivatives through the (K−1)-st order
on [a, b], that the K-th derivative of F exists and is continuous on (a, b), and
|F (K)(x)| is integrable on [a, b]. Then∑

a<n6b

F (n) =

∫ b

a

F (x) dx+
K∑
κ=1

(−1)κ

κ!

(
βκ(b)F

(κ−1)(b)− βκ(a)F (κ−1)(a)
)

− (−1)K

K!

∫ b

a

βK(x)F (K)(x) dx.

Proof. This is essentially the version of the Euler-MacLaurin summation for-
mula provided in [9, Theorem B.5]. The statement of the latter demands
that F (K)(x) exist and be continuous on [a, b]. However, the argument of the
proof of [9, Theorem B.5] remains applicable if instead F (K)(x) exists and is
continuous on (a, b), and in addition |F (K)(x)| is integrable on [a, b]. �

Next, we recall Faà di Bruno’s formula for the N -th derivative of a compo-
sition of functions.

Lemma 4.2. Suppose that F and G have continuous derivatives of order up
to the N th on an open interval containing x. Then

dN

dxN
F (G(x)) =

∑ N !

m1! . . .mN !
F (m1+...+mN )(G(x))

N∏
j=1

(
G(j)(x)

j!

)mj

,

where the summation is over non-negative integers m1, . . . ,mN satisfying

m1 + 2m2 + . . .+NmN = N.

Proof. See [7] for an account of this formula and its history. �

We apply Lemmata 4.1 and 4.2 in combination to obtain an asymptotic
formula for an important auxiliary sum. Let X be a positive real number, and
let θ be a non-negative real exponent. When q ∈ N and r ∈ Z, we define

Υq,r(X; θ) =
∑

−(X+r)/q6h6(X−r)/q

(Xk − (qh+ r)k)θ. (4.1)

Lemma 4.3. When 1 6 N 6 dθe, one has

Υq,r(X; θ) = (2X/q)XkθΓ(1 + θ)Γ(1 + 1/k)

Γ(1 + θ + 1/k)
+O

(
Xkθ(q/X)N−1

)
.
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Proof. We apply Lemma 4.2 with

F (y) = yθ and G(x) = Xk − (qx+ r)k. (4.2)

Write a = −(X + r)/q and b = (X − r)/q. Then one finds that

G(a) = Xk − (−X)k = 0 and G(b) = Xk −Xk = 0.

Further, when 0 6 j 6 k, one has

G(j)(x) = − k!

(k − j)!
qj(qx+ r)k−j, (4.3)

whilst G(j)(x) = 0 for j > k. Also, when 0 6 m 6 dθe, one has

F (m)(y) = θ(θ − 1) . . . (θ −m+ 1)yθ−m, (4.4)

where the condition y 6= 0 should be imposed in case m > θ. It follows from
Lemma 4.2 that F (G(x)) has continuous derivatives through the N -th order on
(a, b), continuous derivatives through the (N−1)-st order on [a, b], and further
|dNF (G(x))/dxN | is integrable on [a, b]. Note also that when 0 6 m < θ, one
has F (m)(G(a)) = F (m)(G(b)) = 0. Then Lemma 4.2 shows that

dκ

dxκ
F (G(x))

∣∣∣∣
x=a

=
dκ

dxκ
F (G(x))

∣∣∣∣
x=b

= 0 (0 6 κ < θ).

On substituting these conclusions into Lemma 4.1, we see that∑
a6h6b

F (G(h)) =

∫ b

a

F (G(x)) dx− (−1)N

N !

∫ b

a

βN(x)
dN

dxN
F (G(x)) dx. (4.5)

The first term on the right hand side of (4.5) is easily evaluated. By making
the change of variable y = (qx+ r)/X, we find that∫ b

a

F (G(x)) dx = q−1Xkθ+1

∫ 1

−1
(1− yk)θ dy

= (2X/q)XkθΓ(1 + θ)Γ(1 + 1/k)

Γ(1 + θ + 1/k)
. (4.6)

For the second term we must work harder. When θ is an integer, it follows
from (4.3) and (4.4) via Lemma 4.2 that one has the upper bound

sup
a6x6b

∣∣∣∣ dN

dxN
F (G(x))

∣∣∣∣� qNXkθ−N .

When θ is not an integer, on the other hand, say {θ} = 1− ν, then we find in
like manner that

sup
(a+b)/26x6b

∣∣∣∣(X − qx− r)ν dN

dxN
F (G(x))

∣∣∣∣� qNXkθ−N+ν

and

sup
a6x6(a+b)/2

∣∣∣∣(X + qx+ r)ν
dN

dxN
F (G(x))

∣∣∣∣� qNXkθ−N+ν .
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Thus we deduce that∫ b

a

βN(x)
dN

dxN
F (G(x)) dx

� qNXkθ−N+ν
(∫ b

a

(X + qx+ r)−ν + (X − qx− r)−ν dx
)

� (qNXkθ−N+ν)(q−1X1−ν)� Xkθ(q/X)N−1. (4.7)

Since this estimate is immediate when θ is an integer, the conclusion of the
lemma follows on substituting (4.6) and (4.7) into (4.5), and then recalling the
definition (4.1) of Υq,r(X; θ). �

This lemma may be extended by induction to derive a multidimensional
generalisation. When q ∈ N and r1, . . . , rl ∈ Z, we define

Ξ(l)
q,r(X; θ) =

∑
|x1|6X

x1≡r1 (mod q)

. . .
∑
|xl|6X

xl≡rl (mod q)

(Xk − xk1 − . . .− xkl )θ, (4.8)

where the summands are constrained by the inequality xk1 + . . .+ xkl 6 Xk.

Lemma 4.4. When 1 6 N 6 dθe, one has

Ξ(l)
q,r(X; θ) = (2X/q)lXkθΓ(1 + θ)Γ(1 + 1/k)l

Γ(1 + θ + l/k)

+O
(
Xkθ(q/X)N−1(1 +X/q)l−1

)
.

Proof. We proceed by induction on l, noting that the case l = 1 is already
established by Lemma 4.3. Suppose then that L > 1, and that the desired
conclusion has been established for 1 6 l < L. From (4.8), we obtain

Ξ(L)
q,r (X; θ) =

∑
−(X+rL)/q6hL6(X−rL)/q

Ξ
(L−1)
q,r′ (Y ; θ), (4.9)

in which we have written

r′ = (r1, . . . , rL−1) and Y = (Xk − (qhL + rL)k)1/k.

Our inductive hypothesis supplies the asymptotic formula

Ξ
(L−1)
q,r′ (Y ; θ) = (2Y/q)L−1Y kθΓ(1 + θ)Γ(1 + 1/k)L−1

Γ(1 + θ + (L− 1)/k)

+O
(
Y kθ(q/Y )N−1(1 + Y/q)L−2

)
.

By substituting this expression into (4.9), we deduce that

Ξ(L)
q,r (X; θ) =

Γ(1 + θ)Γ(1 + 1/k)L−1

Γ(1 + θ + (L− 1)/k)
T0 +O(Xkθ(q/X)N−1(1 +X/q)L−1),

(4.10)
where

T0 = (2/q)L−1
∑

−(X+rL)/q6hL6(X−rL)/q

(
Xk − (qhL + rL)k

)θ+(L−1)/k
. (4.11)
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An application of Lemma 4.3 leads from (4.11) to the asymptotic relation

T0 = (2X/q)LXkθΓ(1 + θ + (L− 1)/k)Γ(1 + 1/k)

Γ(1 + θ + L/k)
+O

(
Xkθ(q/X)N−L

)
.

We therefore infer from (4.10) that the inductive hypothesis holds for l = L,
confirming the inductive step and completing the proof of the lemma. �

5. The major arc contribution evaluated, for even k

Our goal in this section is the evaluation of the integral It,l(n) defined in
(3.6). With this objective in mind, we consider the auxiliary integral

Ku,l(n) =

∫
M

(2f ∗(α))uh(α)le(−nα) dα. (5.1)

Note that, on recalling the definition (2.4) of h(α), this integral may be rewrit-
ten in the shape

Ku,l(n) = 2u
∑
|m1|6P

. . .
∑
|ml|6P

Ru(n−mk
1 − . . .−mk

l ), (5.2)

where

Ru(m) =

∫
M

f ∗(α)ue(−mα) dα. (5.3)

Before refining the conventional major arc analysis of Ru(m) so as to extract
a sharper error term, we pause to record two estimates for the auxiliary sum

V B
A (u; θ) =

∑
A6q<B

q∑
a=1

(a,q)=1

qθ|q−1S(q, a)|u. (5.4)

Lemma 5.1. When u > k + 1 + δk one has

V Q
1 (u; θ)� 1 +Q1+θ−(u−1−δk)/k+ε,

and when u > k(1 + θ) + 1 + δk one has

V ∞Q (u; θ)� Q1+θ−(u−1−δk)/k+ε.

Proof. The conclusion of [13, Lemma 4.9] supplies the bound∑
16q62Q

q∑
a=1

(a,q)=1

|q−1S(q, a)|k+1+δk � Qε.

Then it follows from [13, Theorem 4.2] that∑
Q6q<2Q

qθ
q∑

a=1
(a,q)=1

|q−1S(q, a)|u � Q1+θ−(u−1−δk)/k+ε,

and the desired estimates follow by summing over dyadic intervals. �
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Before announcing our refinement of the conventional major arc analysis,
we define for future reference the truncated singular series

Su(m;P ) =
∑

16q6P

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)u
e(−ma/q). (5.5)

Lemma 5.2. Suppose that u is an integer with u > (J + 1)k + 2 + δk. Then

Su(m;P ) = Su(m) +O(P−J−1/(2k)).

Also, there is a positive number η such that, whenever |m| 6 un, one has

Ru(m) = ∆m
Γ(1 + 1/k)u

Γ(u/k)
Su(m)mu/k−1 +O(P u−k−J−η),

where ∆m = 1 when m > 0, and ∆m = 0 when m < 0.

Proof. On recalling (3.2) and (5.3), we see that

Ru(m) =
∑

16q6P

q∑
a=1

(a,q)=1

(q−1S(q, a))ue(−ma/q)Iu(m; q), (5.6)

where

Iu(m; q) =

∫ P/(2kqn)

−P/(2kqn)
v(β)ue(−βm) dβ.

Define

I(m) =

∫ ∞
−∞

v(β)ue(−βm) dβ. (5.7)

This integral is absolutely convergent for u > k + 1, as is immediate from [13,
Theorem 7.3]. The latter theorem also yields the estimate

Iu(m; q)− I(m)� P u

∫ ∞
P/(2kqn)

(1 + P kβ)−u/k dβ � (qn/P )u/k−1.

On substituting this relation into (5.6) and then recalling (5.4) and (5.5),
therefore, we obtain

Ru(m)−Su(m;P )I(m) 6
∑

16q6P

|Iu(m; q)− I(m)|
q∑

a=1
(a,q)=1

|q−1S(q, a)|u

� (n/P )u/k−1V P+1
1 (u;u/k − 1).

Our hypothesis concerning u ensures that u/k − 1 > J + (2 + δk)/k, and thus
we discern from Lemma 5.1 that

Ru(m)−Su(m;P )I(m)� P u−k−J−1/(2k). (5.8)

The integral (5.7) is the familiar singular integral in Waring’s problem. In
the integral form (3.1) in which we have defined the generating function v(β), a
classical treatment of the type described on [2, pages 21–23] yields the formula

I(m) = ∆m
Γ(1 + 1/k)u

Γ(u/k)
mu/k−1.
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Also, our hypothesis on u leads from (1.2) and (5.5) via (5.4) and Lemma 5.1
to the bound

Su(m)−Su(m;P ) 6 V ∞P (u; 0)� P 1−(u−1−δk)/k+ε � P−J−1/(2k).

The proof of the lemma follows by substituting these estimates into (5.8). �

This lemma may be combined with Lemma 4.4 in order to obtain an asymp-
totic formula for Ku,l(n).

Lemma 5.3. Suppose that u is an integer with u > (J + 1)k + 2 + δk. Then
there is a positive number η for which

Ku,l(n) = 2u+l
Γ(1 + 1/k)u+l

Γ((u+ l)/k)
Su+l(n)n(u+l)/k−1 +O(P u+l−k−J−η).

Proof. On recalling the formula (5.2) for Ku,l(n), we find from Lemma 5.2 that
there is a positive number η such that

Ku,l(n) = 2u
Γ(1 + 1/k)u

Γ(u/k)
T1 +O(P u+l−k−J−η), (5.9)

where

T1 =
∑
|m1|6P

. . .
∑
|ml|6P

mk
1+...+m

k
l 6n

Su(n−mk
1 − . . .−mk

l )(n−mk
1 − . . .−mk

l )
u/k−1.

Applying the definition (1.2) of the singular series, we find that

T1 =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)u
Ω(n; q, a), (5.10)

where Ω(n; q, a) is equal to∑
|m1|6P

. . .
∑
|ml|6P

mk
1+...+m

k
l 6n

(n−mk
1 − . . .−mk

l )
u/k−1e(−(n−mk

1 − . . .−mk
l )a/q).

We sort the summands into arithmetic progressions modulo q and recall (4.8).
Thus we see that

Ω(n; q, a) =

q∑
r1=1

. . .

q∑
rl=1

Ξ(l)
q,r(P ;u/k − 1)e(−(n− rk1 − . . .− rkl )a/q).

When 1 6 q 6 P , we apply Lemma 4.4 with N = J + 1 to obtain

Ω(n; q, a) = 2l
Γ(u/k)Γ(1 + 1/k)l

Γ((u+ l)/k)
n(u+l)/k−1T2 +O(T3), (5.11)

where

T2 = q−l
q∑

r1=1

. . .

q∑
rl=1

e(−(n− rk1 − . . .− rkl )a/q)

and
T3 = qlP u−k(q/P )J+1−l � qJ+1/(2k)P u+l−k−J−1/(2k).
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When q > P , meanwhile, one has the trivial estimate Ω(n; q, a)� P u+l−k. On
recalling (1.7), we find that T2 = (q−1S(q, a))le(−na/q). Thus, on substituting
(5.11) into (5.10) and recalling (5.4) and (5.5), we discern that

T1 = 2l
Γ(u/k)Γ(1 + 1/k)l

Γ((u+ l)/k)
Su+l(n;P )n(u+l)/k−1 +O(T4), (5.12)

where

T4 = P u+l−k−J−1/(2k)V P
1 (u; J + 1/(2k)) + P u+l−kV ∞P (u; 0).

In view of our hypothesis on u, an application of Lemma 5.1 yields the bound
T4 � P u+l−k−J−1/(2k). Then on recalling the first conclusion of Lemma 5.2, we
deduce from (5.12) that

T1 = 2l
Γ(u/k)Γ(1 + 1/k)l

Γ((u+ l)/k)
Su+l(n)n(u+l)/k−1 +O(P u+l−k−J−1/(2k)).

Making use of this estimate within (5.9), therefore, we obtain the asymptotic
formula claimed in the statement of the lemma, and thus the proof of the
lemma is complete. �

6. Combining the major arc contributions, for even k

Having evaluated asymptotically the expression Ku,l(n), under appropriate
conditions on u, we next seek to assemble the contributions comprising It,l(n),
and thereby evaluate Rs(n).

Lemma 6.1. When l and t are natural numbers with t− l > (J + 1)k+ 2 + δk,
one has It,l(n) = o(P t−k−J). Meanwhile, one has

It,0(n) = 2t
Γ(1 + 1/k)t

Γ(t/k)
nt/k−1St(n) + o(P t−k−J).

Proof. It follows from (3.6), (5.1) and the binomial theorem that

It,l(n) =
l∑

v=0

(−1)v
(
l

v

)∫
M

(2f ∗(α))t−l+vh(α)l−ve(−nα) dα

=
l∑

v=0

(−1)v
(
l

v

)
Kt−l+v,l−v(n).

Suppose temporarily that l > 1. Then we find from Lemma 5.3 that

It,l(n) = 2t
Γ(1 + 1/k)t

Γ(t/k)
St(n)nt/k−1

l∑
v=0

(−1)v
(
l

v

)
+ o(P t−k−J).

The first conclusion of the lemma consequently follows by noting that

l∑
v=0

(−1)v
(
l

v

)
= (1− 1)l = 0 (l > 1).

When l = 0, meanwhile, the desired conclusion follows directly from Lemma
5.2. This completes the proof of the lemma. �
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We are now equipped to prove Theorem 1.1. Suppose that s is J-admissible
for k. Observe first that, as a consequence of Lemma 6.1, one finds that
whenever 0 6 r 6 J and s− 2J > (J + 1)k + 2 + δk, then

2J−2r∑
l=0

(
s− r
l

)
Is−r,l(n) = 2s−r

Γ(1 + 1/k)s−r

Γ((s− r)/k)
Ss−r(n)n(s−r)/k−1 + o(P s−k−J).

We therefore deduce from (3.9) that whenever s > (J + 1)(k + 2) + δk, then

Rs(n) =
J∑
r=0

(
s

r

)(
−1

2

)r Γ(1 + 1/k)s−r

Γ((s− r)/k)
Ss−r(n)n(s−r)/k−1 + o(n(s−J)/k−1).

On recalling (1.5) and (1.6), we find that the proof of Theorem 1.1 is complete.

We remark that in the analysis yielding Lemmata 4.3 and 4.4, it is the
vanishing of high order derivatives that eliminates the potential existence of
additional terms in the asymptotic formula delivered by Theorem 1.1. In cir-
cumstances in which θ is an integer, one may apply the Euler-MacLaurin sum-
mation formula to obtain additional terms in Lemma 4.3 when N > dθe, and
presumably these would lead to a zoo of additional terms of order n(s−J)/k−1 in
the asymptotic formula for Rs(n) when s is a multiple of k and J > ds/k− 1e.

7. Preliminary manœuvres, for odd k

Our approach to proving Theorem 1.2 is broadly similar to that employed in
the proof of Theorem 1.1. Although we are consequently able to economise in
our exposition, numerous technical complications force us to discuss this odd
situation separately. We now suppose that s and k are natural numbers with
s > k > 3 and k odd. On this occasion we consider directly the number Rs(n)
of integral representations of n in the shape (2.1) with 1 6 xi 6 P (1 6 i 6 s).
When B is measurable, we put

Rs(n;B) =

∫
B

f(α)se(−nα) dα. (7.1)

Thus, by orthogonality, one has

Rs(n) = Rs(n;M) +Rs(n;m). (7.2)

Lemma 7.1. When s is J-admissible for k, one has Rs(n;m) = o(P s−k−J).

Proof. On applying the triangle inequality, the desired conclusion is immediate
from the definition of a J-admissible exponent. �

8. The major arc contribution truncated, for odd k

Recalling the definition (3.2) of f ∗(α), an application of the binomial theo-
rem within (7.1) reveals that

Rs(n;M) =
s∑
l=0

(
s

l

)
I†s,l(n), (8.1)
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where

I†s,l(n) =

∫
M

f ∗(α)s−l (f(α)− f ∗(α))l e(−nα) dα. (8.2)

Lemma 8.1. Suppose that J is a non-negative integer. Then whenever l > 2J
and s > max{l, k + 2J + 4}, one has I†s,l(n) = o(P s−k−J).

Proof. The argument of the proof of Lemma 3.1 applies, mutatis mutandis, to
confirm the conclusion of the lemma by noting (3.3). �

When s > k + 2J + 4, the conclusion of Lemma 8.1 combines with (7.2),
Lemma 7.1 and (8.1) to deliver the formula

Rs(n) =
2J∑
l=0

(
s

l

)
I†s,l(n) + o(P s−k−J). (8.3)

9. An auxiliary lemma, for odd k

We now apply Lemmata 4.1 and 4.2 to obtain an asymptotic formula for an
auxiliary sum of use for odd k. Let X be a large positive real number, and let
θ be a non-negative real number. When q ∈ N and r ∈ Z, we define

Υ†q,r(X; θ) =
∑

−r/q<h6(X−r)/q

(Xk − (qh+ r)k)θ. (9.1)

Lemma 9.1. When 1 6 N 6 dθe, one has

Υ†q,r(X; θ) = q−1Xkθ+1Γ(1 + θ)Γ(1 + 1/k)

Γ(1 + θ + 1/k)
+ Ψ +O

(
Xkθ(q/X)N−1

)
,

where

Ψ = Xkθ
∑

06ν6(N−1)/k

Γ(1 + θ)

ν!(νk + 1)Γ(1 + θ − ν)
βνk+1(−r/q)(q/X)kν .

Proof. We apply Lemma 4.2 with F and G given by (4.2). Write a = −r/q and
b = (X− r)/q. Then one finds that G(a) = Xk and G(b) = 0. Moreover, since
the formula (4.3) remains valid, one has G(j)(a) = 0 for 1 6 j < k, and also
for j > k, and G(k)(a) = −k!qk. The formula (4.4) also remains valid. From
Lemma 4.2, we thus deduce that F (G(x)) has continuous derivatives through
the Nth order on (a, b), continuous derivatives through the (N − 1)-st order
on [a, b], and further |dNF (G(x))/dxN | is integrable on [a, b]. Note also that
when 0 6 m < θ, one has F (m)(G(b)) = 0, and hence

dκ

dxκ
F (G(x))

∣∣∣∣
x=b

= 0 (0 6 κ < θ).

In addition, it follows from Lemma 4.2 that

dκ

dxκ
F (G(x))

∣∣∣∣
x=a

= 0 (0 6 κ < θ),
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except possibly when κ is divisible by k, say κ = νk, in which case

dνk

dxνk
F (G(x))

∣∣∣∣
x=a

=
(νk)!

ν!
F (ν)(G(a))

(
G(k)(a)

k!

)ν
=

(νk)!

ν!
θ(θ − 1) . . . (θ − ν + 1)Xkθ−kν(−1)νqkν .

On substituting these values into Lemma 4.1, we see that∑
a<h6b

F (G(h)) =

∫ b

a

F (G(x)) dx−
∑

06ν6(N−1)/k

Tν

− (−1)N

N !

∫ b

a

βN(x)
dN

dxN
F (G(x)) dx, (9.2)

where

Tν =
(−1)νk+1+ν

(νk + 1)!

(νk)!

ν!

Γ(1 + θ)

Γ(1 + θ − ν)
Xk(θ−ν)qkνβνk+1(a).

By making the change of variable y = (qx+ r)/X, we find that∫ b

a

F (G(x)) dx = q−1Xkθ+1

∫ 1

0

(1− yk)θ dy

= q−1Xkθ+1Γ(1 + θ)Γ(1 + 1/k)

Γ(1 + θ + 1/k)
. (9.3)

Also, just as in the corresponding treatment described in the argument of the
proof of Lemma 4.3, one finds that∫ b

a

βN(x)
dN

dxN
F (G(x)) dx� Xkθ(q/X)N−1.

On recalling that k is odd and a = −r/q, the conclusion of the lemma follows
on substituting this estimate together with (9.3) into (9.2), and then recalling
the definition (9.1) of Υ†q,r(X; θ). �

We extend the previous conclusion so as to handle a multidimensional gen-
eralisation. When q ∈ N and r1, . . . , rl ∈ Z, we define

Ξ†(l)q,r (X; θ) =
∑

0<x16X
x1≡r1 (mod q)

. . .
∑

0<xl6X
xl≡rl (mod q)

(Xk − xk1 − . . .− xkl )θ, (9.4)

where the summands are constrained by the inequality xk1 + . . .+ xkl 6 Xk. It
is convenient also to introduce a multidimensional analogue of the Bernoulli
polynomials specific to the purpose at hand. Let σm(y1, . . . , yl) denote the mth
elementary symmetric polynomial in y1, . . . , yl, and define

B(l)
m (q; r) = σm(β1(−r1/q), . . . , β1(−rl/q)).

Note that σ0(y1, . . . , yl) = 1, and by convention σ−1(y1, . . . , yl) = 0.



WARING’S PROBLEM 19

Lemma 9.2. When 1 6 N 6 min{dθe, k + 1}, one has

Ξ†(l)q,r (X; θ) =Xkθ

l∑
m=0

Γ(1 + θ)Γ(1 + 1/k)l−m

Γ(1 + θ + (l −m)/k)
B(l)
m (q; r)(X/q)l−m

+O(Xkθ(q/X)N−1(1 +X/q)l−1).

Proof. We proceed by induction on l, noting that the case l = 1 is already a
consequence of Lemma 9.1. Suppose then that L > 1, and that the desired
conclusion has been established for 1 6 l < L. From (9.4), we obtain

Ξ†(l)q,r (X; θ) =
∑

−rL/q<hL6(X−rL)/q

Ξ
†(L−1)
q,r′ (Y ; θ), (9.5)

where

r′ = (r1, . . . , rL−1) and Y = (Xk − (qhL + rL)k)1/k.

Our inductive hypothesis delivers the asymptotic formula

Ξ
†(L−1)
q,r′ (Y ; θ) =Y kθ

L−1∑
m=0

Γ(1 + θ)Γ(1 + 1/k)L−m−1

Γ(1 + θ + (L−m− 1)/k)
B(L−1)
m (q; r′)(Y/q)L−m−1

+O(Y kθ(q/Y )N−1(1 + Y/q)L−2).

By substituting this expression into (9.5), we deduce that

Ξ†(L)q,r (X; θ) =
L−1∑
m=0

Γ(1 + θ)Γ(1 + 1/k)L−m−1

Γ(1 + θ + (L−m− 1)/k)
B(L−1)
m (q; r′)qm+1−LTm

+O(Xkθ(q/X)N−1(1 +X/q)L−1), (9.6)

where

Tm =
∑

−rL/q<hL6(X−rL)/q

(Xk − (qhL + rL)k)θ+(L−m−1)/k. (9.7)

An application of Lemma 9.1 leads from (9.7) to the asymptotic formula

Tm = q−1Xkθ+L−mΓ(1 + θ + (L−m− 1)/k)Γ(1 + 1/k)

Γ(1 + θ + (L−m)/k)

+Xkθ+L−m−1β1(−rL/q) +O(Xkθ+L−m−1(q/X)N−1),

whence from (9.6) one obtains the relation

Ξ†(L)q,r (X; θ) = Xkθ

L∑
m=0

Γ(1 + θ)Γ(1 + 1/k)L−m

Γ(1 + θ + (L−m)/k)
Cm(q, r)(X/q)L−m

+O
(
Xkθ(q/X)N−1(1 +X/q)L−1

)
,

where

Cm(q, r) = B(L−1)
m (q; r′) + β1(−rL/q)B(L−1)

m−1 (q; r′).

By considering the relevant symmetric polynomials, one sees that Cm(q, r) =

B
(L)
m (q; r). Thus we conclude that the inductive hypothesis holds for l = L,

confirming the inductive step and completing the proof of the lemma. �
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In Lemma 9.2 we have limited the parameter N to be at most k+ 1 in order
that terms involving βνk+1(−ri/q) with ν > 1 be absent. A more detailed
investigation reveals that such additional terms can be accommodated at the
expense of substantial complications.

10. The major arc contribution evaluated, for odd k

We turn next to the evaluation of the integral I†s,l(n) defined in (8.2). With
this objective in mind, we consider the auxiliary integral

K†u,l(n) =

∫
M

f ∗(α)uf(α)le(−nα) dα. (10.1)

Making use of the definition (1.3) of f(α), and recalling (5.3), one finds that

K†u,l(n) =
∑

16m16P

. . .
∑

16ml6P

Ru(n−mk
1 − . . .−mk

l ). (10.2)

Recall the exponential sum T (q, a) defined in (1.7), and the modified singular
series Ss,j(n) defined in (1.8). It is useful also to define the truncation

Ss,j(n;Q) =
∑

16q6Q

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s−j
T (q, a)je(−na/q). (10.3)

These modified singular series have good convergence properties, as a conse-
quence of the following simple estimate for T (q, a).

Lemma 10.1. Suppose that a ∈ Z and q ∈ Z satisfy (q, a) = 1. Then for each
ε > 0, one has T (q, a)� q1/2+ε.

Proof. We find from (1.7) that

T (q, a) = −1
2
S(q, a) + q−1

q∑
r=1

∫ q

r

e(ark/q) dx. (10.4)

By interchanging the order of summation and integration here, we deduce from
[13, equation (4.14)] that

T (q, a) + 1
2
S(q, a) = q−1

∫ q

0

∑
16r6x

e(ark/q) dx

= q−1
∫ q

0

(
q−1S(q, a)x+O(q1/2+ε)

)
dx

= 1
2
S(q, a) +O(q1/2+ε),

and the lemma follows at once. �

Lemma 10.2. When t > k + r + 1, one has

St,r(n;Q)� 1 + (Q1/k)r(1+k/2)+k−(t−3/2).

Moreover, the modified singular series St,r(n) is absolutely convergent when-
ever t > 1

2
(r + 2)(k + 2).
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Proof. On recalling (5.4) and (10.3), one finds from Lemmata 5.1 and 10.1 that

St,r(n;Q)� V Q+1
1 (t− r; r/2 + ε)� 1 + (Q1/k)(r+2)(k+2)/2−t−1/2.

This confirms the first assertion of the lemma. The second follows on observing
that the hypothesis t > 1

2
(r + 2)(k + 2) ensures in like manner that∑

16q6Q

q∑
a=1

(a,q)=1

|q−1S(q, a)|t−r|T (q, a)|r � V Q+1
1 (t− r; r/2 + ε)� 1.

�

We are now equipped to evaluate K†u,l(n).

Lemma 10.3. Suppose that J and u are non-negative integers with J 6 k and
u > (J + 1)k + 2. Then there is a positive number η for which

K†u,l(n) = n(u+l)/k−1
min{l,J}∑
m=0

Dmn
−m/k +O(P u+l−k−J−η),

where

Dm =

(
l

m

)
Γ(1 + 1/k)u+l−m

Γ((u+ l −m)/k)
Su+l,m(n).

Proof. On recalling the formula (10.2) for K†u,l(n), we find from Lemma 5.2
that there is a positive number η such that

K†u,l(n) =
Γ(1 + 1/k)u

Γ(u/k)
T1 +O(P u+l−k−J−η), (10.5)

where

T1 =
∑

16m16P

. . .
∑

16ml6P

mk
1+...+m

k
l 6n

Su(n−mk
1 − . . .−mk

l )(n−mk
1 − . . .−mk

l )
u/k−1.

Applying the definition (1.2) of the singular series, we find that

T1 =
∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))uΩ†(n; q, a), (10.6)

where Ω†(n; q, a) is equal to∑
16m16P

. . .
∑

16ml6P

mk
1+...+m

k
l 6n

(n−mk
1 − . . .−mk

l )
u/k−1e(−(n−mk

1 − . . .−mk
l )/q).

By sorting summands into arithmetic progressions modulo q and recalling
(9.4), we see that

Ω†(n; q, a) =

q∑
r1=1

. . .

q∑
rl=1

Ξ†(l)q,r (P ;u/k − 1)e(−(n− rk1 − . . .− rkl )a/q).
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When 1 6 q 6 P , we apply Lemma 9.2 with N = J + 1, obtaining

Ω†(n; q, a) = nu/k−1
l∑

m=0

Γ(u/k)Γ(1 + 1/k)l−m

Γ((u+ l −m)/k)
n(l−m)/kUm +O(U∗), (10.7)

where

Um = qm−l
q∑

r1=1

. . .

q∑
rl=1

B(l)
m (q; r)e(−(n− rk1 − . . .− rkl )a/q)

and

U∗ = qlP u−k(q/P )J+1−l � qJ+1/(2k)P u+l−k−J−1/(2k).

When q > P , meanwhile, one has the trivial estimate Ω†(n; q, a) � P u+l−k.
On recalling (1.7), we find that

Um =

(
l

m

)
(q−1S(q, a))l−mT (q, a)me(−na/q).

Thus, on substituting (10.7) into (10.6) and recalling (5.4) and (10.3), we
discern that

T1 = nu/k−1
l∑

m=0

(
l

m

)
Γ(u/k)Γ(1 + 1/k)l−m

Γ((u+ l −m)/k)
Su+l,m(n;P )n(l−m)/k +O(T2),

(10.8)
where

T2 = P u+l−k−J−1/(2k)V P
1 (u; J + 1/(2k)) + P u+l−kV ∞P (u; 0).

In view of our hypothesis on u, an application of Lemma 5.1 delivers the
bound T2 � P u+l−k−J−1/(2k). In addition, by applying Lemma 5.1 via (5.4)
to (1.8) and (10.3), one discerns that our hypothesis on u ensures that when
0 6 m 6 J , one has

Su+l,m(n)−Su+l,m(n;P )� V ∞P (u+ l −m;m/2 + ε)� Pm−J−1/(2k).

Meanwhile, when m > J , it follows from Lemma 10.2 that

Su+l,m(n;P )� 1 + Pm+1−(u+l−3/2)/k � Pm−J−1/(2k).

On substituting these estimates into (10.8), we conclude that

T1 − n(u+l)/k−1
min{l,J}∑
m=0

(
l

m

)
Γ(u/k)Γ(1 + 1/k)l−m

Γ((u+ l −m)/k)
n−m/kSu+l,m(n)

�P u−k
l∑

m=0

P l−m(Pm−J−1/(2k))� P u+l−k−J−1/(2k).

The conclusion of the lemma now follows from (10.5). �
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11. Combining the major arc contributions, for odd k

We now reassemble the integrals I†s,l(n) so as to evaluate Rs(n).

Lemma 11.1. Suppose that 0 6 J 6 k, and that l and s are natural numbers
with s− l > (J + 1)k+ 2. Then whenever l > J , one has I†s,l(n) = o(P s−k−J).
Meanwhile, when instead l 6 J , one has

I†s,l(n) =
Γ(1 + 1/k)s−l

Γ((s− l)/k)
Ss,l(n)n(s−l)/k−1 + o(P s−k−J).

Proof. It follows from (8.2), (10.1) and the binomial theorem that

I†s,l(n) =
l∑

v=0

(−1)v
(
l

v

)∫
M

f ∗(α)s−l+vf(α)l−ve(−nα) dα

=
l∑

v=0

(−1)v
(
l

v

)
K†s−l+v,l−v(n).

Then we find from Lemma 10.3 that

I†s,l(n) =
l∑

v=0

(−1)v
(
l

v

)min{l−v,J}∑
m=0

(
l − v
m

)
Bm + o(P s−k−J),

where

Bm =
Γ(1 + 1/k)s−m

Γ((s−m)/k)
Ss,m(n)n(s−m)/k−1.

On making use of the identity(
l

v

)(
l − v
m

)
=

(
l

m

)(
l −m
v

)
,

therefore, we deduce that

I†s,l(n) =

min{l,J}∑
m=0

(
l

m

) l−m∑
v=0

(−1)v
(
l −m
v

)
Bm + o(P s−k−J). (11.1)

When m < l, one has

l−m∑
v=0

(−1)v
(
l −m
v

)
= (1− 1)l−m = 0,

so that only the terms with m = l contribute in (11.1). Thus we see that when
l > J , the outermost sum on the right hand side of (11.1) contributes nothing,
and this confirms the first conclusion of the lemma. When l 6 J , meanwhile,
the only contribution comes from those terms with m = l and v = 0, and in
this way one obtains the second conclusion of the lemma. �
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We are now equipped to prove Theorem 1.2. Suppose that 0 6 J 6 k, and
that s is J-admissible for k. Observe first that, as a consequence of Lemma
11.1, one finds that whenever s− 2J > (J + 1)k + 2, then

2J∑
l=0

(
s

l

)
I†s,l(n) =

J∑
l=0

(
s

l

)
Γ(1 + 1/k)s−l

Γ((s− l)/k)
Ss,l(n)n(s−l)/k−1 + o(P s−k−J).

We therefore deduce from (8.3) that whenever s > (J + 1)(k + 2), then

Rs(n) =
J∑
l=0

(
s

l

)
Γ(1 + 1/k)s−l

Γ((s− l)/k)
Ss,l(n)n(s−l)/k−1 + o(n(s−J)/k−1). (11.2)

On recalling (1.5) and (1.9), we find that the proof of Theorem 1.2 is complete.

We have yet to discuss the modified singular series Ss,l(n). It is clear,
however, that the limitation J 6 k can be removed if one is prepared to
endure further analysis in which exponential sums of the shape

q∑
r=1

βk+1(−r/q)e(ark/q),

and yet more exotic creatures, appear. The complexity rises rapidly, and we
avoid discussion of such matters in the absence of deserving applications.

Notice also that when k is even, one has

T (q, a) =

q∑
r=1

(
1

2
− r

q

)
e(ark/q) =

q−1∑
r=0

(
1

2
− q − r

q

)
e(ark/q),

so that T (q, a) = −1− T (q, a). We therefore see that when k is even, one has

T (q, a) = −1
2
, and hence it follows from (1.8) that Ss,j(n) =

(
−1

2

)j
Ss−j(n).

The asymptotic formula (11.2) is therefore consistent with that delivered by
Theorem 1.1, at least in those restricted circumstances where J 6 k.

12. Exceptional sets

Our goal in this section is to establish Theorem 1.3. We take an abbreviated
approach, concentrating on the contribution of the minor arcs. Let N be a
large positive number, and put P = N1/k. We assume that the exponent 2s is
2J-admissible for k. Thus, for some positive function L(t) growing sufficiently
slowly in terms of t, and with L(t)→ +∞ as t→∞, one has∫

m

|f(α)|2s dα� P 2s−k−2JL(P )−3.

Define the function F (α) by taking F (α) = f(α)s when α ∈ m, and otherwise

by taking F (α) = 0. Also, let F̂ (n) be the Fourier coefficient of F , so that

F̂ (n) =

∫ 1

0

F (α)e(−αn) dα =

∫
m

f(α)se(−nα) dα.
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Then by Bessel’s inequality, one has∑
n∈Z

|F̂ (n)|2 6
∫
m

|f(α)|2s dα� P 2s−k−2JL(P )−3.

Let Zs(N) denote the set of integers n with N/2 < n 6 N for which one has

|F̂ (n)| > P s−k−JL(P )−1.

We write Z for card(Zs(N)). Then it is immediate that Z � P kL(P )−1, and
thus we see that for almost all integers n with N/2 < n 6 N , one has∫

m

f(α)se(−nα) dα = o(P s−k−J).

Of course, with only modest adjustments in this argument, one may show also
that for almost all integers n with N/2 < n 6 N , one has likewise∫

m

h(α)se(−nα) dα = o(P s−k−J).

The corresponding major arc contributions∫
M

f(α)se(−nα) dα and

∫
M

h(α)se(−nα) dα

are obtained by means of the work of §§2–11, with inconsequential modifica-
tion. Thus the conclusions of Theorem 1.3 follow from the work that we have
already completed, after summing over dyadic intervals.

13. The modified singular series Ss,r(n)

It remains to discuss the modified singular series Ss,r(n). These series are
presumably non-zero in general. Such is the case when k is even, for then as
we have noted one has

Ss,r(n) =
(
−1

2

)r
Ss−r(n),

and under modest local conditions, the conventional singular series Ss−r(n) is
indeed non-zero. When k is odd, however, the situation is less clear.

We spend some time now examining the situation in which k is odd, begin-
ning with the proof of Theorem 1.4. Write

T †(q, a) =

q∑
r=0

(
1

2
− r

q

)
e(ark/q).

We begin by noting that

T (q, a) = −1
2

+ T †(q, a),

whence

T †(q, a) = T †(q,−a) =

q∑
r=0

(
1

2
− r

q

)
e(a(q − r)k/q) = −T †(q, a).
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It follows that T †(q, a) is purely imaginary. Observe that when s > 3
2
(k + 2),

so that both Ss,1(n) and Ss−1(n) are absolutely convergent, one has

Ss,1(n) + 1
2
Ss−1(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))s−1
(
1
2

+ T (q, a)
)
e(−na/q)

=
∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))s−1T †(q, a)e(−na/q).

In present circumstances, where k is odd, one has S(q, a) = S(q,−a), and thus
we are led from our earlier discussion to the interim conclusion

Ss,1(n) + 1
2
Ss−1(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q,−a))s−1T †(q,−a)e(na/q)

= −
∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))s−1T †(q, a)e(na/q)

= −Ss,1(−n)− 1
2
Ss−1(−n).

The relation S(q, a) = S(q,−a) similarly ensures that Ss−1(n) = Ss−1(−n),
and hence we conclude that

Ss,1(n) + Ss,1(−n) = −Ss−1(n). (13.1)

Observe next that when s > 3
2
k + 3, then it follows from Lemma 10.1 via

(5.4) and Lemma 5.1 that

Ss,1(n)−Ss,1(n;Q) 6 V ∞Q (s− 1; 1
2

+ ε)� Q−1/(2k).

Note also that when Q is a natural number and n is a multiple of Q!, then for
1 6 q 6 Q one has e(−na/q) = 1 = e(na/q). Thus, with the same assumptions
on n, one has

Ss,1(n) =
∑

16q6Q

q∑
a=1

(a,q)=1

(q−1S(q, a))s−1T (q, a)e(−na/q) +O(Q−1/(2k))

=
∑

16q6Q

q∑
a=1

(a,q)=1

(q−1S(q, a))s−1T (q, a)e(na/q) +O(Q−1/(2k))

= Ss,1(−n) +O(Q−1/(2k)).

Thus we deduce from (13.1) that

Ss,1(n) = −1
2
Ss−1(n) +O(Q−1/(2k)).

This confirms the conclusion of Theorem 1.4.

When r > 2, the behaviour of Ss,r(n) is less clear, since T †(q, a)r is real
whenever r is even, and the above device fails. However, some information
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concerning non-vanishing of linear combinations of the series Ss,r(n) would be
available with additional work.

We finish by proving Theorem 1.5. Suppose that s > 1
2
(r+ 2)(k+ 2). Then

the conclusion of Lemma 10.2 shows that the modified singular series Ss(n; r)
is absolutely convergent. Thus there is a constant cr for which |Ss,r(n)| 6 cr.
For the sake of concision, write U(q, a) = S(q, a)s−rT (q, a)r. Let η be a positive
number with η < cr, and choose Q in such a way that∑

q>Q

q∑
a=1

(a,q)=1

qr−s|U(q, a)| < η.

Then from (1.8) one discerns that∑
16n6x

|Ss,r(n)|2 >
∑

16n6x

∣∣∣ ∑
16q<Q

q∑
a=1

(a,q)=1

qr−sU(q, a)e(−na/q)
∣∣∣2 − 3crηx.

On squaring out the sums over q and a, the diagonal contribution is

T1 = bxc
∑

16q<Q

q∑
a=1

(a,q)=1

q2r−2s|U(q, a)|2,

whilst the off-diagonal terms make a contribution

T2 �
∑

16q<Q

q∑
a=1

(a,q)=1

qr+1−s|U(q, a)|
∑

16w<Q

w∑
b=1

(b,w)=1
b/w 6=a/q

wr+1−s|U(w, b)|.

On recalling (5.4), we find from Lemma 10.1 that

T2 �
( ∑
16q<Q

q∑
a=1

(a,q)=1

qr+1−s|U(q, a)|
)2
� V Q

1 (s− r; 1
2
r + 1 + ε)2.

Hence, provided that s > 1
2
(r+ 4)(k+ 2), we may apply Lemma 5.1 to deduce

that T2 � 1. Meanwhile, in a similar fashion, one sees that under the same
conditions on s, one has∑

16q<Q

q∑
a=1

(a,q)=1

q2r−2s|U(q, a)|2 � V Q
1 (2s− 2r; r + ε)� 1.

Hence the sum on the left hand side here converges as Q → ∞. Since this
series is clearly positive, it follows that for some δ > 0 one has T1 > 4δ2x. We
now fix η with 0 < η < δ2/(3cr), and conclude that∑

16n6x

|Ss,r(n)|2 > 4δ2x− 3crηx+O(1) > 2δ2x.
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The last sum is the key to our proof of Theorem 1.5. The number of natural
numbers n with 1 6 n 6 x for which |Ss,r(n)| > δ is at least

c−2r
∑

16n6x
|Ss,r(n)|>δ

|Ss,r(n)|2 > c−2r

( ∑
16n6x

|Ss,r(n)|2 − δ2x
)

> c−2r (2δ2x− δ2x) > (δ/cr)
2x.

Thus we conclude that |Ss(n; r)| > δ for a positive proportion of the integers
n with 1 6 n 6 x, and this completes the proof of Theorem 1.5.
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