
ADDITIVE REPRESENTATION IN SHORT INTERVALS, II:
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Abstract. We establish that, for almost all natural numbers N , there is
a sum of two positive integral cubes lying in the interval [N −N7/18+ε, N ].
Here, the exponent 7/18 lies half way between the trivial exponent 4/9
stemming from the greedy algorithm, and the exponent 1/3 constrained by
the number of integers not exceeding X that can be represented as the sum
of two positive integral cubes. We also provide analogous conclusions for
sums of two positive integral k-th powers when k > 4.

1. Introduction

The sequence of integers 2 = sk,1 < sk,2 < . . . represented as the sum of two
k-th powers of natural numbers is certainly sparse when k > 3, for a simple
counting argument confirms that their number, νk(N), not exceeding N is at
most O(N2/k). Investigations concerning νk(N) date at least as far back as the
work of Erdős and Mahler [6, 7], which showed that νk(N) � N2/k. Hooley
[14, 15, 16, 17, 19] has returned to the problem on numerous occasions, and
when h > 3 has established the asymptotic formula

νh(N) =
Γ(1 + 1/h)2

2Γ(1 + 2/h)
N2/h +O(N5/(3h)+ε). (1.1)

This conclusion derives from the paucity of numbers that are represented as
the sum of two h-th powers in two essentially distinct ways. Other scholars
have augmented and refined Hooley’s opera (see Greaves [9, 10], Skinner and
Wooley [23], Wooley [29], Heath-Brown [12, 13], Browning [2], Salberger [22]).
The distribution of such numbers in short intervals has, thus far, received little
attention, although Daniel [5] has considered the corresponding problem for
sums of three positive integral cubes. In this memoir we remedy this situation.

Given a large integer n, one may subtract from n the largest integral k-
th power not exceeding n, leaving a remainder of size at most kn1−1/k. By
repeating this greedy algorithm, one finds that for all large N , there is a
sum of two positive integral k-th powers between N − k2Nφk and N , where
φk = (1−1/k)2. The main result of this paper shows that the same conclusion
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remains valid, with a smaller exponent in place of φk, for almost all natural
numbers N . Denote by Ek(N,Z) the number of natural numbers N < n 6 2N
for which the interval (n, n + Z] contains no integer that is the sum of two
positive integral k-th powers. When k > 3, we put

σk =

{
22−k, when 3 6 k 6 7,

(2k2 − 10k + 12)−1, when k > 8,
(1.2)

and define

θk = 1− 2

k
+

1− σk
k2

= φk −
σk
k2
. (1.3)

Theorem 1.1. Suppose that k > 3. Then, whenever Z > N θk , one has

Ek(N,Z)� N1+θk+εZ−1. (1.4)

Whereas the greedy algorithm ensures that Ek(N, 2k
2Nφk) � 1, the con-

clusion of Theorem 1.1 yields the bound Ek(N,N
φk−δ) = o(N) whenever

δ < σk/k
2. The spacing of sums of two k-th powers evident in the as-

ymptotic formula (1.1), meanwhile, implies that Ek(N,Z) � N whenever
Z 6 N1−2/k. It seems plausible that (1.4) should remain valid provided only
that θk > 1 − 2/k. Our estimate is particularly strong in the case k = 3,
where we show that for all ε > 0, and almost all N ∈ N, there is a sum of two
positive integral cubes lying between N and N +N7/18+ε. Here, the exponent
7/18 lies half way between the trivial exponent 4/9 stemming from the greedy
algorithm, and the exponent 1/3 constrained by the asymptotic formula (1.1).

The conclusion of Theorem 1.1 also delivers bounds for the size of the gaps
between sums of two k-th powers in mean square.

Theorem 1.2. When k > 3, one has∑
sk,n6N

(sk,n+1 − sk,n)2 � N1+θk+ε.

We note in particular that since (1.1) shows that, for almost all n ∈ N, one

has sk,n+1 − sk,n � s
1−2/k
k,n , then∑

N/2<sk,n6N

(sk,n+1 − sk,n)2 � (N1−2/k)2N2/k = N2−2/k.

This lower bound is expected to reflect the asymptotic behaviour of the mean
square gap size estimated in Theorem 1.2. Meanwhile, the bound

sk,n+1 − sk,n � sφkk,n, (1.5)

immediate from the greedy algorithm, yields the estimate∑
sk,n6N

(sk,n+1 − sk,n)2 � Nφk
∑

sk,n6N

(sk,n+1 − sk,n)� N1+φk .

In view of (1.3), one has 2− 2/k < 1 + θk < 1 + φk, so that the conclusion of
Theorem 1.2 improves on the trivial estimate, but falls short of the aforemen-
tioned expectation. In the case k = 3, the exponent 1 + θ3 = 25/18 lies half
way between the trivial and conjectured bounds.
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In the above discussion, we have deliberately restricted attention to the
situation in which k > 3. The behaviour of the sequence (s2,n), consisting
of sums of two squares, is quite different. We refer the reader to Friedlander
[8], Harman [11], Hooley [18] and Plaksin [20, 21] for a consideration of the
distribution of gaps in this relatively dense sequence.

The exceptional set estimate presented in Theorem 1.1 is obtained by ap-
plying the Hardy-Littlewood (circle) method to the Diophantine equation

xk + yk + z = n, (1.6)

with z running over a short interval. By applying Bessel’s inequality, one is led
to consider a mean value estimate implicitly related to the number of integral
solutions of the equation

xk1 − xk2 = yk1 − yk2 + z1 − z2, (1.7)

with xi and yi bounded above by n1/k, and with zi in the same short inter-
val. Aficionados of the circle method will recognise the potential for applying
arguments based on the use of diminishing ranges, in which the variables yi
are constrained to lie in a slightly shortened interval. Two obstacles prevent
a pedestrian treatment of this problem. First, one must apply diminishing
ranges in a treatment restricted to minor arcs only. Also, one has the sec-
ond challenge of handling a problem in which the number of variables is very
small. Methods pursued in the first of this series of papers [4] may be adapted
to surmount the first of these difficulties (see also [3] and [26] for earlier such
treatments). Meanwhile, the second may be overcome by solving a long se-
quence of pruning exercises, all within range of the accomplished practitioner
of such methods.

In this paper, we adopt the convention that whenever ε appears in a state-
ment, either implicitly or explicitly, then the statement holds for each ε > 0.
Implicit constants in the notations of Landau and Vinogradov will depend at
most on ε and k. Finally, write ‖θ‖ = min

y∈Z
|θ − y| and e(z) for e2πiz.

Note added 14th July 2016: Very recent work of Bourgain, Demeter and Guth
[1] concerning Vinogradov’s mean value theorem allows for some improvement
in the exponent σk defined in (1.2). Thus, by employing [1, Theorem 1.1] in
place of [31, Theorem 1.2] within the argument of the proof of Lemma 4.1,
one finds that one may put σk = (k2 − 3k + 2)−1 for k > 7 without impairing
subsequent conclusions.

2. Infrastructure

We begin by introducing the notation and cast of generating functions re-
quired to describe our method. We consider a fixed integer k with k > 3, and
we define σ = σk and θ = θk as in (1.2) and (1.3). Let N be a sufficiently large
positive number, and define

X = (N/3)1/k, Y = X1−(1−σ)/k, H = 2kXσ and Q = X1−σ/k. (2.1)
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Also, we consider a real number Z with

Xkθ 6 Z 6 6k2Xk−2+1/k. (2.2)

Let r(n;Z) be the number of integral solutions of the equation (1.6) with
X < x 6 2X, Y < y 6 2Y and 1 6 z 6 Z. Our goal is an estimate for the
quantity

Υ(N,Z) =
∑

N<n62N

∣∣r(n;Z)− k−1n−1+1/kY Z
∣∣2 . (2.3)

We bound Υ(N,Z) through the medium of the Hardy-Littlewood method.
The exponential sums required in this enterprise are

f(α) =
∑

X<x62X

e(αxk), g(α) =
∑

Y <y62Y

e(αyk), u(α) =
∑

16z6Z

e(αz). (2.4)

It will be expedient on numerous occasions to suppress the argument α from
these notations as an aid to exposition and concision. Thus f(α) may be
abbreviated to f , for example. By orthogonality, one has

r(n;Z) =

∫ 1

0

f(α)g(α)u(α)e(−nα) dα, (2.5)

the relation which provides the starting point for our analysis of Υ(N,Z).
With Q defined as in (2.1), we write M for the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 QX−k},

with 0 6 a 6 q 6 Q and (a, q) = 1. Also, we denote by M† the corresponding
union of the intervals M(q, a) in which q > 1. Further, we put m = [0, 1) \M.
When B ⊆ [0, 1) is measurable, we write

rB(n;Z) =

∫
B

f(α)g(α)u(α)e(−nα) dα.

Thus, in view of (2.5), we have

r(n;Z) = rM(n;Z) + rm(n;Z). (2.6)

We next introduce the quantities

Υm =
∑

N<n62N

|rm(n)|2 and ΥM =
∑

N<n62N

|rM(n;Z)− k−1n−1+1/kY Z|2.

Substituting (2.6) into (2.3), we thus arrive at the estimate

Υ(N,Z) 6 2(Υm + ΥM). (2.7)

We estimate the contribution of ΥM in §3, deferring the consideration of Υm

to §§4 and 5.
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3. The collapse of the major arcs

We set about the task of replacing the generating functions f and u by their
natural major arc approximants. We write

S(q, a) =

q∑
r=1

e(ark/q) and V (β;P ) =
∑

Pk<x6(2P )k

k−1x−1+1/ke(βx), (3.1)

and put v(β) = V (β;X) and w(β) = V (β;Y ). Next, we define the function
f ∗(α) for α ∈M(q, a) ⊆M by putting

f ∗(α) = q−1S(q, a)v(α− a/q),
and we set f ∗(α) = 0 for α ∈ m. Also, we define

u∗(α) =

{
u(α), when ‖α‖ 6 QX−k,

0, otherwise.
(3.2)

We record for future reference an estimate of use in replacing f(α) by f ∗(α)
when α ∈M, with a similar estimate concerning u(α) and u∗(α).

Lemma 3.1. When α ∈M, one has

f(α)− f ∗(α)� Q1/2+ε and u(α)− u∗(α)� Q.

Proof. The claim concerning f is immediate from [27, Theorem 4.1]. Mean-
while, from the relation

u(a/q) =

q∑
r=1

e(ar/q) (Z/q +O(1)) ,

valid for a ∈ Z and q ∈ N, it follows via partial summation that

u(β + a/q) = q−1

( q∑
r=1

e(ar/q)

)
u(β) +O (q(1 + Z|β|)) . (3.3)

A similar argument is employed in the proof of [27, Lemma 2.7]. When q > 1
and (a, q) = 1, one has

q∑
r=1

e(ar/q) = 0.

Thus, when α ∈M(q, a) ⊆M with q > 1, one deduces that

u(α)� q + Z|qα− a| � Q+ ZQX−k � Q.

When α ∈ M(q, a) ⊆ M with q = 1, meanwhile, one has ‖α‖ 6 QX−k, and
hence u(α) = u∗(α). Thus, in any case, we have u(α) − u∗(α) � Q, and the
proof of the lemma is complete. �

We continue with an auxiliary mean value estimate. Write

I1 =

∫ 1

0

|g(α)u(α)|2 dα. (3.4)

Lemma 3.2. One has I1 6 Y Z.
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Proof. By orthogonality, we see that I1 counts the number of integral solutions
of the equation yk1 − yk2 = z1 − z2, with Y < y1, y2 6 2Y and 1 6 z1, z2 6 Z.
When y1 6= y2, one has |yk1 − yk2 | > kY k−1 > Z. The only solutions of this
equation counted by I1 consequently satisfy y1 = y2, whence I1 6 Y Z. This
completes the proof of the lemma. �

We are now equipped to pursue the replacement process.

Lemma 3.3. One has∫
M

|(f − f ∗)gu|2 dα� XY Z and

∫
M†
|f ∗gu|2 dα� X1+εY Z. (3.5)

Proof. An application of Lemma 3.1 leads from (3.4) via Lemma 3.2 to the
estimate ∫

M

|(f − f ∗)gu|2 dα� Q1+εI1 � XY Z,

confirming the first bound of (3.5).

For the second bound we must work harder. Note that, from (3.2), one has
u∗(α) = 0 for α ∈M†. Hence we deduce from Lemma 3.1 that∫

M†
|f ∗gu|2 dα� Q2

∫
M

|f ∗g|2 dα.

An application of Hölder’s inequality shows that∫
M

|f ∗g|2 dα 6

(∫
M

|f ∗|k+1 dα

)2/(k+1)(∫ 1

0

|g|4 dα

)1/2

.

The first integral on the right hand side here may be estimated through the
methods of [27, Chapter 4] (see, in particular, [27, Lemmata 4.9 and 6.2]), and
the second integral via Hua’s lemma (see [27, Lemma 2.5]). Thus∫

M†
|f ∗gu|2 dα� Q2(X1+ε)2/(k+1)(Y 2+ε)1/2

� X1+2εY Z(Q2X−1+2/(k+1)Z−1). (3.6)

Since k > 3 + 2/(k + 1)− (1 + σ)/k when k > 3, it follows that

k − 2 + (1− σ)/k > 2/(k + 1)− 1 + 2(1− σ/k),

so that in view of (1.3), (2.1) and (2.2), the parenthetic factor on the right
hand side of (3.6) is at most 1. This confirms the second bound of (3.5) and
completes the proof of the lemma. �

We combine the two estimates of Lemma 3.3 in the next lemma.

Lemma 3.4. One has ∫
M†
|fgu|2 dα� X1+εY Z.
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Proof. The elementary inequality |f |2 � |f − f ∗|2 + |f ∗|2 implies that∫
M†
|fgu|2 dα�

∫
M

|(f − f ∗)gu|2 dα +

∫
M†
|f ∗gu|2 dα,

and the desired conclusion is now immediate from Lemma 3.3. �

We define the central interval C = [−QX−k, QX−k], and note that

rM(n;Z) = rM†(n;Z) + rC(n;Z).

It is useful to observe that when α ∈ C, one has f ∗(α) = v(α). Next, put

ρ1(n;Z) =

∫
C

v(α)g(α)u(α)e(−nα) dα.

Since C ⊆M+Z, an application of Bessel’s inequality leads us via Lemma 3.3
to the bound∑

N<n62N

|rC(n;Z)− ρ1(n;Z)|2 6
∫
C

|(f − f ∗)gu|2 dα� XY Z. (3.7)

Likewise, we deduce via Lemma 3.4 that∑
N<n62N

|rM†(n;Z)|2 6
∫
M†
|fgu|2 dα� X1+εY Z. (3.8)

The singular integral is

ρ2(n;Z) =

∫ 1/2

−1/2

v(α)g(α)u(α)e(−nα) dα, (3.9)

and we next compare this expression to ρ1(n;Z).

Lemma 3.5. One has∑
N<n62N

|ρ1(n;Z)− ρ2(n;Z)|2 � XY Z.

Proof. An application of Bessel’s inequality conveys us from (3.9) via [27,
Lemma 6.2] to the bound∑

N<n62N

|ρ1(n;Z)− ρ2(n;Z)|2 �
∫ 1/2

QX−k

|v(α)g(α)u(α)|2 dα

� (XY Z)2

∫ 1/2

QX−k

(1 +Xkα)−2 dα.

Thus we conclude that∑
N<n62N

|ρ1(n;Z)− ρ2(n;Z)|2 � XY Z(X1−kY ZQ−1).

Since Q > Y and Z 6 Xk−1, the parenthetic factor on the right hand side here
does not exceed 1, and so the proof of the lemma is complete. �

The singular integral may be evaluated with an error acceptable in mean
square.
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Lemma 3.6. One has∑
N<n62N

∣∣ρ2(n;Z)− k−1Y Zn−1+1/k
∣∣2 � XY Z.

Proof. By orthogonality, it follows from (3.9) that

ρ2(n;Z) = k−1
∑

Y <y62Y

∑
16z6Z

∑
Xk<m6(2X)k

m+yk+z=n

m−1+1/k.

Observe that when n > N , y 6 2Y and z 6 Z, one has

m = n− yk − z = n
(
1 +O(HX−1 +X−2+1/k)

)
.

Hence
m−1+1/k = n−1+1/k(1 +O(HX−1)),

and so it follows that

ρ2(n;Z) = k−1Y Zn−1+1/k(1 +O(HX−1)).

We thus deduce that∑
N<n62N

∣∣ρ2(n;Z)− k−1Y Zn−1+1/k
∣∣2 � (Y Z)2N−1+2/kH2X−2

� XY Z(X−k−1Y ZH2).

The parenthetic factor on the right hand side is at most X−2H2+1/k � 1. This
completes the proof of the lemma. �

Write
S1 = rM†(n;Z), S2 = rC(n;Z)− ρ1(n;Z),

and
S3 = ρ1(n;Z)− ρ2(n;Z), S4 = ρ2(n;Z)− k−1n−1+1/kY Z.

Then since
rM(n;Z)− k−1n−1+1/kY Z = S1 + . . .+ S4,

an application of the elementary inequality |S1 + . . .+S4|2 6 |S1|2 + . . .+ |S4|2
combines with (3.7), (3.8), and Lemmata 3.5 and 3.6 to give

ΥM � X1+εY Z. (3.10)

4. Minor arcs with a difference

We now estimate Υm, noting that by Bessel’s inequality, one has

Υm 6
∫
m

|fgu|2 dα = T −
∫
M

|fgu|2 dα, (4.1)

in which

T =

∫ 1

0

|fgu|2 dα.

By orthogonality, the mean value T counts the number of integral solutions
of the equation (1.7) with X < xi 6 2X, Y < yi 6 2Y and 1 6 zi 6 Z for
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i = 1, 2. Put h = x1 − x2, and for concision write x = x2. Then the equation
(1.7) becomes

hΨ(x, h) = yk1 − yk2 + z1 − z2, (4.2)

where

Ψ(x, h) =
k∑
j=1

(
k

j

)
xk−jhj−1.

For any solution of (4.2) counted by T , we have

|h| 6 X1−k((2k − 1)Y k + Z) 6 H.

Thus, on putting

F (α) =
∑
|h|6H

∑
X<x62X

X<x+h62X

e(hΨ(x, h)α), (4.3)

we infer via orthogonality that

T =

∫ 1

0

F (α)|g(α)u(α)|2 dα.

In view of (4.1), therefore, we obtain the relation

Υm 6
∫ 1

0

F |g2u2| dα−
∫
M

|fgu|2 dα. (4.4)

We require a modified Hardy-Littlewood dissection for the discussion of the
mean value T . Put C = k−3k, and let N denote the union of the intervals

N(q, a) = {α ∈ [0, 1) : |qα− a| 6 CXY −k},
with 0 6 a 6 q 6 X and (a, q) = 1. Also, we denote by N† the corresponding
union of the intervals N(q, a) in which q > 1. Further, we put n = [0, 1) \N.

Lemma 4.1. One has ∫
n

|Fg2u2| dα� X1+εY Z.

Proof. Suppose that α ∈ R, a ∈ Z and q ∈ N satisfy (a, q) = 1 and |α−a/q| 6
q−2. Then it follows from a pedestrian generalisation of the proof of [25, Lemma
1] with ν = σ that, when 4 6 k 6 7, one has

F (α)� X1+σ+ε(q−1 +X−1 + qX1−k−σ)22−k

. (4.5)

Here, we have observed that the term with h = 0 in (4.3) contributes O(X) to
|F (α)|, this being majorised by the term X−1 in the parenthetic expression on
the right hand side of (4.5), since σ = 22−k for 4 6 k 6 7. The same conclusion
follows from the proof of the lemma of [24] in the case k = 3.

Let α ∈ n. An application of Dirichlet’s theorem on Diophantine approxi-
mation shows that there exist a ∈ Z and q ∈ N, with 0 6 a 6 q 6 (CX)−1Y k

and (a, q) = 1, for which |qα − a| 6 CXY −k. In such circumstances, the
definition of N shows that q > X, and hence (4.5) yields the bound

F (α)� X1+σ+ε(X−1 + Y kX−k−σ)σ � X1+ε.
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When k > 8, meanwhile, we apply the method of proof of [28, Lemma 10.3]
in which we formally take M = 1

2
and R = 2. By substituting the conclusion

of [30, Theorem 1.5], in the enhanced form made available via [31, Theorem
1.2], for [28, Lemma 10.2], one finds that the bound

sup
α∈n
|F (α)| � X1−σ+εH

holds with σ = (2(k−2)(k−3))−1. Hence, when α ∈ n, one has F (α)� X1+ε

in all cases. We note that both here, in considering the exponents k > 8,
and in our earlier treatment for 3 6 k 6 7, the exponential sum F (α) differs
from the analogues occurring in the cited sources only by the presence of the
additional summation condition X < x+h 6 2X in (4.3). However, the latter
is easily accommodated in the respective proofs of the desired conclusions.

On recalling (3.4) and Lemma 3.2, we now see that∫
n

|Fg2u2| dα� X1+ε

∫ 1

0

|gu|2 dα� X1+εY Z.

This completes the proof of the lemma. �

It is convenient to isolate the diagonal contribution within F (α). Write

F1(α) =
∑

16h6H

∑
X<x62X

X<x+h62X

e(hΨ(x, h)α), (4.6)

and observe that, in view of (4.3), one then has

F (α) = 2 ReF1(α) +O(X). (4.7)

Lemma 4.2. One has ∫
N†
|Fg2u2| dα� X1+εY Z.

Proof. On recalling (3.4) and the estimate supplied by Lemma 3.2, one finds
that (4.7) yields the relation∫

N†
|Fg2u2| dα� XI1 +

∫
N†
|F1g

2u2| dα. (4.8)

By reference to the argument leading to (3.3), we find that when a ∈ Z, q ∈ N
and β + a/q ∈ N(q, a) ⊆ N†, one has

u(β + a/q)� q + ZXY −k � X. (4.9)

Suppose first that k > 4. Then an application of Schwarz’s inequality in
combination with Lemma 3.2 reveals that∫

N†
|Fg2u2| dα� XY Z +X2I

1/2
2 I

1/2
3 ,

where

I2 =

∫ 1

0

|F1(α)|2 dα and I3 =

∫ 1

0

|g(α)|4 dα. (4.10)



SUMS OF TWO LIKE POWERS 11

By orthogonality, the integral I2 counts the number of integral solutions of
the equation h1Ψ(x1, h1) = h2Ψ(x2, h2), with X < xi 6 2X and 1 6 hi 6 H
for i = 1, 2. A divisor function estimate confirms that, for each fixed choice
of x2 and h2, there are O((XH)ε) possible choices for x1 and h1, whence
I2 � (XH)1+ε. Meanwhile, the bound I3 � Y 2+ε follows from Hua’s lemma
(see [27, Lemma 2.5]). Hence∫

N†
|Fg2u2| dα� XY Z +X2+ε(XH)1/2Y � X1+εY Z(1 +X3/2Z−1H1/2).

Since X−k+7/2−1/kH1/2+1/k 6 1, the conclusion of the lemma follows for k > 4.

We turn next to the situation in which k = 3. Put A = Z−1/2X−1/8, and
divide the set N† into the two subsets

N†0 = {α ∈ N† : ‖α‖ 6 A} and N†1 = {α ∈ N† : ‖α‖ > A}.

Making use of the familiar estimate u(α)� ‖α‖−1, we find that∫
N†1

|F1g
2u2| dα� (Z1/2X1/8)2

∫
N†1

|F1g
2| dα.

An application of Schwarz’s inequality yields the bound∫
N†1

|F1g
2| dα� I

1/2
2 I

1/2
3 ,

where I2 and I3 are defined as in (4.10). We observe that our earlier bounds
for I2 and I3 remain valid also when k = 3. Thus, we conclude that∫

N†1

|F1g
2u2| dα� ZX1/4+ε(XH)1/2(Y 2)1/2 � X1+εY Z(X−1/4H1/2). (4.11)

For the treatment of N†0, we require a sharp upper bound for

I4 =

∫
N†0

|g(α)|4 dα.

Recall (3.1), and define

g∗(α) = q−1S(q, a)w(α− a/q),

when α ∈ N(q, a) ⊆ N, and otherwise set g∗(α) = 0. Then we find from [27,
Theorem 4.1] that whenever α ∈ N, one has g(α)− g∗(α)� X1/2+ε. Hence

I4 �
∫
N

|g∗(α)|4 dα +X2+εmes(N†0). (4.12)

From [27, Lemmata 4.9 and 6.2], one readily infers the bound∫
N

|g∗(α)|4 dα� Y 1+ε.
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Meanwhile

mes(N†0) 6
∑

16q6X

∑
16a6q

‖a/q‖62Z−1/2X−1/8

mes(N(q, a))

�
∑

16q6X

(
qZ−1/2X−1/8

)
(q−1XY −3)� X15/8Y −3Z−1/2.

On substituting these estimates into (4.12), we discern that

I4 � Y 1+ε +X31/8+εY −3Z−1/2 � Y 1+ε, (4.13)

since 31
8
− 3

(
5
6

)
− 1

2

(
7
6

)
= 19

24
< 5

6
.

Next, by (4.9) and the inequalities of Cauchy and Schwarz, one has∫
N†0

|F1g
2u2| dα� XI

1/2
4 (HI5)1/2, (4.14)

where

I5 =

∫ 1

0

F2(α)|u(α)|2 dα,

in which we write

F2(α) =
∑

16h6H

∣∣∣∣ ∑
X<x62X

X<x+h62X

e(hΨ(x, h)α)

∣∣∣∣2.
The integral I5 does not exceed the number of integral solutions of the equation

h(Ψ(x1, h)−Ψ(x2, h)) = z1 − z2,

with 1 6 h 6 H, X < x1, x2 6 2X and 1 6 z1, z2 6 Z. Since x1 − x2

divides the polynomial Ψ(x1, h)−Ψ(x2, h), it follows via an elementary divisor
function estimate that, whenever z1 and z2 are fixed with z1 6= z2, then there
are O(Zε) possible choices for h, x1 and x2. Hence we deduce that

I5 � HXZ + Z2+ε � HXZ.

On substituting this bound together with (4.13) into (4.14), we see that∫
N†0

|F1g
2u2| dα� XY 1/2(H2XZ)1/2.

This, in combination with Lemma 3.2 and equations (4.8) and (4.11), gives∫
N†
|Fg2u2| dα� X1+εY Z(1 +X−1/4H1/2 +X1/2Y −1/2Z−1/2H).

Since 1
2
− 5

12
− 7

12
+ 1

2
= 0, the conclusion of the lemma follows for k = 3. �

The treatment of the minor arcs is now coming to an end. Define

D = {α ∈ [0, 1) : ‖α‖ 6 CXY −k}.
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Note that M = M† ∪ C and N = N† ∪D. Since [0, 1) = D ∪N† ∪ n, it follows
by combining Lemmata 4.1 and 4.2 that∫ 1

0

F |gu|2 dα =

∫
D

F |gu|2 dα +O(X1+εY Z).

Likewise, we obtain from Lemma 3.4 the relation∫
M

|fgu|2 dα =

∫
C

|fgu|2 dα +O(X1+εY Z).

Hence, we conclude from (4.4) that

Υm 6
∫
D

F |gu|2 dα−
∫
C

|fgu|2 dα +O(X1+εY Z). (4.15)

5. The annihilation of the central intervals

In this penultimate section, we complete the estimation of Υm by exploiting
cancellations between the two integrals on the right hand side of equation
(4.15). With this in view, we put c = D \ C and recast the relation (4.15) as

Υm 6
∫
C

(F − |f |2)|gu|2 dα +

∫
c

F |gu|2 dα +O(X1+εY Z). (5.1)

We first show that the integral over c can be absorbed into the error term.
The argument will depend on the following simple estimate.

Lemma 5.1. Let ∆ be a positive number. Then∫ ∆

−∆

|g(α)|2 dα� ∆Y + Y 2−k+ε.

Proof. By (2.4), one has∫ ∆

−∆

|g(α)|2 dα =
∑

Y <y1,y262Y

∫ ∆

−∆

e(α(yk1 − yk2)) dα.

The terms with y1 = y2 contribute 2∆Y . The remaining terms contribute an
amount not exceeding ∑

Y <y1,y262Y
y1 6=y2

2

|yk1 − yk2 |
.

Here, we write l = y1−y2, and observe that by symmetry, it suffices to estimate
the part of the sum where l > 0. But then yk1 − yk2 � lY k−1, and the sum in
the preceding display is therefore bounded by∑

16l6Y

∑
Y <y262Y

1

lY k−1
� Y 2−k+ε.

The desired conclusion now follows. �

Lemma 5.2. One has∫
c

F (α)|g(α)u(α)|2 dα� X1+εY Z.



14 JÖRG BRÜDERN AND TREVOR D. WOOLEY

Proof. We note that when α ∈ D one has

HXk−2‖α‖ 6 2kCXσ+k−2XY −k 6 2kC.

Hence, temporarily assuming that k > 4 and estimating the sum F1(α) defined
in (4.6) via [25, Lemma 2], we first deduce that

F1(α)� HX(1 +HXk−1‖α‖)−1 +H,

and then infer from (4.7) the bound

F (α)� HX(1 +HXk−1‖α‖)−1 +X. (5.2)

The proof of [25, Lemma 2] remains valid when k = 3 and q = 1 (in the
notation of this reference). Hence (5.2) holds for all k > 3, and consequently,∫

c

F |gu|2 dα� XI1 + Γ, (5.3)

where I1 is given by (3.4), and

Γ = HX

∫
c

|g(α)u(α)|2

1 +HXk−1‖α‖
dα.

Note that c is the union of two intervals, one of which being [QX−k, XY −k].
By symmetry, and since the integrand has period 1, it suffices to estimate the
contribution from this interval. This we cover by O(logX) disjoint intervals
[AY −k, 2AY −k], with QXσ−1 6 A 6 X. By Lemma 5.1, making use of the
trivial bound |u(α)| 6 Z, we find that∫ 2AY −k

AY −k

|g(α)u(α)|2

1 +HXk−1α
dα� Z2H−1X1−kA−1Y k

∫ 2AY −k

AY −k

|g(α)|2 dα

� Z2A−1(AY 1−k + Y 2−k+ε)

� Z2Y 1−k + Z2Q−1X1−σY 2−k+ε.

Here the second term on the right hand side dominates, and we infer the bound

Γ� HX2−σY 2−k+εZ2Q−1 � X1+εY Z(XY 1−kQ−1Z).

Since Y/Q = X(2σ−1)/k and XY −kZ � X−σ+1/k, it follows that Γ� X1+εY Z.
The lemma now follows from (5.3) and Lemma 3.2. �

Lemma 5.3. One has∫
C

(F − |f |2)|gu|2 dα =

∫
C

(F − |f |2)|wu|2 dα +O(XY Z).

Proof. When α ∈ C, we find from [27, Theorem 4.1] that g(α) = w(α) +O(1),
and hence |g(α)|2 = |w(α)|2 + O(|w(α)|). On multiplying this relation with
(F − |f |2)|u|2, one finds that the lemma will follow from the estimate∫

C

|(F − |f |2)wu2| dα� XY Z, (5.4)

that we now establish in two steps.



SUMS OF TWO LIKE POWERS 15

First we observe that [27, Lemma 6.2] delivers the bound∫
C

|w(α)| dα� Y

∫ 1/2

−1/2

(1 + Y k|α|)−1 dα� Y 1−k+ε.

Hence, the trivial bounds F (α)� HX and u(α)� Z suffice to conclude that∫
C

|Fwu2| dα� HXY 1−k+εZ2 = XY Z(HY ε−kZ), (5.5)

and we note that HY ε−kZ � 1.

Another appeal to [27, Theorem 4.1] shows that whenever α ∈ C, one has
f(α) = v(α) +O(1), and [27, Lemma 6.2] then delivers the estimate

f(α)� X(1 +Xk‖α‖)−1.

Using trivial bounds for w(α) and u(α), we now infer that∫
C

|f 2wu2| dα� Y Z2X2

∫ 1/2

−1/2

(1 +Xk|α|)−2 dα� Y Z2X2−k � XY Z.

On combining this bound with (5.5), we arrive at (5.4). This completes the
proof of the lemma. �

Lemma 5.4. Let K = [0, 1] \ C. Then∫
K

(F (α)− |f(α)|2)|w(α)u(α)|2 dα� XY Z.

Proof. The argument is similar to the one used to demonstrate the previous
lemma. We again use [27, Lemma 6.2], this time providing the bound∫

K

|w(α)|2 dα� Y 2

∫ 1/2

Q/Xk

(1 + Y kα)−2 dα

� Y 2−kQ−1XkY −k � Y 2−kH−1+1/k. (5.6)

The trivial bound for F (α)|u(α)|2 now implies that∫
K

F |wu|2 dα� Y 2−kH−1+1/kHXZ2 � XY Z, (5.7)

because one has Y 1−kH1/kZ � H−1+2/k � 1.

More care is required for the term involving |f(α)|2. Here, we split K into
its subsets c and K \ c = {α ∈ [0, 1] : ‖α‖ > CXY −k}. The argument leading
to (5.6) yields ∫

K\c
|w(α)|2 dα� Y 2−kX−1,

so that a trivial bound for |f(α)u(α)|2 provides the estimate∫
K\c
|fwu|2 dα� XY 2−kZ2 � XY Z. (5.8)
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It remains to examine the contribution from c. For α ∈ c we deduce from
[27, Theorem 4.1 and Lemma 6.2] that

f(α)� X(1 +Xk‖α‖)−1 + (Xk‖α‖)1/2,

and hence,

|f(α)w(α)|2 � X2Y 2(1 +Xk‖α‖)−2 +XkY 2‖α‖(1 + Y k‖α‖)−2.

Since ‖α‖ > QX−k � H1−1/kY −k, the previous bound implies that

|f(α)w(α)|2 � X2Y 2Q−1(1 +Xk‖α‖)−1 +XkY 2−2k‖α‖−1.

By applying a trivial bound for u(α), we may conclude that∫
c

|fwu|2 dα� Z2(X2−k+εY 2Q−1 +Xk+εY 2−2k)

� XY Z(H2/kXε−1 +H−2+1/k). (5.9)

The lemma now follows from (5.7), (5.8) and (5.9). �

We are ready to assemble the puzzle. By combining Lemmata 5.2, 5.3 and
5.4, we find from (5.1) that

Υm 6
∫ 1

0

(F − |f |2)|wu|2 dα +O(X1+εY Z).

By applying orthogonality and reversing the transformation h = x1 − x2 and
x = x2 within (4.3), one finds that the main term here is a weighted count of
the integral solutions of the equation

xk1 − xk2 = m1 −m2 + z1 − z2,

with X < xi 6 2X, Y k < mi 6 (2Y )k and 1 6 zi 6 Z (i = 1, 2), subject to
the condition |x1 − x2| > H. For each such putative solution, one has

|xk1 − xk2| > kHXk−1 > (2Y )k + Z > |m1 −m2 + z1 − z2|,
whence one infers that in fact no solutions exist. Thus we conclude that the
contribution of F to Υm annihilates the anti-contribution of |f |2, implying that
Υm � X1+εY Z. By combining this estimate with (3.10) and (2.7), we arrive
at the bound

Υ(N,Z)� X1+εY Z. (5.10)

6. Deduction of the main results

The proof of Theorem 1.1. Recall that φk = (1 − 1/k)2, and that Ek(N,Z)
denotes the number of integers n with N < n 6 2N for which the interval
(n, n + Z] contains no integer that is the sum of two positive integral kth
powers. For the latter integers n, one has r(n;Z) = 0. Therefore, when
N θk 6 Z 6 2k2Nφk , it follows from (2.3) and (5.10) that

Ek(N,Z)
(
k−1N−1+1/kY Z

)2
6 Υ(N,Z)� X1+εY Z,

whence
Ek(N,Z)� N2−2/kX1+ε(Y Z)−1 � N1+θk+εZ−1.
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When Z > 2k2Nφk , meanwhile, it follows via the greedy algorithm that
Ek(N,Z) = 0 for large N . This completes the proof of Theorem 1.1. �

The proof of Theorem 1.2. Within this proof we abbreviate sk,n to sn. For
large N , it follows from (1.5) that whenever sn+1 6 N , then sn+1−sn 6 k2Nφk .
This shows that Ek(N,Z) = 0 whenever Z > 2k2Nφk . Let

Ξ(N,Z) = card{N/2 < sn 6 N : Z/2 < sn+1 − sn 6 Z},
and put Z0 = 4k2Nφk . Then we have Ξ(N,Z) = 0 for Z > Z0. Also, when
Z is an even integer with 4 6 Z 6 Z0 and sn+1 − sn > Z, then each of the
intervals (sn + m − 1, sn + m + Z/2) (1 6 m 6 Z/2) contains no sum of two
positive integral k-th powers. Hence

Ek(N,Z/2) > (Z/2)Ξ(N, 2Z),

and therefore, we deduce from Theorem 1.1 that

Ξ(N, 2Z)� Z−1Ek(N,Z/2)� N1+θk+εZ−2.

We now conclude that∑
N/2<sn6N

(sn+1 − sn)2 �
∞∑
j=0

2j6Z0

(2−jZ0)2Ek(N, 2
−jZ0)� N1+θk+2ε.

On summing over dyadic intervals, the conclusion of Theorem 1.2 follows. �
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[6] P. Erdős, On the integers of the form xk+yk, J. London Math. Soc. 14 (1939), 250–254.
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