
PERTURBATIONS OF WEYL SUMS

TREVOR D. WOOLEY

Abstract. Write fk(α;X) =
∑
x6X e(α1x + . . . + αkx

k) (k > 3). We

show that there is a set B ⊆ [0, 1)k−2 of full measure with the property
that whenever (α2, . . . , αk−1) ∈ B and X is sufficiently large, then

sup
(α1,αk)∈[0,1)2

|fk(α;X)| 6 X1/2+δk ,

where

δk = min

{
13

30
,

4

2k − 1

}
.

For k > 5, this improves on work of Flaminio and Forni, in which a Diophan-
tine condition is imposed on αk, and the exponent of X is 1−2/(3k(k−1)).

1. Introduction

Consider the exponential sum fk(α;X), defined for k > 2 and α ∈ Rk by

fk(α;X) =
∑

16x6X

e(α1x+ . . .+ αkx
k), (1.1)

where, as usual, we write e(z) = e2πiz. It was shown by H. Weyl [8] that when
αk is irrational, then lim sup X−1|fk(α;X)| = 0 as X → ∞. Indeed, when
αk satisfies an appropriate Diophantine condition, as is the case for algebraic
irrational numbers such as

√
2, then for each ε > 0, provided only that X is

sufficiently large in terms of k and ε, one has the upper bound

|fk(α;X)| 6 X1−21−k+ε. (1.2)

Although such conclusions can be improved by employing the latest devel-
opments surrounding Vinogradov’s mean value theorem (see, for example [9,
Theorem 1.5]), the improved exponents remain very close to 1. Motivated by
recent work of Flaminio and Forni [5] concerning equidistribution for higher
step nilflows, in this paper we address two basic questions. First, we explore
the extent to which the estimate (1.2) can be improved if one is prepared to ex-
clude the perturbing coefficient tuple (α1, . . . , αk−1) from a set of measure zero.
Second, we examine how sensitive such estimates may be to the Diophantine
conditions imposed on the lead coefficient αk.
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Before proceeding further, we introduce some notation associated with Vino-
gradov’s mean value theorem. With fk(α;X) defined via (1.1), the Main Con-
jecture asserts that for all positive numbers s, one has∫

[0,1)k
|fk(α;X)|2s dα� Xε(Xs +X2s− 1

2
k(k+1)). (1.3)

Here and throughout, the implicit constant in Vinogradov’s notation may de-
pend on k, s and the arbitrary positive number ε. We denote by MCk(u) the
assertion that the Main Conjecture (1.3) holds for 1 6 s 6 u. We will be
interested in the size of the exponential sum fk(α;X) when the coefficients αi
are fixed for certain suffices i = il (1 6 l 6 t) with 1 6 i1 < i2 < . . . < it 6 k.
The complementary set of suffices

{1, 2, . . . , k} \ {i1, i2, . . . , it} = {ι1, ι2, . . . ιk−t},
with 1 6 ι1 < ι2 < . . . < ιk−t 6 k, then corresponds to a (k − t)-tuple
(αι1 , . . . , αιk−t

) that we permit to come from a set B(ι) ⊆ [0, 1)k−t that is
central to our investigations. In order to facilitate concision, throughout this
paper we write α∗ for (αi1 , . . . , αit) and α† for (αι1 , . . . , αιk−t

).

Theorem 1.1. Suppose that k > 3 and 1 6 u 6 1
2
k(k + 1), and assume

MCk(u). Let t be a positive integer with 1 6 t 6 k, and let i be a t-tuple
of suffices satisfying 1 6 i1 < i2 < . . . < it 6 k. Then there exists a set
B(ι) ⊆ [0, 1)k−t of full measure such that, whenever (αι1 , . . . , αιk−t

) ∈ B(ι),
then for all real numbers X sufficiently large in terms of ε, k and α†, one has

sup
α∗∈[0,1)t

|fk(α;X)| 6 X1/2+δ(i)+ε,

where

δ(i) =
t+ 1 + 2(i1 + . . .+ it)

4u+ 2t+ 2
. (1.4)

We extract two corollaries from Theorem 1.1 at the end of §2.

Corollary 1.2. Suppose that k > 3. Then there exists a set B ⊆ [0, 1)k−2

of full measure such that, whenever (α2, α3, . . . , αk−1) ∈ B, then for all real
numbers X sufficiently large in terms of k and α2, . . . , αk−1, one has

sup
(α1,αk)∈[0,1)2

|fk(α;X)| 6 X1/2+δk , (1.5)

where

δk = min

{
13

30
,

4

2k − 1

}
.

Moreover, when k is sufficiently large, the same conclusion holds with δk =
1/k + o(1).

When k is large, the conclusion of Corollary 1.2 obtains very nearly square-
root cancellation for the exponential sum fk(α;X), greatly improving the es-
timate (1.2). In addition to this emphatic response to the first question posed
in our opening paragraph, we note that no condition whatsoever has been im-
posed on the lead coefficient αk. Of course, the restriction of the (k− 2)-tuple
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(α2, . . . , αk−1) to the universal set B of measure 1 implicitly imposes some sort
of Diophantine condition on these lower order coefficients. Nonetheless, it is
clear that there is in general little sensitivity to the lead coefficient.

Flaminio and Forni [5, Corollary 1.2] have derived a conclusion similar to
that of Corollary 1.2 in which αk is subject to a certain Diophantine condition,
and the conclusion (1.5) holds with 1

2
+ δk = 1− 1/

(
3
2
k(k − 1)

)
. Subject to a

similar Diophantine condition on αk, the latest progress on Vinogradov’s mean
value theorem permits the proof of a similar estimate with 2(k − 1)(k − 2) in
place of 3

2
k(k − 1), though without any restriction on (α2, . . . , αk−1) (simply

substitute the conclusion of [13, Theorem 1.2] into the argument of the proof
of [11, Theorem 11.1]). Thus, when k is large, the conclusion of Flaminio
and Forni obtains barely non-trivial cancellation subject to a Diophantine
condition, whereas Corollary 1.2 delivers nearly square-root cancellation.

We have aligned Corollary 1.2 so as to facilitate comparison with the work
of Flaminio and Forni [5, Corollary 1.2]. When k is large, the conclusion
of Theorem 1.1 offers estimates for fk(α;X) exhibiting close to square-root
cancellation even when the number of fixed coefficients αi is large. We illustrate
such ideas with a further corollary.

Corollary 1.3. Suppose that k is large, and that il (1 6 l 6 t) are integers with
1 6 i1 < i2 < . . . < it 6 k. Suppose also that 2(i1+. . .+it)+t+1 < k2/(log k).
Then there exists a set B(ι) ⊆ [0, 1)k−t of full measure such that, whenever
α† ∈ B(ι), then for all X sufficiently large in terms of k and α†, one has

sup
α∗∈[0,1)t

|fk(α;X)| 6 X1/2+1/ log k.

The conclusion of Corollary 1.3 shows that, in a suitable sense, almost a
positive proportion of the coefficients of fk(α;X) can be fixed, and yet one
nonetheless achieves nearly square-root cancellation on a universal set of full
measure for the remaining coefficients.

Our methods extend naturally to deliver equidistribution results for poly-
nomials modulo 1. In this context, when 0 6 a < b 6 1, we write Za,b(α;N)
for the number of integers n with 1 6 n 6 N for which

a 6 α1n+ α2n
2 + . . .+ αkn

k 6 b (mod 1).

Theorem 1.4. Suppose that k > 3 and 1 6 u 6 1
2
k(k + 1), and assume

MCk(u). Let t be a positive integer with 1 6 t 6 k, and let i be a t-tuple
of suffices satisfying 1 6 i1 < i2 < . . . < it 6 k. Then there exists a set
B(ι) ⊆ [0, 1)k−t of full measure such that, whenever (αι1 , . . . , αιk−t

) ∈ B(ι),
then for all real numbers N sufficiently large in terms of ε, k and α†, one has

|Za,b(α;N)− (b− a)N | 6 N1/2+ν(i)+ε (0 6 a < b 6 1),

where

ν(i) =
t+ 2 + 2(i1 + . . .+ it)

4u+ 2t+ 4
. (1.6)
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We derive the following corollary to Theorem 1.4 at the end of §3. Define

νk = min

{
11

30
,

2

k

}
.

Corollary 1.5. Suppose that k > 3. Then there exists a set B ⊆ [0, 1)k−1

of full measure such that, whenever (α1, α2, . . . , αk−1) ∈ B, then for all real
numbers N sufficiently large in terms of k and α1, . . . , αk−1, one has

|Za,b(α;N)− (b− a)N | 6 N1/2+νk (0 6 a < b 6 1).

Write ‖θ‖ = min{|θ − m| : m ∈ Z}. Then by putting a = 0 and b =
2N−1/2+νk , we obtain as a special case of Corollary 1.5 the following conclusion.

Corollary 1.6. Suppose that k > 3. Then there exists a set B∗ ⊆ [0, 1)k−1 of
full measure such that, whenever (α1, . . . , αk−1) ∈ B∗, then for all real numbers
N sufficiently large in terms of k and α1, . . . , αk−1, one has

min
16n6N

‖α1n+ . . .+ αkn
k‖ � N−1/2+νk . (1.7)

There are results available in the literature analogous to (1.7) in which
(α1, . . . , αk−1) is a fixed real (k−1)-tuple. Thus one finds that the conclusions
of [2, Theorem 5.2] and [11, Theorem 11.3] (as enhanced by utilising [13,
Theorem 1.2]) yield an estimate of the shape (1.7) with the exponent 1

2
+ νk

replaced by any real number exceeding 1−1/min{4(k−1)(k−2), 2k−1}. These
uniform results are considerably weaker than those available via Corollary 1.6.

In contrast to the ergodic methods employed by Flaminio and Forni [5], in
this paper we utilise recent progress on Vinogradov’s mean value theorem. Of
critical importance to us are mean value estimates of the shape∫

[0,1)k
|fk(α;X)|2s dα� Xs+δ, (1.8)

with δ small and s large. Prior to the author’s introduction of “efficient con-
gruencing” methods in 2012 (see [9]), available estimates were far too weak to
deliver conclusions of the type described in Corollary 1.2. However, the esti-
mate (1.8) is established in [10, Corollary 1.3] with δ = 1+ε for 1 6 s 6 1

4
k2+k,

and this would suffice for our purposes in the present paper. Recent work of
Ford [6, Theorem 1.1] joint with the author establishes (1.8) for any δ > 0
in the same range of s, and even more recently the author [12, Theorem 1.3]
has extended the permissible range of s to 1 6 s 6 1

2
k(k + 1) − 1

3
k + o(k),

encompassing nearly the whole of the critical interval.

Let X and T be large, and consider a fixed t-tuple (αi1 , . . . , αit) ∈ [0, 1)t.
The estimate (1.8) permits one to estimate the measure of the set BT (X) of
(k − t)-tuples (αι1 , . . . αιk−t

) ∈ [0, 1)k−t for which |fk(α;X)| > T . Suppose
that T is chosen as a function of X for which

∑∞
X=1 mes(BT (X)) < ∞, and

define B∗ ⊆ [0, 1)k−t to be the set of (k − t)-tuples (αι1 , . . . , αιk−t
) for which

lim supT−1|fk(α;X)| > 1 as X →∞. Then it follows from the Borel-Cantelli
theorem that the set B∗ has measure 0. One may remove the dependence of
these estimates on the fixed t-tuple of coefficients (αi1 , . . . , αit) by a suitable
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application of the mean value theorem, showing that the size of |fk(α;X)|
changes little as αj varies over an interval having length of order X−j. More-
over, we are able to sharpen our estimates by observing that |fk(α;X)| also
changes little as X varies over an interval of length small compared to T .

We remark that Pustyl′nikov has work spanning a number of papers (see,
for example [7]) which derives conclusions related to those of this paper.
Pustyl′nikov makes use of the estimate (1.8) in the classical case s = k. In this
special case, one may apply Newton’s formulae relating symmetric polynomials
with the roots of polynomials to derive the formula∫

[0,1)k
|fk(α;X)|2s dα ∼ s!Xs.

The point of view taken in [7] is that by taking k sufficiently large, one may
gain some control of the value distribution of Weyl sums fk(α;X). The relative
strength of the conclusions made available in the present paper rests on the
far more powerful mean value estimates stemming from our recent work on
Vinogradov’s mean value theorem.

Our basic parameter is X, a sufficiently large positive number. In this paper,
implicit constants in Vinogradov’s notation� and� may depend on k, u and
ε. Whenever ε appears in a statement, either implicitly or explicitly, we assert
that the statement holds for each ε > 0. We use vector notation in the natural
way. When A ⊂ R is Lebesgue measurable, we write µ(A) for its measure.
Finally, we write [θ] for max{n ∈ Z : n 6 θ}.

The author is grateful to Professors Flaminio and Forni for discussions con-
cerning the problems addressed in this paper, and in particular for providing
the author with an early version of their paper [5]. These discussions benefit-
ted from the excellent working conditions and support provided by the Isaac
Newton Institute in Cambridge during the program “Interactions between Dy-
namics of Group Actions and Number Theory” in June 2014. We also thank
the referee for useful comments and suggestions.

2. Large values of Weyl sums

Our goal in this section is the proof of Theorem 1.1 and its corollaries. We
begin our analysis of fk(α;X) by showing that the magnitude of this Weyl
sum changes little when its argument is modified by a small quantity.

Lemma 2.1. Let T > 0 and α ∈ Rk, and suppose that |fk(α;X)| > T . Then
whenever β ∈ Rk satisfies

|βj − αj| 6 (4πk)−1TX−j−1 (1 6 j 6 k),

one has |fk(β;X)| > 1
2
T .

Proof. Under the hypotheses of the statement of the lemma, an application of
the multidimensional mean value theorem (see [1, Theorem 6-17]) shows that
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there exists a point γ on the line segment connecting α and β such that

fk(β;X)− fk(α;X) =
k∑
j=1

(βj − αj)
∂

∂γj
fk(γ;X)

= 2πi
k∑
j=1

(βj − αj)
∑

16x6X

xje(γ1x+ . . .+ γkx
k).

Thus, by making a trivial estimate for the exponential sum defined by the
inner summation here, we deduce that

|fk(β;X)| > |fk(α;X)| − 2π
k∑
j=1

|βj − αj|Xj+1

> T − (2k)−1
k∑
j=1

T = 1
2
T.

This completes the proof of the lemma. �

We suppose now that il (1 6 l 6 t) are suffices with 1 6 i1 < . . . < it 6 k,
and we recall the notation introduced in the preamble to the statement of
Theorem 1.1 above. It is convenient to write

σ(i) = i1 + i2 + . . .+ it.

Our initial objective is to obtain an estimate for the set

BT (X) = {α† ∈ [0, 1)k−t : |fk(α;X)| > T for some α∗ ∈ [0, 1)t}. (2.1)

Lemma 2.2. Suppose that 1 6 u 6 1
2
k(k + 1), and assume the hypothesis

MCk(u). Then whenever T is a real number with 0 < T 6 X, one has

µ(BT (X))� Xu+t+σ(i)+εT−2u−t.

Proof. For 1 6 l 6 t, put

δl = (4πk)−1TX−il−1 and Ml = [δ−1l ].

When 0 6 ml 6Ml (1 6 l 6 t), we define the hypercuboids

I(m) = [m1δ1, (m1 + 1)δ1]× . . .× [mtδt, (mt + 1)δt]

and
M = [0,M1]× . . .× [0,Mt].

Finally, for each m ∈M, we put

BT (m;X) = {α† ∈ [0, 1)k−t : |fk(α;X)| > T for some α∗ ∈ I(m)}.
Since [0, 1)t is contained in the union of the sets I(m) for m ∈M, we see that

BT (X) =
⋃

m∈M

BT (m;X). (2.2)

Observe next that when α∗ and β∗ both lie in I(m) for some m ∈M, then

|αil − βil | 6 δl = (4πk)−1TX−il−1 (1 6 l 6 t).
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Thus we deduce from Lemma 2.1 that whenever α† ∈ BT (m;X) for some
m ∈M, then |fk(α;X)| > 1

2
T for all α∗ ∈ I(m). It follows that(

1
2
T
)2u

µ(BT (m;X))µ(I(m)) <

∫
I(m)

∫
BT (m;X)

|fk(α;X)|2u dα† dα∗.

But µ(I(m)) = δ1 · · · δt � (T/X)tX−σ(i), and thus

T 2u+tX−t−σ(i)µ(BT (m;X))�
∫
I(m)

∫
[0,1)k−t

|fk(α;X)|2u dα† dα∗.

Consequently, on recalling (2.2), one arrives at the upper bound

µ(BT (X)) 6
∑
m∈M

µ(BT (m;X))

� T−2u−tX t+σ(i)
∑
m∈M

∫
I(m)

∫
[0,1)k−t

|fk(α;X)|2u dα† dα∗.

Since the union of the sets I(m) with m ∈M is contained in [0, 2)t, we reach
the point at which we may utilise MCk(u), obtaining the estimate

µ(BT (X))� T−2u−tX t+σ(i)

∫
[0,2)k
|fk(α;X)|2u dα

� T−2u−tX t+σ(i) · 2kXu+ε.

The conclusion of the lemma is now immediate. �

We next make a choice for T . Let τ be a positive number, and put

T (X) = X1/2+δ(i)+τ ,

where δ(i) is defined as in (1.4). Here we note that

1
2

+ δ(i) =
(2u+ t+ 1) + (t+ 1 + 2σ(i))

4u+ 2t+ 2
=
u+ t+ 1 + σ(i)

2u+ t+ 1
. (2.3)

Let (Xn)∞n=1 be any strictly increasing sequence of natural numbers with the
property that for large enough values of n, one has

T (Xn) 6 Xn+1 −Xn 6 2T (Xn), (2.4)

and in the interests of concision, write Tn = T (Xn). For each non-negative
integer j, let nj denote the least integer with the property that

Xnj
> 2j. (2.5)

Since the sequence (Xn)∞n=1 is strictly increasing, it is trivial that nj 6 2j

for each j. Moreover, when n is large, it follows from (2.4) that whenever
m(n) > Xn/Tn, then Xn+m(n) − Xn > (Xn/Tn)Tn, whence Xn+m(n) > 2Xn.
Thus, there is a natural number j0 with the property that, when j > j0, then

nj+1 − nj 6 2Xnj
/Tnj

. (2.6)
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Lemma 2.3. Suppose that 1 6 u 6 1
2
k(k + 1) and assume MCk(u). Then for

any sequence (Xn)∞n=1 satisfying (2.4), one has

µ

(
∞⋃
n=1

BTn(Xn)

)
<∞.

Proof. On noting the relation (2.3), we find from Lemma 2.2 that
∞∑
n=1

µ(BTn(Xn))�
∞∑
n=1

Xu+t+σ(i)+ε
n T−2u−tn 6

∞∑
n=1

(Tn/Xn)Xε−2τ
n .

But when nj 6 n < nj+1, one has Xnj
6 Xn < Xnj+1

, and thus we infer from
(2.5) and (2.6) that

µ

(
∞⋃
n=1

BTn(Xn)

)
�

∞∑
j=0

∑
nj6n<nj+1

(Tn/Xn)Xε−2τ
n

� 1 +
∑
j>j0

(nj+1 − nj)(Tnj
/Xnj

)Xε−2τ
nj

� 1 +
∞∑
j=0

(2j)ε−2τ <∞.

This completes the proof of the lemma. �

We are now equipped to complete the proof of Theorem 1.1. Denote by
An(α†) the condition that |fk(α;Xn)| > Tn for some α∗ ∈ [0, 1)t. Then the
definition (2.1) of BT (X) implies that

BTn(Xn) = {α† ∈ [0, 1)k−t : An(α†)}.
Put

B∗ = {α† ∈ [0, 1)k−t : An(α†) holds for infinitely many n ∈ N}.
Then it follows from Lemma 2.3 via the Borel-Cantelli lemma that µ(B∗) = 0.
Consequently, there is a set B0 = [0, 1)k−t \ B∗ of full measure having the
property that, whenever α† ∈ B0, then An(α†) holds for at most finitely many
n ∈ N. The latter assertion implies that |fk(α;Xn)| 6 Tn for all α∗ ∈ [0, 1)t,
with the exception of at most finitely many n ∈ N.

Suppose that X > 0, and put X∗ = [X], so that fk(α;X) = fk(α;X∗). In
view of the condition (2.4), when X is sufficiently large there exists n ∈ N for
which Xn 6 X∗ 6 Xn + 2Tn. But then, on making a trivial estimate for the
exponential function, we have

|fk(α;X)− fk(α;Xn)| 6 X −Xn 6 2Tn.

Whenever |fk(α;Xn)| 6 Tn, therefore, one finds that

|fk(α;X)| 6 3Tn = 3X1/2+δ(i)+τ
n 6 3X1/2+δ(i)+τ .

Then we may conclude that whenever α† ∈ B0, then for all positive numbers
X, one has |fk(α;X)| 6 3X1/2+δ(i)+τ for all α∗ ∈ [0, 1)t, with the exception
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of at most those numbers X lying in a bounded interval (0, X0]. Since τ > 0
may be taken arbitrarily small, the conclusion of Theorem 1.1 follows.

The corollaries to Theorem 1.1 are easily confirmed. On the one hand, when
k > 4, we find from [6, Theorem 1.1] that MCk(u) holds for u =

[
1
4
(k + 1)2

]
.

On the other hand, from [12, Theorem 1.3], one obtains MCk(u) when k is
large and u = [1

2
k(k+1)− 1

3
k−8k2/3]. In addition, [13, Theorem 1.1] furnishes

MC3(6). In order to establish Corollary 1.2, we apply Theorem 1.1 with i =
(1, k). In such circumstances, we have t = 2 and

δ(i) =
3 + 2(k + 1)

4u+ 6
.

Thus, when k = 3 one may take δ(i) = 11/30, and when k > 4 one may take

δ(i) =
2k + 5

(k2 + 2k) + 6
6 min

{
13

30
,

2

k − 1/2

}
.

In addition, for large k we may instead take

δ(i) =
2k + 5

2k(k + 1)− 4
3
k + o(k)

=
1

k − 13
6

+ o(1)
=

1

k
+ o(1).

In all situations, we conclude from Theorem 1.1 that there exists a set B ⊆
[0, 1)k−2 of full measure such that, when (α2, α3, . . . , αk−1) ∈ B, then for all
real numbers X sufficiently large in terms of ε, k and α2, . . . , αk−1, one has

sup
(α1,αk)∈[0,1)2

|fk(α;X)| 6 X1/2+δ(i)+ε.

This confirms both of the conclusions of Corollary 1.2.

We turn next to Corollary 1.3. Taking i = (i1, . . . , it) and u =
[
1
4
(k + 1)2

]
,

we find that the conclusion of Theorem 1.1 holds with

δ(i) =
t+ 1 + 2(i1 + . . .+ it)

4[1
4
(k + 1)2] + 2t+ 2

<
k2/ log k

k2 + 2k + 2t+ 2
<

1

log k
.

Consequently, there exists a set B ⊆ [0, 1)k−t of full measure such that, when
α† ∈ B, then for all real numbers X sufficiently large in terms of k and α†,
one has sup

α∗∈[0,1)t
|fk(α;X)| 6 X1/2+1/ log k. This confirms Corollary 1.3.

3. Equidistribution of polynomials modulo one

We investigate the equidistribution of polynomial sequences by applying the
Erdős-Turán inequality (see [3, 4]). This entails estimating the exponential
sum fk(hα;X) for 1 6 h 6 H, with H as large as is feasible. Suppose once
more that il (1 6 l 6 t) are suffices with 1 6 i1 < i2 < . . . < it 6 k, with the
conventions in the preamble to the statement of Theorem 1.1. When h ∈ N,
we define a set generalising that defined in (2.1) by putting

B
(h)
T (X) = {α† ∈ [0, 1)k−t : |fk(hα;X)| > T for some α∗ ∈ [0, 1)t}.

Thus we have

B
(h)
T (X) = {α† ∈ [0, 1)k−t : hα† ∈ BT (X) (mod 1)}. (3.1)
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When λ, µ ∈ R and A ⊆ R, denote by λ(A + µ) the set {λ(θ + µ) : θ ∈ A}.
Then it follows from (3.1) that

B
(h)
T (X) =

h−1⋃
m=0

h−1(BT (X) +m),

and hence µ(B
(h)
T (X)) = µ(BT (X)) for h ∈ N.

We next introduce the set CT (X,H) consisting of those points α† ∈ [0, 1)k−t

for which one has |fk(hα;X)| > T for some α∗ ∈ [0, 1)t and h ∈ N with
1 6 h 6 H. Then we have

CT (X,H) =
⋃

16h6H

B
(h)
T (X),

so that

µ(CT (X,H)) 6
∑

16h6H

µ(B
(h)
T (X)) 6 Hµ(BT (X)).

We therefore deduce from Lemma 2.2 that when 1 6 u 6 1
2
k(k + 1) and

MCk(u) holds, then one has

µ(CT (X,H))� HXu+t+σ(i)+εT−2u−t. (3.2)

We now make a choice for T and H. Let τ be a positive number, and put

H(X) = X1/2−ν(i)−2τ and T (X) = X1/2+ν(i)+τ ,

where ν(i) is defined as in (1.6). Note that

1
2

+ ν(i) =
(2u+ t+ 2) + (t+ 2 + 2σ(i))

4u+ 2t+ 4
=
u+ t+ 2 + σ(i)

2u+ t+ 2
. (3.3)

We again consider a sequence of natural numbers (Xn)∞n=1 satisfying the con-
dition (2.4), and then write Tn = T (Xn) and Hn = H(Xn).

Lemma 3.1. Suppose that 1 6 u 6 1
2
k(k + 1) and assume MCk(u). Then for

any sequence (Xn)∞n=1 satisfying (2.4), one has

µ

(
∞⋃
n=1

CTn(Xn, Hn)

)
<∞.

Proof. We recall the infrastructure associated with the sequence (Xn)∞n=1 intro-
duced in the preamble to the statement of Lemma 2.3. In view of the relation
(3.3), it follows from (3.2) that

∞∑
n=1

µ(CTn(Xn, Hn))�
∞∑
n=1

HnX
u+t+σ(i)+ε
n T−2u−tn 6

∞∑
n=1

(HnT
2
n/X

2
n)Xε−2τ

n .
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Note again that when nj 6 n < nj+1, one has 2j 6 Xn 6 2j+1. Thus, since
TnHn 6 Xn, we may infer from (2.5) and (2.6) on this occasion that

µ

(
∞⋃
n=1

CTn(Xn, Hn)

)
�

∞∑
j=0

∑
nj6n<nj+1

(Tn/Xn)Xε−2τ
n

� 1 +
∑
j>j0

(nj+1 − nj)(Tnj
/Xnj

)Xε−2τ
nj

� 1 +
∞∑
j=0

(2j)ε−2τ <∞.

This completes the proof of the lemma. �

Denote by Bn(α†) the condition that |fk(hα;Xn)| > Tn for some α∗ ∈ [0, 1)t

and h ∈ N with 1 6 h 6 Hn. Then the definition of CT (X,H) implies that

CTn(Xn, Hn) = {α† ∈ [0, 1)k−t : Bn(α†)}.

Put

C∗ = {α† ∈ [0, 1)k−t : Bn(α†) holds for infinitely many n ∈ N}.

Then it follows from Lemma 3.1 via the Borel-Cantelli lemma that µ(C∗) = 0.
Consequently, there is a set C0 = [0, 1)k−t \ C∗ of full measure having the
property that, whenever α† ∈ C0, then Bn(α†) holds for at most finitely many
n ∈ N. The latter implies that |fk(hα;Xn)| 6 Tn for all α∗ ∈ [0, 1)t and all
h ∈ N with 1 6 h 6 Hn, with the exception of at most finitely many n ∈ N.

As in the corresponding treatment of §2, the condition (2.4) ensures that
when α† ∈ C0, then for all X > 0 and h ∈ N with h 6 X1/2−ν(i)−2τ , one has

sup
α∗∈[0,1)t

|fk(hα;X)| 6 3X1/2+ν(i)+τ , (3.4)

except perhaps for certain numbers X lying in a bounded interval [0, X0).

The estimate (3.4) provides our basic input for an application of the Erdős-
Turán inequality, as decribed in [2, Theorem 2.1]. Suppose that 0 6 a < b 6 1.
Also, write xn = αkn

k + . . .+ α1n and put H = X1/2−ν(i)−2τ . Then∣∣∣∣ ∑
16n6X

xn∈[a,b] (mod 1)

1−X(b− a)

∣∣∣∣ 6 X

H + 1
+ 3

∑
16h6H

h−1
∣∣∣∣ ∑
16n6X

e(hxn)

∣∣∣∣
=

X

H + 1
+ 3

∑
16h6H

h−1|fk(hα;X)|.

Consequently, when α† ∈ C0, one finds from (3.4) that

|Za,b(α;X)−X(b− a)| 6 XH−1 + 9
∑

16h6H

h−1X1/2+ν(i)+τ � X1/2+ν(i)+2τ .

Since τ > 0 may be taken arbitarily small, Theorem 1.4 now follows.
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The proof of Corollary 1.5 follows on taking i = (k) and

u = max
{

6,
[
1
4
(k + 1)2

]}
,

so that the conclusion of Theorem 1.4 holds with ν(i) = 3/10 when k = 3, and
otherwise, when k > 4, with

ν(i) =
3 + 2k

4u+ 6
6

2k + 3

k2 + 2k + 6
6 min

{
11

30
,

2

k

}
.

Then we conclude that there exists a set B∗ ⊆ [0, 1)k−1 of full measure with the
property that, whenever (α1, . . . , αk−1) ∈ B∗, then for all N ∈ N sufficiently
large in terms of k and α1, . . . , αk−1, one has

|Za,b(α;N)− (b− a)N | 6 N1/2+νk (0 6 a < b 6 1).

This completes the proof of Corollary 1.5.
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