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Abstract. We prove that any finite set of real numbers can be split into
two parts, one part being highly non-additive and the other highly non-
multiplicative.

1. Introduction

The Erdős-Szemerédi sum-product conjecture asserts that the additive struc-
ture of a finite set of real numbers should be essentially independent of its
multiplicative structure. Given finite sets of real numbers A and B, define the
sum set and product set by

A+B = {a+ b : (a, b) ∈ A×B} and A ·B = {ab : (a, b) ∈ A×B}.
Then, on writing |S| for the cardinality of a set S, the conjecture of Erdős and
Szemerédi (see the introduction of [3]) asserts that for any ε > 0 and for any
sufficiently large finite set A ⊂ R, one should have

max{|A+ A|, |A · A|} > |A|2−ε.
The sharpest conclusion in this direction available in the published literature
is due to Solymosi [11, Corollary 2.2], and shows that

max{|A+ A|, |A · A|} > |A|4/3

2dlog |A|e1/3
.

This result has recently been improved by Konyagin and Shkredov, to the
extent that the exponent 4

3
may now be replaced by 4

3
+ c, for any c < 1/20598

(see [5, Theorem 3] and the discussion concluding the latter paper).

As is well known, should the elements of A be controlled by additive struc-
ture, then |A+A| is small. Likewise, should A be controlled by multiplicative
structure, then |A ·A| is small. The Erdős-Szemerédi conjecture expresses the
belief that these two behaviours cannot be exhibited simultaneously.

A concrete measure of the additivity of a set is its additive energy

E+(A) = card{a ∈ A4 : a1 + a2 = a3 + a4}.
Similarly, the multiplicativity of a set is measured by its multiplicative energy

E×(A) = card{a ∈ A4 : a1a2 = a3a4}.
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One also has corresponding measures of the energy between two sets, namely

E+(A,B) = card{(a,b) ∈ A2 ×B2 : a1 + b1 = a2 + b2}
and

E×(A,B) = card{(a,b) ∈ A2 ×B2 : a1b1 = a2b2}.
Writing

rA+B(x) = card{(a, b) ∈ A×B : a+ b = x}
and

rA·B(x) = card{(a, b) ∈ A×B : ab = x},
we see that

E+(A) =
∑

x∈A+A

rA+A(x)2 and E×(A) =
∑
x∈A·A

rA·A(x)2.

It follows from Cauchy’s inequality that

|A|4 =

( ∑
x∈A+A

rA+A(x)

)2

6 E+(A)|A+ A|, (1.1)

so that, whenever |A + A| is small, then E+(A) is big. In similar fashion, if
|A ·A| is small, then E×(A) is necessarily big. Thus, one might näıvely believe
that the sum-product conjecture is manifested by the phenomenon that one
or other of E+(A) and E×(A) is always small. However, a moments’ reflection
reveals that such is certainly not the case, since the respective converses of the
above observations are in general false. Thus, if N ∈ N and

A = {0, 1, . . . , N − 1} ∪ {N,N2, . . . , NN}, (1.2)

then
min{E+(A), E×(A)} � N3 � |A|3.

In §3, we show that any set A can be split into two parts B and C, having
the property that both E+(B) and E×(C) are small. Consequently, the näıve
belief expressed above is obstructed only by examples closely related to that
defined by (1.2).

Theorem 1.1. Let A be a finite subset of the real numbers. Then, with δ = 2
33

,
there exist disjoint subsets B and C of A, with A = B ∪ C,

max{E+(B), E×(C)} � |A|3−δ(log |A|)1−3δ

and
max{E+(B,C), E×(B,C)} � |A|3−δ/2(log |A|)(1−3δ)/2.

This theorem shows that any finite set of real numbers can be split into a
highly non-additive part and a highly non-multiplicative part, and indeed, at
least half of the set is either highly non-additive or highly non-multiplicative.
Moreover, this decomposition has a doubly orthogonal flavour, the respective
parts B and C being approximately orthogonal in terms both of their mutual
additive energy, and also their mutual multiplicative energy.

It is tempting to conjecture that such decompositions should exist having
the property that max{E+(B), E×(C)} � |A|2+ε, for any ε > 0. By applying
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(1.1) and its multiplicative analogue, such would imply the Erdős-Szemerédi
conjecture in full. However, as we demonstrate in §2, this tempting conjecture
is over-ambitious. Let us describe the exponent β as being a permissible low-
energy decomposition exponent when, for each ε > 0 and for all sufficiently
large finite subsets A of R, there exist disjoint sets B and C, with A = B ∪C
and

max{E+(B), E×(C)} 6 |A|2+β+ε.

Theorem 1.2. The infimum κ of all permissible low-energy decomposition
exponents satisfies 1

3
6 κ 6 31

33
.

In particular, there exist arbitrarily large finite subsets A of R for which
every decomposition into two parts B and C satisfies the lower bound

max{E+(B), E×(C)} � |A|7/3.

The problem of determining the infimal exponent κ seems interesting, as well
as very delicate, and we do not have a reasonable conjecture as to its value.

Our methods extend naturally to other settings, with obvious adjustments
to our previous definitions concerning additive and multiplicative energies,
and associated concepts. For example, an analogous argument yields a related
conclusion in the setting of the finite field Fp having p elements. This we
establish in §4.

Theorem 1.3. Let p be a large prime, and suppose that A ⊆ Fp satisfies
|A| 6 pα(log p)β, where we write

α =
101

161
and β =

71

161
.

Then, with δ = 4/101, there exist disjoint subsets B and C of A, satisfying
A = B ∪ C and

max{E+(B), E×(C)} � |A|3−δ(log |A|)1−δ/2.

When |A| > pα(log p)β, meanwhile, one has instead

max{E+(B), E×(C)} � |A|3(|A|/p)1/15(log |A|)14/15.

In the second of these conclusions, the upper bound for max{E+(B), E×(C)}
becomes non-trivial only when |A| is smaller than about p(log p)−14. It may be
worth emphasising that a bound here uniform in p is certainly not available,
for a simple argument presented at the end of §4 confirms that in the setting
of the finite field Fp, one always has

E+(B) > |B|4/p and E×(C) > |C|4/p, (1.3)

whence

max{E+(B), E×(C)} � |A|3(|A|/p).
We mention a prototype application for the low-energy decomposition theo-

rem recorded in Theorem 1.3. In his Ph.D. thesis at the University of Toronto
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(see [4, §4]), Brandon Hanson gives a non-trivial bound for the character sum

Hχ(A,B,C,D) =
∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

χ(a+ b+ cd), (1.4)

where χ is a non-principal character modulo p, and A,B,C,D are subsets of
the finite field Fp. All four sets can be somewhat smaller than

√
p in his work,

and hence he breaks the “square-root barrier”. Hanson makes use of different
arguments according to whether E+(C) or E×(C) is small. Such an argument
would naturally utilise a conclusion of the shape recorded in Theorem 1.3: the
sum (1.4) can be split into two sums by writing C = C1∪C2, with E+(C1) and
E×(C2) both small, and then each sum may be estimated in turn by appeal
to one or other of Hanson’s arguments. Thus, in [4, Corollary 1 to Theorem
2], Hanson shows that when |A|, |B|, |C| and |D| each exceed p1/2−τ , with
τ = 1/176, then Hχ(A,B,C,D) � p−ε|A||B||C||D|, for a positive number ε
depending at most on δ. We describe the impact of estimates of the shape of
that supplied by Theorem 1.3 for such conclusions in §6.

It is not hard to extend our results from the above notions of energy to the
analogous concept of k-fold energy. Given finite subsets Ai of real numbers,
define

E+(A1, . . . , Ak) = card{a, a′ ∈ A1 × . . .× Ak : a1 + · · ·+ ak = a′1 + · · ·+ a′k},
E×(A1, . . . , Ak) = card{a, a′ ∈ A1 × . . .× Ak : a1 · · · ak = a′1 · · · a′k}.

For the sake of convenience, we then put

E
(k)
+ (A) = E+(A, . . . , A︸ ︷︷ ︸

k

) and E
(k)
× (A) = E×(A, . . . , A︸ ︷︷ ︸

k

).

As an immediate consequence of Theorem 1.1, in §5 we obtain the following
low-energy decomposition theorem for k-fold energies.

Theorem 1.4. Let A be a finite subset of the real numbers, and suppose that
m and n are integers with m > 2 and n > 2. Then, with δ = 2

33
, there exist

disjoint subsets B and C of A, with A = B ∪ C,

E
(m)
+ (B)� |A|2m−1−δ(log |A|)1−δ

and

E
(n)
× (C)� |A|2n−1−δ(log |A|)1−δ.

Our approach to proving this theorem involves a reduction to the 2-fold
energy central to Theorem 1.1, and fails to make any use of the richer struc-
ture available for the k-fold energy. It seems unlikely that this approach is
particularly effective. Rather, we simply want to point out that low-energy
decomposition theorems are available for k-fold energies. One would like to
see a much sharper result, involving a saving in the exponent which grows with
m (or n) in place of the constant saving 2

33
in the conclusion of Theorem 1.4.

We note in this context that a construction analogous to that in §2 delivering
Theorem 1.2 shows only that there exist arbitrarily large finite subsets A of R
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for which, for all natural numbers m and n with m > 2 and n > 2, and for
every decomposition of A into two parts B and C, one has either

E
(m)
+ (B)� |A|(4m−1)/3 or E

(n)
× (C)� |A|(4n−1)/3.

Throughout this paper, we write dθe for the smallest integer no smaller than
θ, and bθc for the largest integer not exceeding θ. Also, when describing ranges
for integers in the definitions of sets, for example, we write n 6 N to denote
the constraint 1 6 n 6 N .

The authors wish to express their gratitude to Misha Rudnev for an in-
sightful suggestion relevant to low-energy decompositions in finite fields. His
suggestion of the use of a relation of the shape E+(A)� |A ·A|3/2|A| led us to
formulate Lemma 4.6, and fostered the significant improvement of our previous
bounds in Theorem 4.2 now recorded in Theorem 1.3. We thank him for his
generous contribution to this paper, and also for his comments on an earlier
draft of this paper. We are also grateful to the referee for detailed comments
that have improved the exposition of this paper.

2. Permissible low-energy decomposition exponents

We begin our exploration of low-energy decompositions with the proof of
Theorem 1.2. Here, we temporarily assume the truth of Theorem 1.1, deferring
its proof to §3. Thus, we may suppose that, for each positive number ε, there
exists a permissible low-energy decomposition exponent β with β 6 31

33
+ ε. It

follows that the infimum κ of all such exponents satisfies κ 6 31
33

. Consequently,

it remains only to show that κ > 1
3
.

Fix a large positive integer N , and put

A = {(2m− 1)2n : m 6 N2/3 and n 6 N1/3}.
Thus, one has |A| = N + O(N2/3). We claim that whenever B ⊆ A and
|B| > |A|/2, then one necessarily has both

E+(B)� N7/3 and E×(B)� N7/3. (2.1)

Suppose that B ⊆ A and |B| > |A|/2. We first examine the multiplicative
energy E×(B). Note that

B ·B ⊆ {(2m− 1)2n : m 6 2N4/3 and n 6 2N1/3},
so that |B ·B| 6 4N5/3. We therefore deduce from Cauchy’s inequality that

(N/2)4 6 |B|4 =

( ∑
x∈B·B

rB·B(x)

)2

6 |B ·B|
∑
x∈B·B

rB·B(x)2 6 4N5/3E×(B),

whence E×(B) ≥ N7/3/26.

Our discussion of the corresponding additive energy E+(B) entails more
effort. Here we view A as a union of arithmetic progressions. By showing that
B must be dense on many of these progressions, we deduce that it has large
additive energy. For a fixed natural number n, let

Mn = {m ∈ N : m 6 N2/3 and (2m− 1)2n ∈ B}.



6 ANTAL BALOG AND TREVOR D. WOOLEY

Also, define

N = {n ∈ N : |Mn| > 1
4
N2/3}.

Then it follows by means of an obvious averaging argument that

|N | > 1
3
N1/3 +O(1).

Indeed, one has

1
2
N +O(N2/3) < |B| =

∑
n∈N

|Mn| 6 N2/3|N |+ 1
4
N2/3(N1/3 − |N |),

from which the desired conclusion follows. Note also that for all natural num-
bers n, the sumset Mn +Mn is a subset of the natural numbers not exceeding
2N2/3, and hence |Mn + Mn| ≤ 2N2/3. It therefore follows from Cauchy’s
inequality, much as before, that for any fixed n ∈ N we have

|Mn|4 6 |Mn +Mn|E+(Mn),

and for |Mn| > 1
4
N2/3 we arrive at the lower bound

E+(Mn) >
(
1
4
N2/3

)4
/(2N2/3) = 2−9N2 (n ∈ N ).

We thus conclude that

E+(B) >
∑
n∈N

card

{
m ∈M4

n :
4∑
i=1

(−1)i−1(2mi − 1)2n = 0

}
=
∑
n∈N

E+(Mn) > 1
3
2−9N7/3 +O(N2).

By combining these conclusions, we see that when B ⊆ A and |B| > |A|/2,
then one necessarily has both of the lower bounds (2.1), confirming our open-
ing claim. In particular, whenever β < 1

3
, there exist arbitrarily large finite

subsets A of R for which, for some positive number ε, every decomposition into
two parts B and C satisfies the lower bound max{E+(B), E×(C)} � |A|2+β+ε.
Consequently, the infimum κ of all permissible low-energy decomposition ex-
ponents satisfies κ > 1

3
. This completes our proof of Theorem 1.2.

3. Low-energy decompositions

Our goal in this section is the proof of the low-energy decomposition theorem
recorded in Theorem 1.1. The key ingredient in our proof of the latter is
a version of the Balog-Szemerédi-Gowers lemma, which gives a quantitative
version of the assertion that when E+(B) is large, then there exists a large
subset A′ of B for which |A′ + A′| is small (see [1, Theorem 2]). In order
to extract the sharpest accessible conclusion, we apply the Balog-Szemerédi-
Gowers lemma in the form given by Schoen (see [10, Theorem 1.2]).

Lemma 3.1. Let B be a non-empty finite subset of an abelian group with
E+(B) = α|B|3. Then there exist subsets A′ and B′ of B such that

min {|A′|, |B′|} � α3/4 (log(2/α))−5/4 |B|
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and

|A′ −B′| � α−7/2 (log(2/α))5/2 (|A′||B′|)1/2 .
Here, the implicit constants are independent of the abelian group in question.

In order to proceed further, we must modify the conclusion of this lemma so
that it supplies a bound for |A′ +A′|. This we achieve through a consequence
of Plünnecke’s inequality.

Lemma 3.2. Let A and B be non-empty finite subsets of an abelian group.
Then we have |A+ A| ≤ |A+B|2/|B|.

Proof. This is a direct consequence of Plünnecke’s inequality. See, for example,
the case k = 2 of [12, Corollary 6.28]. We note that a new, simpler proof of
Plünnecke’s inequality has recently been given by Petridis [6, Theorem 1.1]. �

By combining Lemmata 3.1 and 3.2, we obtain a version of the Balog-
Szemerédi-Gowers lemma suitable for our application.

Lemma 3.3. Let G be an abelian group. Then there are positive constants c1
and c2, independent of G, with the following property. Suppose that N is a
sufficiently large natural number. Let B be a non-empty finite subset of G with
|B| 6 N , and suppose that δ and θ are real numbers with 0 < δ < 1. Then,
either E+(B) 6 N3−δ(logN)θ, or else there exists a subset A′ of B such that

|A′| > c1N
1−3δ/4(logN)(3θ−5)/4 and |A′ + A′| 6 c2N

7δ(logN)5−7θ|A′|.

Proof. Suppose that B, δ and θ satisfy the hypotheses of the statement of the
lemma. If E+(B) 6 N3−δ(logN)θ, then there is nothing to prove, so we may
suppose that E+(B) > N3−δ(logN)θ. Put α = E+(B)/|B|3. Then we have

α > N3−δ(logN)θ/|B|3 > N−δ(logN)θ,

and we deduce from Lemma 3.1 that there exist subsets A′ and B′ of B with

min {|A′|, |B′|} �
(
N3−δ(logN)θ/|B|3

)3/4
(logN)−5/4 |B|

� N1−3δ/4(logN)(3θ−5)/4

and

|A′ −B′| � α−7/2 (log(1/α))5/2 (|A′||B′|)1/2 .
However, Lemma 3.2 leads from the latter bound to the relation

|A′ + A′| 6 |A′ −B′|2/|B′| � α−7 (log(1/α))5 |A′| � N7δ(logN)5−7θ|A′|.

The conclusion of the lemma now follows. �

We also need the fact that the multiplicative energy between two sets ex-
hibits some subadditive behaviour. This is folklore, and follows as a simple
consequence of Cauchy’s inequality.
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Lemma 3.4. Let Aj (1 6 j 6 J) and Bk (1 6 k 6 K) be finite subsets of a
ring. Then one has

E×

( J⋃
j=1

Aj,
K⋃
k=1

Bk

)
6 JK

J∑
j=1

K∑
k=1

E×(Aj, Bk).

Finally, we recall a generalisation of the key ingredient of Solymosi [11] in
proving his sum-product estimate.

Lemma 3.5. Let A and B be non-empty finite subsets of the real numbers.
Then

E×(A,B)� |A+ A| · |B +B|dlog(min{|A|, |B|})e.

Proof. The desired conclusion follows from [5, Theorem 6]. �

We are now equipped for the main act of this section.

The proof of Theorem 1.1. Let δ and θ be parameters with 0 < δ < 1 to be
fixed in due course, and let c1 and c2 be the positive constants whose existence
is guaranteed via Lemma 3.3. We consider a subset A of the real numbers with
|A| = N , where N is a sufficiently large natural number. We prove first that
there exist disjoint subsets B and C of A, with A = B ∪ C and

max{E+(B), E×(C)} � |A|3−δ(log |A|)θ. (3.1)

Should one have E+(A) 6 N3−δ(logN)θ, then A = A ∪ ∅ is trivially a
decomposition of the type we seek, and so we may suppose henceforth that
E+(A) > N3−δ(logN)θ. We now proceed inductively to define certain subsets
Aj of A for 1 6 j 6 K, for a suitable integer K. Suppose that k > 0 and that
the first k of these sets have been defined. We put

Ck =
k⋃
j=1

Aj and Bk = A \ Ck. (3.2)

Should E+(Bk) 6 N3−δ(logN)θ, then we set K = k and stop. Otherwise, we
define the set Ak+1 as follows. We may suppose that E+(Bk) > N3−δ(logN)θ,
and so it follows from Lemma 3.3 that there exists Ak+1 ⊆ Bk ⊆ A such that

|Ak+1| > c1N
1−3δ/4(logN)(3θ−5)/4

and

|Ak+1 + Ak+1| 6 c2N
7δ(logN)5−7θ|Ak+1|. (3.3)

Having defined the set Ak+1, we may define Bk+1 and Ck+1 according to (3.2),
and repeat this decomposition argument.

The iteration described in the last paragraph must terminate for a value of
K satisfying K 6 K0, where K0 = bc−11 N3δ/4(logN)(5−3θ)/4c. For

|Bk| = |A| −
k∑
j=1

|Aj| 6 N − kc1N1−3δ/4(logN)(3θ−5)/4,



A LOW-ENERGY DECOMPOSITION THEOREM 9

whence BK0 (if it exists) must satisfy |BK0| 6 c1N
1−3δ/4(logN)(3θ−5)/4. In such

circumstances, a trivial estimate yields the bound

E+(BK0) 6
(
c1N

1−3δ/4(logN)(3θ−5)/4
)3
6 N3−δ,

and our iteration stops.

Now equipped with the sets A1, . . . , AK defined by this iterative process, we
ease our exposition by abbreviating BK to B and CK to C. Note that A is
the disjoint union of B and C. The first observation is that a defining feature
of our iteration is the bound E+(B) 6 N3−δ(logN)θ. In the first instance, the
application of Lemmata 3.4 and 3.5 yields the bound

E×(C) = E×(C,C) 6 K2
0

∑
i,j

E×(Ai, Aj)

� K2
0 logN

(∑
i

|Ai + Ai|
)2

.

Consequently, on applying the property (3.3) of these subsets Ai, we infer that

E×(C)� K2
0N

14δ(logN)11−14θ
(∑

i

|Ai|
)2

.

Moreover, it is apparent that
∑

i |Ai| = |C| 6 N . Thus we deduce that

E×(C)� N2+14δ(logN)11−14θ
(
N3δ/4(logN)(5−3θ)/4

)2

� N2+31δ/2(logN)(27−31θ)/2.

We now set 3− δ = 2 + 31δ/2 and θ = (27− 31θ)/2, which is to say δ = 2
33

and θ = 9
11

, and conclude that

E+(B) 6 N3−δ(logN)θ and E×(C)� N3−δ(logN)θ. (3.4)

Since N = |A|, this confirms the relations (3.1). In order to complete the proof
of Theorem 1.1, it now remains only to establish that

max{E+(B,C), E×(B,C)} � N3−δ/2(logN)θ/2.

But rewriting the energy between the sets B and C in the form

E+(B,C) =
∑

x∈B+C

rB+C(x)2 =
∑

y∈(B−B)∩(C−C)

rB−B(y)rC−C(y),

we infer from Cauchy’s inequality that

E+(B,C) 6

( ∑
y∈B−B

rB−B(y)2
)1/2( ∑

y∈C−C

rC−C(y)2
)1/2

= E+(B)1/2E+(C)1/2.

Thus we conclude from (3.4) and the trivial estimate E+(C)� N3 that

E+(B,C)�
(
N3−δ(logN)θ

)1/2
(N3)1/2 � N3−δ/2(logN)θ/2.
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By an entirely analogous argument, one finds also that

E×(B,C)� N3−δ/2(logN)θ/2.

This completes the proof of the final claim of Theorem 1.1. �

4. Low-energy decompositions in finite fields

The strategy prosecuted in §3 may be adapted without serious difficulty to
the setting of finite fields Fp, with p prime. The only ingredient which requires
serious modification is Lemma 3.5, which bounds the multiplicative energy of
a set in terms of its sumset. One approach to handling this difficulty is by
appeal to work of Bourgain [2] and Rudnev [8].

Lemma 4.1. Suppose that A ⊂ Fp. Then

E×(A)� |A+ A|9/4|A|1/2 + p−1/4|A+ A|2|A|5/4.

Moreover, provided that |A| < √p, one has the sharper bound

E×(A)� |A+ A|7/4|A|dlog |A|e.

Proof. The first bound on the multiplicative energy contained in this lemma is
simply [2, Proposition 1], whilst the second is essentially [8, equation (3.22)].

�

By following the path described in §3 leading to the proof of Theorem 1.1,
the reader will have little difficulty in obtaining the conclusion recorded in the
following theorem.

Theorem 4.2. Let p be a large prime, and suppose that A ⊆ Fp satisfies
|A| < √p. Then, with δ = 4/227, there exist disjoint subsets B and C of A,
with A = B ∪ C and

max{E+(B), E×(C)} � |A|3−δ(log |A|)1+δ/2.

When |A| > √p, then with δ = 4/283 and θ = 223/249, one has instead

max{E+(B), E×(C)} � |A|3(|A|/p)δ(log |A|)θ.

Instead, we follow an alternative strategy in which the roles of addition
and multiplication in our previous argument are interchanged. We begin by
recording an appropriate analogue of Lemma 3.3.

Lemma 4.3. There are positive constants c1 and c2 with the following property.
Let p be a prime number. Suppose that N is a sufficiently large natural number.
Let B be a non-empty finite subset of Fp with |B| 6 N , and suppose that δ and
θ are real numbers with 0 < δ < 1. Then, either E×(B) 6 2N3−δ(logN)θ, or
else there exists a subset A′ of B such that

|A′| > c1N
1−3δ/4(logN)(3θ−5)/4 and |A′ · A′| 6 c2N

7δ(logN)5−7θ|A′|.
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Proof. Let g ∈ F×p be a primitive root, and put

I = {r ∈ [1, p− 1] : gr ∈ B}.
Taking account of the possibility that 0 ∈ B, we see that

E×(B) 6 E+(I) + 4|B|2.
Consequently, if E×(B) > 2N3−δ(logN)θ, then E+(I) > N3−δ(logN)θ. We
therefore deduce from Lemma 3.3 that there exists a subset I ′ of I such that

|I ′| > c1N
1−3δ/4(logN)(3θ−5)/4 and |I ′ + I ′| 6 c2N

7δ(logN)5−7θ|I ′|.
Putting A′ = {gr : r ∈ I ′}, the conclusion of the lemma follows. �

An appropriate analogue of Lemma 3.4 follows by applying Cauchy’s in-
equality, just as before.

Lemma 4.4. Let Aj (1 6 j 6 J) be finite subsets of a ring. Then one has

E+

( J⋃
j=1

Aj

)
6 J3

J∑
j=1

E+(Aj).

Finally, before extracting a relation between the additive energy of a set
and its corresponding product set, we recall a consequence of a lemma from
recent work of Roche-Newton, Rudnev and Shkredov [7] that has its origins
in a paper of Rudnev [9] concerning incidences between planes and points in
three dimensions.

Lemma 4.5. Let A,B,C ⊆ Fp. Suppose that |A||B||B · C| 6 p2. Then

E+(A,C)� (|A||B · C|)3/2 |B|−1/2 + |A||B · C||B|−1 max{|A|, |B · C|}. (4.1)

Proof. This is an immediate consequence of [7, Theorem 6]. �

We extract from this lemma upper bounds for E+(A) suitable for our sub-
sequent applications.

Lemma 4.6. Suppose that A ⊂ Fp. Then

E+(A)� |A · A|3/2|A|+ p−1|A · A|2|A|2.

Proof. Provided that |A|2|A ·A| 6 p2, the desired conclusion follows by apply-
ing Lemma 4.5 with B = C = A. We have only to note that |A ·A| 6 |A|2, so
that the second term on the right hand side of (4.1) is majorised by the first.

Suppose next that |A|2|A · A| > p2. Put

n =

⌊
p2

|A||A · A|

⌋
.

Since |A| 6 p and |A · A| 6 p, we may suppose that 1 6 n < |A|. We take B
to be any subset of A having n elements. Then we have |A||A ·A||B| 6 p2. By
applying Lemma 4.5 with C = A, we find that

E+(A)� (|A||A ·B|)3/2 |B|−1/2 + |A||A ·B||B|−1 max{|A|, |A ·B|}.
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But since B ⊆ A, one has A ·B ⊆ A · A, and hence

|A| 6 |A ·B| 6 |A · A| 6 p.

Moreover, since |B|−1 = n−1 � |A||A · A|p−2, we obtain

E+(A)� (|A||A · A|)3/2
(
|A||A · A|p−2

)1/2
+ |A||A · A|2

(
|A||A · A|p−2

)
� |A|2|A · A|2p−1.

This completes the proof of the lemma. �

We now outline the proof of our low-energy decomposition theorem over Fp.

The proof of Theorem 1.3. We proceed precisely as in the proof of Theorem
1.1, save that the roles of addition and multiplication are interchanged. For
the sake of concision, we are expedient in implicity employing the appropriate
analogue of all notation used therein. However, we provide essentially complete
details of the argument. In the current situation, should one have E×(A) 6
2N3−δ(logN)θ, then A = ∅∪A is trivially a decomposition of the type we seek,
and so we may suppose henceforth that E×(A) > 2N3−δ(logN)θ. We proceed
inductively to define subsets Aj of A for 1 6 j 6 K, for a suitable integer K.
Suppose that k > 0 and that the first k of these sets have been defined. Put

Bk =
k⋃
j=1

Aj and Ck = A \Bk. (4.2)

Should E×(Ck) 6 2N3−δ(logN)θ, then we set K = k and stop. Otherwise, we
define the set Ak+1 as follows. We may suppose that E×(Ck) > 2N3−δ(logN)θ,
and so it follows from Lemma 4.3 that there exists Ak+1 ⊆ Ck ⊆ A such that

|Ak+1| > c1N
1−3δ/4(logN)(3θ−5)/4 (4.3)

and
|Ak+1 · Ak+1| 6 c2N

7δ(logN)5−7θ|Ak+1|. (4.4)

Having defined the set Ak+1, we may define Bk+1 and Ck+1 according to (4.2),
and repeat this decomposition argument.

As in the corresponding proof of Theorem 1.1 in §3, the iteration defined
in the last paragraph must terminate for some K 6 bc−11 N3δ/4(logN)(5−3θ)/4c.
We again put B = BK and C = CK , and note that A is the disjoint union of
B and C. In particular, we now have E×(C) 6 2N3−δ(logN)θ. We group the
subsets Aj by cardinality, taking Am to be the union of those subsets Aj for
which 2−mN < |Aj| 6 21−mN . Notice that cardinality constraints ensure that
each set Am consists of no more than 2m of the subsets Aj, and, moreover, one
has m = O(logN). The application of Lemma 4.4 leads to the estimate

E+(B)� (logN)3
∑
k

E+(Ak)� (logN)3
∑
k

∑
Ai⊆Ak

23kE+(Ai).

By applying Lemma 4.6, we obtain the bound

E+(B)� (logN)3
∑
k

∑
Ai⊆Ak

23k
(
|Ai · Ai|3/2|Ai|+ p−1|Ai · Ai|2|Ai|2

)
.
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Next, on applying the property (4.4) of these subsets Ai, we infer that

E+(B)�
(
N δ(logN)1−θ

)21/2∑
k

23k
∑
Ai⊆Ak

(
|Ai|5+p−2N7δ(logN)5−7θ|Ai|8

)1/2

.

But the property (4.3) of the subsets Ai ⊆ Ak ensures that the inner sum here
is empty whenever

21−kN < c1N
1−3δ/4(logN)(3θ−5)/4. (4.5)

Moreover, it is apparent that for each k one has∑
Ai⊆Ak

|Ai| 6 N.

Note also that the definition of Ak ensures that when Ai ⊆ Ak, then one has
2k|Ai| 6 2N . Thus we deduce that

E+(B)�N (3+21δ)/2(logN)21(1−θ)/2
(
N3δ/4(logN)(5−3θ)/4

)3/2
N

+ p−1N3+14δ(logN)13−14θN logN

�
(
N20+93δ(logN)99−93θ

)1/8
+ p−1N4+14δ(logN)14(1−θ). (4.6)

Recall the definitions of α and β from the statement of Theorem 1.3. We
take ω and ν to be any real numbers with p = 1

10
Nω(logN)ν . In the first

instance, we constrain our choices of δ and θ to satisfy the inequalities

δ 6
8ω − 12

19
and θ >

13− 8ν

19
. (4.7)

In such circumstances, one finds that it is the first term on the right hand
side of (4.6) that dominates. We consequently define δ and θ by means of
the equations 8(3 − δ) = 20 + 93δ and 8θ = 99 − 93θ, which is to say that
δ = 4/101, and θ = 99/101. These choices for δ and θ satisfy the constraint
(4.7) provided that

ω >
19δ + 12

8
=

161

101
and ν >

13− 19θ

8
= − 71

101
,

and this may be assured when p > 1
10
N1/α(logN)−β/α. This latter constraint

is satisfied when N 6 pα(log p)β. Under the latter condition, therefore, we
obtain the bound

max{E+(B), E×(C)} � N3−δ(logN)1−δ/2.

Since N = |A|, this confirms the first conclusion of Theorem 1.3.

We next take ω and ν to be any real numbers with p = 10Nω(logN)ν . In this
second instance, we constrain our choices of δ and θ to satisfy the inequalities

δ >
8ω − 12

19
and θ 6

13− 8ν

19
. (4.8)

In such circumstances, one finds that it is the second term on the right hand
side of (4.6) that dominates. We consequently define δ and θ by means of the
equations 3 − δ = 4 + 14δ − ω and θ = 14(1 − θ) − ν, which is to say that
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δ = (ω − 1)/15 and θ = (14 − ν)/15. These choices for δ and θ satisfy the
constraint (4.8) provided that

ω 6
19δ + 12

8
=

19ω + 161

120
and ν 6

13− 19θ

8
=

19ν − 71

120
.

These conditions are satisfied provided that

ω 6
161

101
and ν 6 − 71

101
,

and this may be assured when p 6 10N1/α(logN)−β/α. This latter constraint
is satisfied when N > pα(log p)β. Under the latter condition, therefore, we
obtain the bound

max{E+(B), E×(C)} � N3−δ(logN)θ = N3(N/p)1/15(logN)14/15.

Since N = |A|, this confirms the second conclusion of Theorem 1.3, and com-
pletes the proof of Theorem 1.3. �

We finish this section by confirming the lower bounds (1.3) presented follow-
ing Theorem 1.3. This is a simple exercise in exponential sums over finite fields,
in which we employ the standard notation ep(x) = e2πix/p. When B,C ⊆ Fp,
write

f(u) =
∑
b∈B

ep(ub) and g(u) =
∑

c1,c2∈C

ep(uc1c2).

Then, by orthogonality, one finds that

E+(B) = p−1
p−1∑
u=0

|f(u)|4 and E×(C) = p−1
p−1∑
u=0

|g(u)|2.

Using positivity, and discarding all terms in each sum save for that with u = 0,
we thus conclude that

E+(B) > p−1f(0)4 = p−1|B|4 and E×(C) > p−1g(0)2 = p−1|C|4.

Of course, analogous arguments apply when Fp is replaced by any group
of finite order. The argument we have employed has the merit of indicating
that if the lower bound is achieved, then both f(u) and g(u) must be zero for
u 6= 0. A proof free of Fourier analysis may be obtained by applying Cauchy’s
inequality. Thus, for example, one has

E+(B) =

p−1∑
m=0

rB+B(m)2 > p−1
( p−1∑
m=0

rB+B(m)

)2

= p−1|B|4,

and a similar argument applies to show that E×(C) > p−1|C|4. This confirms
the desired lower bounds.
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5. Higher order energies

We finish our account of low-energy decomposition theorems with a brief
discussion of higher order energies, and in particular the proof of Theorem 1.4.
With b as shorthand for (b3, . . . , bk), write

T (a, a′) = card{(a1, a2), (a′1, a′2) ∈ A1 × A2 : a1 + · · ·+ ak = a′1 + · · ·+ a′k}.
For k ≥ 2, one obtains cheap bounds on the k-fold additive energy between
sets A1, . . . , Ak by means of the relation

E+(A1, . . . , Ak) =
∑

a,a′∈A3×...×Ak

T (a, a′)

6 |A3|2 · · · |Ak|2 max
b
U(b),

where we write

U(b) = card{(a1, a2), (a′1, a′2) ∈ A1 × A2 : a1 + a2 + b = a′1 + a′2}.
By Cauchy’s inequality, for any fixed value of b, one has

U(b) =
∑

x∈A1+A2

rA1+A2(x− b)rA1+A2(x)

6

( ∑
x∈A1+A2−b

rA1+A2(x)2
)1/2( ∑

x∈A1+A2

rA1+A2(x)2
)1/2

6 E+(A1, A2).

Thus we obtain the bound

E+(A1, . . . , Ak) 6 |A3|2 · · · |Ak|2E+(A1, A2).

An entirely analogous argument coughs up the corresponding bound

E×(A1, . . . , Ak) 6 |A3|2 · · · |Ak|2E×(A1, A2).

Given a finite subset A of the real numbers, consider positive integers m and
n with m > 2 and n > 2. With δ = 2

33
, it follows from Theorem 1.1 that there

exist disjoint subsets B and C of A, with A = B ∪ C, and

max{E+(B), E×(C)} � |A|3−δ(log |A|)1−δ.
Using these same subsets B and C, it follows from our opening discussion in
this section that

E
(m)
+ (B) 6 |A|2m−4E+(B)� |A|2m−1−δ(log |A|)1−δ,

and likewise

E
(n)
× (C) 6 |A|2n−4E×(B)� |A|2n−1−δ(log |A|)1−δ.

This completes the proof of Theorem 1.4.

Notice that in our proof of Theorem 1.4, the decomposition of A into the sets
B and C does not depend on m and n. We have deliberately avoided stating
Theorem 1.4 with such dependence suppressed, however, in order to stress that
the central interest is in obtaining the sharpest permissible exponents.
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6. Hanson’s estimate

We illustrate the application of conclusions of the type described in Theorem
1.3 by considering inexpensive consequences of such estimates for results of
Hanson’s type for the quantity Hχ(A,B,C,D) defined in (1.4). We suppose
that a conclusion of the same shape as that of Theorem 1.3 is available in
which the exponent 4/101 is replaced by a certain positive number δ0 with
0 < δ0 < 1. Thus, we may suppose that for any positive number δ with δ < δ0,
there exist disjoint subsets C+ and C× of C, satisfying C = C+ ∪ C×, and
satisfying the conditions

E+(C+)� |C|3−δ and E×(C×)� |C|3−δ. (6.1)

We develop estimates for Hχ(A,B,C,D) following the path of Hanson [4],
with some simplifications. Suppose that δ is a permissible decomposition expo-
nent in the context of (6.1). Our goal is to show that when 0 < τ < δ/(8+2δ),
there is a positive number ω = ω(δ, τ) for which, whenever A, B, C and D are
subsets of Fp each containing at least p1/2−τ elements, then

Hχ(A,B,C,D)� p−ω|A||B||C||D|. (6.2)

In particular, there is non-trivial cancellation in the character sum∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

χ (a+ b+ cd) .

We note that our methods avoid reference to Weil’s bounds for character sums.

We begin with a lemma that makes use of little more than orthogonality.
Here we temporarily make use of the intuitively transparent convention that
when B and C are subsets of Fp, and b ∈ B and c ∈ C, then b × c = bc and
B × C = B · C.

Lemma 6.1. When A,B,C,D ⊆ Fp, and χ is a non-trivial character, we have∣∣∣∣∑
a∈A

∑
b∈B

∑
c∈C

χ(a+ b ◦ c)
∣∣∣∣2 6 (p− |A|)|A|E◦(B,C) (◦ ∈ {+,×}).

Proof. Let ◦ be one of + and ×. Then, we find via Cauchy’s inequality that∣∣∣∣∑
a∈A

∑
b∈B

∑
c∈C

χ(a+ b ◦ c)
∣∣∣∣2 =

∣∣∣∣∑
x∈Fp

∑
a∈A

rB◦C(x)χ(a+ x)

∣∣∣∣2
6

(∑
x∈Fp

rB◦C(x)2
)∑
x∈Fp

∣∣∣∣∑
a∈A

χ(a+ x)

∣∣∣∣2
= E◦(B,C)

∑
a,a′∈A

Υ(a, a′),

where

Υ(a, a′) =
∑
y∈Fp

χ(y)χ(y + a− a′) =

{
p− 1, when a = a′,

−1 when a 6= a′.
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The proof of the lemma is completed by noting that∑
a,a′∈A

Υ(a, a′) = (p− 1)|A| − |A|(|A| − 1).

�

We begin our proof of (6.2) by noting that there is no loss of generality
in supposing that 0 6∈ D. After all, were this not the case, then a trivial
estimate for the contribution to Hχ(A,B,C,D) arising from the element 0
in D is |A||B||C| = o(p−ω|A||B||C||D|). Next, applying the decomposition
C = C+ ∪ C× in combination with Lemma 6.1, one sees that Hχ(A,B,C,D)
is bounded above by∑

a∈A

∣∣∣∣ ∑
u∈a+B

∑
c∈C×

∑
d∈D

χ(u+ cd)

∣∣∣∣+
∑
d∈D

∣∣∣∣∑
a∈A

∑
b∈B

∑
v∈dC+

χ(a+ b+ v)

∣∣∣∣
6
∑
a∈A

√
p|a+B|E×(C×, D) +

∑
d∈D

√
p|A|E+(B, dC+).

Thus we deduce via (6.1) that Hχ(A,B,C,D) is bounded above by

p1/2
(
|A||B|1/2E×(C×)1/4E×(D)1/4 + |D||A|1/2E+(B)1/4E+(C+)1/4

)
� p1/2

(
|A||B|1/2|C|(3−δ)/4|D|3/4 + |A|1/2|B|3/4|C|(3−δ)/4|D|

)
.

It therefore follows that

Hχ(A,B,C,D)

|A||B||C||D|
� max

{(
p2

|B|2|C|1+δ|D|

)1/4

,

(
p2

|A|2|B||C|1+δ

)1/4
}
. (6.3)

Since, by hypothesis, we may suppose that |A|, |B|, |C| and |D| each exceed
p1/2−τ , we find that (6.2) holds for a positive number ω, provided only that
(4 + δ)

(
1
2
− τ
)
> 2, which is to say that τ < δ/(8 + 2δ). This completes our

proof of the estimate (6.2) of Hanson type.

We note that versions of Theorem 1.3 may be obtained in which a low-energy
decomposition is obtained in such a manner that additive and multiplicative
energies are of differing orders of magnitude. Such asymmetrical decomposi-
tions offer the prospect of some improvement in the bound τ < δ/(8 + 2δ).
There is also the option of decomposing both C and D, this offering the
prospect of replacing the first term denominator |C|1+δ|D| on the right hand
side of (6.3) by (|C||D|)1+δ.

The symmetrical permissible exponent δ = 4/101 that delivers Theorem 1.3
suffices to cheaply establish that any positive number τ not exceeding 1/204 is
permissible. We do not have a good guess as to the largest permissible value
of δ in the decomposition (6.1), though if (in line with Theorem 1.2) one could
take δ to be any positive number smaller than 2/3, then it would follow already
from the present cheap analysis that any exponent τ not exceeding 1/14 would
be permissible in the above discussion.
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