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A Superpowered Euclidean Prime Generator
Trevor D. Wooley

Abstract. A variant of Euclid’s prime generator is discussed with some of its brethren.

When {π1, . . . , πk} is a finite set of primes, the least divisor exceeding 1 of
π1 · · ·πk + 1 is a prime distinct from π1, . . . , πk. In this way, as every schoolchild
knows, one sees that there are infinitely many primes: the assumption that there are just
finitely many leads to a contradiction. This is essentially the proof attributed to Euclid,
who observed that all primes dividing π1 · · ·πk + 1 are distinct from π1, . . . , πk. But
is every prime delivered by iterating this algorithm? To be precise, if we put π1 = 2
and then define

πk+1 = min {d > 1 : d divides π1 · · ·πk + 1} (k ≥ 1),

is it the case that the sequence (πk)∞k=1 contains all the primes? The widely held con-
jecture that the answer is in the affirmative remains open more than half a century after
Mullin [3] posed this question. There are, however, variants of Euclid’s construction
that do yield every prime. Given a set of primes {π1, . . . , πk}, Pomerance [2, §1.1.3]
defines πk+1 to be the least prime distinct from π1, . . . , πk that divides a number of the
form d+ 1 for some divisor d of n = π1 · · ·πk. He shows that starting with π1 = 2,
every prime is delivered by this iterative process, and moreover (by extensive compu-
tations) that πk is the k-th smallest prime for k ≥ 5. Booker [1] instead considers the
prime divisors p of the integers d+ n/d, and shows that at each stage in the iteration,
choices for d and p may be made so that, taking πk+1 = p, every prime is delivered.

The iterative processes of Booker [1] and Pomerance [2] involve some kind of am-
biguity, in the latter case involving a choice of the divisor d of n = π1 · · ·πk, and
in the former case a choice of both d and the prime divisor of d+ n/d. In this note
we present a variant of Euclid’s prime generator in which the sequence of primes is
determined in order by a single choice of divisor.

Theorem 1. Let π1 = 2, and when k ≥ 1, define πk+1 to be the least divisor exceeding
1 of nn

n − 1, where n = π1 · · ·πk. Then for each k, the integer πk is the k-th smallest
prime.

This “superpowered” variant of Euclid’s prime generator has computational value
that can only be described as rather less than nanoscopic. However, it has the merit of
succinctly delivering the (k + 1)-st smallest prime in terms of the k smallest primes.
The proof is immediate from the following lemma, the proof of which is reminiscent
of the argument underlying the Pollard p− 1 factorization method (see [2, §5.4], [4]).

Lemma. When n is a positive integer, the least prime divisor of nn
n − 1 is the small-

est prime not dividing n.

Proof. We may plainly suppose that n ≥ 2, for when n = 1 the desired conclusion is
immediate. Let p be the smallest prime not dividing n, and let the primes dividing n be
π1, . . . , πk. Then p ≤ π1 · · ·πk + 1 ≤ n+ 1, as Euclid could have told us. Moreover,
all prime divisors of p− 1 lie in {π1, . . . , πk}, and since πni ≥ 2n ≥ n+ 1 ≥ p for
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each i, we find that p− 1 divides (π1 · · ·πk)n, and hence also nn. But then, defining
the integer λ by writing nn = λ(p− 1), and noting that p does not divide n, we find
from Fermat’s Little Theorem that nn

n
= (nλ)p−1 ≡ 1 (mod p), which is to say that

p divides nn
n − 1.

The argument just described makes it apparent that less profligate exponents are
viable. The conclusion of Theorem 1 remains valid, for example, when nn

n − 1 is
replaced by nn

m − 1, in which m = d(log n)/(log 2)e. In this context, we note also
that if pk denotes the k-th smallest prime for each k, and n = p1 · · · pk, then the
argument of the proof of the lemma shows that all primes p with pk+1 ≤ p < 2pk+1

divide nn
n − 1.

A Euclidean disciple even more orthodox than enthusiasts of Theorem 1 might de-
mand a means of obtaining the next prime without knowing a single one of the previous
(smaller) primes. Even zero-knowledge demands such as this can be met by a direct
consequence of the lemma.

Theorem 2. WhenN is a positive integer, the smallest prime exceedingN is the least
divisor exceeding 1 of N !N !N ! − 1.

For a proof, simply apply the lemma with n = N !. We encourage readers to en-
tertain themselves by establishing that for each natural number N , the smallest prime
exceeding N is the least divisor exceeding 1 of N !N ! − 1 (the author is grateful to
Andrew Booker and Andrew Granville for pointing out this refinement).
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