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Abstract. We apply a nested variant of multigrade efficient congruencing
to estimate mean values related to that of Vinogradov. We show that
when ϕj ∈ Z[t] (1 6 j 6 k) is a system of polynomials with non-vanishing
Wronskian, and s 6 k(k + 1)/2, then for all complex sequences (an), and
for each ε > 0, one has∫

[0,1)k

∣∣∣ ∑
|n|6X

ane(α1ϕ1(n) + . . .+ αkϕk(n))
∣∣∣2s dα� Xε

( ∑
|n|6X

|an|2
)s

.

As a special case of this result, we confirm the main conjecture in Vino-
gradov’s mean value theorem for all exponents k, recovering the recent
conclusions of the author (for k = 3) and Bourgain, Demeter and Guth (for
k > 4). In contrast with the l2-decoupling method of the latter authors,
we make no use of multilinear Kakeya estimates, and thus our methods are
of sufficient flexibility to be applicable in algebraic number fields, and in
function fields. We outline such extensions.

1. Introduction

This memoir is devoted to a general class of exponential sums and their mean
values. We demonstrate how the efficient congruencing method, developed
by the author and others starting in late 2010 (see [47]) in the context of
Vinogradov systems, may be adapted to handle relatives of Vinogradov’s mean
value theorem. Indeed, this nested efficient congruencing method succeeds in
establishing the main conjecture in Vinogradov’s mean value theorem for all
degrees, a conclusion obtained first by the author in the cubic case (see [55] and
arXiv:1401.3150) and subsequently for degrees exceeding three by Bourgain et
al. (see [8] and arXiv:1512.01565v3). In contrast with the l2-decoupling method
of the latter authors, nested efficient congruencing makes no use of multilinear
Kakeya estimates or other tools apparently intertwined with harmonic analysis
in the real setting, and thus our methods are of sufficient flexibility to be
applicable in algebraic number fields, and in function fields. We outline such
extensions. Further discussion requires that we introduce some notation in
order that we pass from descriptive statements to concrete technicalities.
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Given k ∈ N, we consider polynomials ϕj ∈ Z[t] (1 6 j 6 k) and the
associated Wronskian

W (t;ϕ) = det
(
ϕ

(i)
j (t)

)
16i,j6k

. (1.1)

Here, following the usual convention, we write ϕ
(r)
j (t) for the r-th derivative

drϕj(t)/dt
r. A measure of the independence of this system of polynomials ϕ is

given by whether or not W (t;ϕ) = 0. Our first conclusion supplies an estimate
of Strichartz type. As is usual, we write e(z) for e2πiz.

Theorem 1.1. Suppose that ϕj ∈ Z[t] (1 6 j 6 k) is a system of polynomials
with W (t;ϕ) 6= 0. Let s be a positive real number with s 6 k(k + 1)/2. Also,
suppose that (an)n∈Z is a sequence of complex numbers. Then for each ε > 0,
one has∫

[0,1)k

∣∣∣∣∑
|n|6X

ane(α1ϕ1(n) + . . .+ αkϕk(n))

∣∣∣∣2s dα� Xε

(∑
|n|6X

|an|2
)s
. (1.2)

In particular, under these conditions, one has∫
[0,1)k

∣∣∣∣ ∑
16n6X

e(α1ϕ1(n) + . . .+ αkϕk(n))

∣∣∣∣2s dα� Xs+ε. (1.3)

We emphasise that here and elsewhere, unless indicated otherwise, the im-
plicit constants in Vinogradov’s notation � and � may depend on ε, s, k
and the coefficients of ϕ. It follows via orthogonality that when s is a positive
integer, then the mean value on the left hand side of (1.3) counts the number
of integral solutions of the system of equations

s∑
i=1

(ϕj(xi)− ϕj(yi)) = 0 (1 6 j 6 k), (1.4)

with 1 6 xi, yi 6 X (1 6 i 6 s). Variants of our methods would yield
analogues of Theorem 1.1 in which the polynomials ϕj ∈ Z[x] are replaced
by rational functions lying in Q(t), or suitably smooth real or p-adic valued
functions, with equations replaced by inequalities as appropriate. Likewise,
the summands x in (1.3) could be replaced by discretely spaced sets of real
or p-adic numbers. We have chosen to provide the most accessible exposition
here rather than explore the most general and least transparent framework
available to our methods.

By putting ϕj(t) = tdj (1 6 j 6 k), we obtain a conclusion on Vinogradov
systems in which missing slices are permitted.

Corollary 1.2. Let d1, . . . , dk be distinct positive integers, and let s be a real
number with 0 < s 6 k(k + 1)/2. Then for each ε > 0, one has∫

[0,1)k

∣∣∣∣ ∑
16x6X

e(α1x
d1 + . . .+ αkx

dk)

∣∣∣∣2s dα� Xs+ε. (1.5)
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Again, when s is a positive integer, it follows via orthogonality that the mean
value on the left hand side of (1.5) counts the number of integral solutions of
the system

s∑
i=1

(x
dj
i − y

dj
i ) = 0 (1 6 j 6 k),

with 1 6 xi, yi 6 X (1 6 i 6 s). Aside from recent progress on the Vinogradov
system with dj = j (1 6 j 6 k), previous published progress on such systems
has fallen far short of achieving the range for s delivered by Corollary 1.2. The
estimate (1.5) was established for s 6 k+ 1 in [44, Theorem 1] via polynomial
identities and divisor sum estimates, and indeed such ideas were extended to
the setting of Theorem 1.1 for the same range of s in [30, Theorem 1]. We
note, however, that extensions to this range have been announced previously.
Thus, in 2014 the author announced the proof1 (via multigrade efficient con-
gruencing) of the upper bound (1.5) in the range s 6 k(k+ 1)/2− k/3 + o(k).
In addition, Bourgain [6, equation (6.6)] has implicitly announced a result
tantamount to the conclusion of Corollary 1.2 in the special case in which
(d1, . . . , dk) = (1, 2, . . . , k − 1, d), with d > k. Although one of our purposes
in this memoir is to provide a complete published proof for these earlier as-
sertions, we go considerably beyond this earlier work. We remark further that
when the degrees dj are suitably large, the conclusion of Corollary 1.2 follows
in a potentially wider range via enhancements of the determinant method of
Heath-Brown. Thus, as a consequence of work of the author joint with Sal-
berger (see [34, Theorems 1.3 and 5.2]), one has∫

[0,1)k

∣∣∣∣ ∑
16x6X

e(α1x
d1 + . . .+ αkx

dk)

∣∣∣∣2s dα = s!Xs +O(Xs−1/2),

provided only that the exponents dj are distinct and satisfy the condition

d1 · · · dk > (2s)4s.

The special case of Corollary 1.2 in which (d1, . . . , dk) = (1, 2, . . . , k) corre-
sponds to the Vinogradov system

s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k). (1.6)

Adopting standard notation, we write Js,k(X) for the number of integral so-
lutions of the system (1.6) with 1 6 xi, yi 6 X (1 6 i 6 s). More generally,
when s is not necessarily an integer, we put

Js,k(X) =

∫
[0,1)k

∣∣∣∣ ∑
16x6X

e(α1x+ . . .+ αkx
k)

∣∣∣∣2s dα. (1.7)

1See the talk https://www.youtube.com/watch?v=Q5gcLVYqEks from the ELEFANT
Workshop, Bonn, July 2014.
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The main conjecture in Vinogradov’s mean value theorem asserts that for each
ε > 0, one has

Js,k(X)�ε,s,k X
s+ε +X2s−k(k+1)/2. (1.8)

Here, we have deviated very slightly from the formulation of the main conjec-
ture asserted in earlier work (see for example [47, equation (1.4)]) by omitting
the term ε from the exponent in the second summand on the right hand side of
(1.8). This merely recognises the observation, well-known for more than half
a century, that the validity of the estimate (1.8) for s = k(k + 1)/2 implies its
validity for all positive real numbers s. Such is evident from an application of
Hölder’s inequality when s < k(k + 1)/2, and is immediate from an applica-
tion of the circle method for s > k(k + 1)/2. A transparent consequence of
Corollary 1.2 yields the main conjecture in full.

Corollary 1.3. The main conjecture holds in Vinogradov’s mean value theo-
rem. Thus, for each ε > 0, one has Js,k(X) � Xs+ε + X2s−k(k+1)/2. Indeed,
when k > 3 and s > k(k + 1)/2, one has the asymptotic formula

Js,k(X) ∼ Cs,kX
2s−k(k+1)/2,

where Cs,k is a positive number depending at most on s and k.

Theorem 1.1 also delivers the expected Strichartz inequality established for
s > k(k + 1) in [59], and subsequently in full in [8].

Corollary 1.4. Suppose that k ∈ N, that s is a positive number, and (an)n∈Z
is a complex sequence. Then, for each positive number ε, one has∫

[0,1)k

∣∣∣∣∑
|n|6X

ane(nα1 + . . .+ nkαk)

∣∣∣∣2s dα� Xε(1 +Xs−k(k+1)/2)

(∑
|n|6X

|an|2
)s
.

As we have already noted, the main conjecture (1.8) follows for all s from
the special case in which s = k(k+1)/2. The validity of (1.8) in the case k = 1
is of course trivial, and when k = 2 the asymptotic formula

J3,2(X) ∼ 18

π2
X3 logX

follows via classical methods (see Rogovskaya [33], and Blomer and Brüdern [5]
for sharp versions of this formula). When k > 3 it is expected that the upper
bound (1.8) should hold with ε = 0, though at present such is known only when
s 6 k+1 (see [39, Theorem 1]) and s > k(k+1)/2 (see Corollary 1.3). The main
conjecture (1.8) was established in full for k = 3 in the author’s previous work
[55, Theorem 1.1, Theorem 8.1 and its proof] (see also [18] for an account with
certain simplifications). When k > 3, the multigrade efficient congruencing
method established (1.8) in the range s 6 k(k+ 1)/2− k/3 +O(k2/3), missing
the critical exponent s = k(k+1)/2 by roughly k/3 variables (see [58, Theorem
1.3]). This defect was later remedied in the work of Bourgain et al. [8] by means
of their l2-decoupling method (the reader might refer to [32] for the status
of developments at the end of 2016). The nested variant of the multigrade
efficient congruencing method that we outline in §2 now also remedies this
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defect. Work prior to 2010 preceding the efficient congruencing methods was,
meanwhile, far weaker (see for example [23, 41, 43]).

We have already expended considerable space on recording our main con-
clusions and describing previous results, without pausing to explain the im-
portance of Vinogradov’s mean value theorem and its relatives. The recent
burst of activity surrounding efficient congruencing, l2-decoupling, and Vino-
gradov’s mean value theorem offers some justification for this concentration on
mean value estimates rather than applications. This is an opportune moment,
however, to highlight the central position of Vinogradov’s mean value theorem
across a large swath of analytic number theory. Current approaches to the as-
ymptotic formula in Waring’s problem, the sharpest available estimates for the
zero-free region of the Riemann zeta function, and the investigation of equidis-
tribution modulo 1 of polynomial sequences, all depend for their success on
estimates associated with Vinogradov’s mean value theorem (see [6, 48], [15],
[3, 56], respectively). We direct the reader to [50] for an overview of several
other applications and an account of recent developments. In §§13 and 14
we record some applications of Theorem 1.1 and its corollaries to Waring’s
problem and cognate applications.

Several commentators have described the work of Bourgain et al. [8] con-
cerning Vinogradov’s mean value theorem as inherently analytic in nature,
contrasting it to earlier number-theoretic methods. A comparison of the ef-
ficient congruencing methods (see especially [47, 54, 55, 58] and the present
paper) with the l2-decoupling approach [8], however, shows the core of both
methods to be strikingly similar. The former applies p-adic short intervals
(which is to say, congruence class restrictions) to achieve a p-adic concentra-
tion argument via a multiscale iteration, whereas the latter applies real short
intervals to achieve the same effect. Number theorists will have little difficulty
in translating arguments over Qp to analogous arguments over R (which is to
say, over Q∞), and vice versa. One of the important messages of the present
memoir is that the efficient congruencing ideas are sufficiently flexible that
they may be applied to estimate mean values associated with discrete sets of
points in a wide variety of fields and their localisations. Examples of such
situations include, but are not limited to:

(i) discrete sets of points in Q and its localisations Qp and R = Q∞;
(ii) discrete sets of points in a number field K and its localisations;
(iii) discrete sets of points in Fq(t) and its localisations;
(iv) discrete sets of points in a function field defined by a curve over a finite

field, and its localisations.

In order to illustrate that generalisations of our principal conclusions are
easily accessible to our methods, in §15 we establish an analogue of Theorem
1.1 and its corollaries for rings of integers in an arbitrary number field. We
also consider function field analogues of our principal conclusions in their most
basic form in §17. In both instances, we exploit the relative simplicity of the
nested efficient congruencing method as compared to the l2-decoupling method
of Bourgain et al. [8]. We are able, for example, to avoid any discussion of



6 TREVOR D. WOOLEY

multilinear Kakeya estimates, the nature of which would be necessarily more
mysterious (and presently unknown) in the setting of number fields and func-
tion fields. Our approach is also bilinear rather than multilinear, leading to a
considerable streamlining of detail. Finally, one inductive aspect of our meth-
ods (concerning the number of equations or congruences in play) obviates the
need for detailed knowledge of systems of congruences in many variables, as
previously supplied by [45]. Thus, the much simpler theory associated with a
single congruence in one variable underpins the wider theory without further
elaboration. We refer the reader to §§15 and 17 for details, and defer applica-
tions to a future paper. We finish by noting that a comprehensive analogue of
Theorem 1.1 in the function field setting is the subject of forthcoming work of
the author joint with Yu-Ru Liu.

This memoir is organised as follows. We provide a crude outline of the
nested efficient congruencing method in §2. Here, readers will find an outline
of the ideas new to the nested variant of the multigrade efficient congruenc-
ing method, as well as an overview of the efficient congruencing strategy in
the large. Sections 3 to 10 inclusive provide a detailed account of the proof
of Theorem 3.1, the basic nested inductive step, via the nested efficient con-
gruencing method. The necessary infrastructure is introduced in §3, with a
discussion of the implications for translation-dilation invariant families in §4.
The nested structure is built inductively, and we introduce the foundation for
this induction with the case of a single equation in §5. The general situation
is addressed in §§6-9. In §6 we prepare our bilinear structure with some initial
conditioning. Then we employ the approximate translation-dilation invariance
in §7 so as to generate strong congruence constraints efficiently. In the lan-
guage of harmonic analysis, this constitutes a multiscale aspect to the method.
These congruence constraints must be employed iteratively, as described in §8,
the analysis of which in §9 prepares the ground for the proof of Theorem 3.1 in
§10. Then, in §11, we derive some consequences of Theorem 3.1 for problems
involving the number of solutions of congruences in short intervals. In §12
we show how Theorem 3.1 may be employed to deliver Theorem 1.1 and its
corollaries. A brief excursion in §13 explores the consequences of Corollary
1.3 for Tarry’s problem. An account of the implications of Theorem 1.1 for
relatives of Vinogradov’s mean value theorem analogous to Hua’s lemma is pro-
vided in §14, and here we numerically refine some recent work of Bourgain [6]
concerning the asymptotic formula in Waring’s problem, adding extra details
to that exposition. In §15 we indicate how to establish the main conjecture
in Vinogradov’s mean value theorem for number fields, and we provide some
consequences of these conclusions for multivariable analogues of Vinogradov’s
mean value theorem in §16. Finally, in §17, we confirm the main conjecture in
Vinogradov’s mean value theorem for function fields in its most basic form.

A couple of notational conventions already deserve mention. Throughout,
we make liberal use of vector notation in settings not always conventional
in nature. Thus, for example, we write 1 6 x 6 X to denote that every
coordinate xi of x satisfies 1 6 xi 6 X, and x ≡ ξ (mod ph) to denote that
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xi ≡ ξ (mod ph) for all indices i. Also, we adopt the convention that when
F : [0, 1)n → C is integrable, then∮

F (α) dα =

∫
[0,1)n

F (α) dα. (1.9)

Finally, given a situation in which the parameter ε has not already been fixed,
in any statement involving the letter ε it is implicitly asserted that the state-
ment holds for each ε > 0. In such circumstances, implicit constants in Vino-
gradov’s notation � and � may depend on ε.

Acknowledgements: The bulk of this work was completed in February 2016.
A period of heavy administration at the University of Bristol slowed the final
production of this memoir, but also permitted an evolution of ideas that has
greatly simplified several aspects. The author is grateful to the Fields In-
stitute in Toronto for excellent working conditions and support that made
the completion of this work possible during the Thematic Program on Un-
likely Intersections, Heights, and Efficient Congruencing in the first half of
2017. Further work was supported by the National Science Foundation under
Grant No. DMS-1440140 while the author was in residence at the Mathemati-
cal Sciences Research Institute in Berkeley, California, during the Spring 2017
semester. The author’s work was supported by a European Research Coun-
cil Advanced Grant under the European Union’s Horizon 2020 research and
innovation programme via grant agreement No. 695223. Without the release
time from the University of Bristol funded by the latter grant, it is difficult
to envision that completion of this memoir would have been feasible, and the
author wishes to express his gratitude to the ERC for this support.

The author is grateful to Kirsti Biggs and Julia Brandes for numerous sug-
gestions and corrections to an earlier draft of this manuscript. A great debt
of gratitude is also owed to the referee for a meticulous and time-consuming
review of the paper.

2. A crude outline of nested efficient congruencing

Granted latitude to be economical with technical details and mathematical
rigour, we begin in this section by outlining in broad terms the key features of
the method central to this paper. The starting point is the translation-dilation
invariant (TDI) system of equations (1.6). This TDI property is made evident
by the observation that, whenever ξ ∈ Z and q ∈ N, the pair x,y satisfies (1.6)
if and only if this 2s-tuple also satisfies the system of equations

s∑
i=1

(
(qxi + ξ)j − (qyi + ξ)j

)
= 0 (1 6 j 6 k).

An application of the binomial theorem rapidly confirms such to be the case.
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In the basic version of efficient congruencing (see [47]), one relates the mean
value Js,k(X) defined in (1.7) to associated mean values equipped with addi-
tional congruence conditions. Write

gc(α; ξ) =
∑

16x6X
x≡ξ (mod pc)

e(α1x+ . . .+ αkx
k),

in which p is a preselected auxiliary prime number of size having order given
by a small power of X. Further, for 0 6 r 6 k, define the auxiliary mean value

Kr
a,b(X) = max

ξ 6≡η (mod p)

∮
|ga(α; ξ)2rgb(α; η)2s−2r| dα. (2.1)

Then it follows via an application of Hölder’s inequality that a prime p may
be chosen with

Js,k(X)� p2sKr
1,1(X).

It is convenient to possess notation which makes transparent the extent to
which the auxiliary mean value Kr

a,b(X) exceeds its anticipated magnitude.
With this goal in mind, when s > k(k + 1)/2, we put

JKr
a,b(X)K =

Kr
a,b(X)

(X/pa)2r−k(k+1)/2(X/pb)2s−2r
,

and when r 6 s 6 k(k + 1)/2 we instead define

JKr
a,b(X)K =

Kr
a,b(X)

(X/pa)r(X/pb)s−r
.

If, for a given value of s, the mean value Js,k(X) grows approximately like

XΛ(Xs +X2s−k(k+1)/2),

with Λ > 0, then we can infer that for a small number ε > 0 one has
JKr

1,1(X)K � XΛ−ε. Here, we have made use of the implicit assumption that

p has size of order Xθ, where θ > 0 is sufficiently small in terms of Λ. Our
strategy is now to concentrate this over-abundance of solutions underlying
the mean value, relative to the expectation suggested by the main conjecture,
through a sequence of auxiliary mean values Krn

an,bn
(X) (n > 1). The situation

is simplest to describe when s = k(k + 1). Here, roughly speaking, one shows
that for each ε > 0 one has

JKk
an,bn(X)K� XΛ−ε(pψn)Λ, (2.2)

with an ≈ kn−1, bn ≈ kn and ψn ≈ nkn−1(k − 1). Provided that Λ > 0, then
by permitting n to become arbitrarily large sufficiently slowly, one finds that
this lower bound for JKk

an,bn
(X)K vastly exceeds even a trivial estimate for its

upper bound, yielding a contradiction. Thus, we are forced to conclude that
Λ = 0, and the main conjecture follows for s > k(k + 1).

The lower bound (2.2) is obtained iteratively. By orthogonality, the mean
value on the right hand side of (2.1) counts the number of integral solutions
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of the system

r∑
i=1

(xji − y
j
i ) =

s−r∑
l=1

(
(pbul + η)j − (pbvl + η)j

)
(1 6 j 6 k), (2.3)

with 1 6 x,y 6 X and (1−η)/pb 6 u,v 6 (X−η)/pb, subject to the condition
x ≡ y ≡ ξ (mod pa). The TDI property of the system (1.6) ensures that (2.3)
is equivalent to the system of equations

r∑
i=1

(
(xi − η)j − (yi − η)j

)
= pjb

s−r∑
l=1

(
ujl − v

j
l

)
(1 6 j 6 k),

and thus one obtains the strong congruence condition
r∑
i=1

(xi − η)j ≡
r∑
i=1

(yi − η)j (mod pjb) (1 6 j 6 k). (2.4)

One of the technical details suppressed here is the need to condition variables so
that x1, . . . , xr lie in distinct congruence classes modulo pa+1. This guarantees
a level of non-singularity in the solution set that may be exploited via Hensel’s
lemma.

In the simplest set-up with s = k(k + 1) and r = k, one shows that for
a fixed choice of the k-tuple y modulo pkb, there are at most k!(pa+b)k(k−1)/2

possible choices for the k-tuple x modulo pkb. Since xi ≡ ξ (mod pa), each
variable xi has at most pkb−a possible choices for its residue class modulo
pkb. Reinterpreting the system (2.3) via orthogonality, and applying Hölder’s
inequality with care, one deduces that

Kk
a,b(X)� (pa+b)k(k−1)/2(pkb−a)k max

ζ 6≡η (mod p)

∮
|gkb(α; ζ)2kgb(α; η)2s−2k| dα

� p
1
2
k(k−1)(a+b)+k(kb−a)Kk

b,kb(X)
k
s−kJs,k(X/p

b)
s−2k
s−k . (2.5)

Here, we have applied the TDI property of the system (1.6) to infer that∮
|gb(α; η)|2s dα� Js,k(X/p

b).

The relation (2.5) may be unwound with the estimate

Js,k(X/p
b)� (X/pb)2s−k(k+1)/2+Λ+ε.

Thus one sees that

JKk
a,b(X)K� XεJKk

b,kb(X)K
k
s−k (X/pb)

s−2k
s−k Λ

, (2.6)

and a relation of the shape (2.2) follows.

In the multigrade variant of efficient congruencing, the parameter r in the
congruences (2.4) is varied, and we interpret this system in the form

r∑
i=1

(xi − η)j ≡
r∑
i=1

(yi − η)j (mod p(k−r+1)b) (k − r + 1 6 j 6 k). (2.7)
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It follows via Hensel’s lemma that, when x1, . . . , xr lie in distinct congruence
classes modulo pa+1, then they are essentially congruent to a permutation of the
residue classes y1, . . . , yr modulo p(k−r+1)b−(r−1)a. A variant of this observation
plays a role in the work of the author [16] joint with Ford. Fixing a parameter
R with 1 6 R 6 k, this new congruence information may be exploited in a
similar manner to that delivering the relation (2.6). One now finds that when
1 6 r 6 R and R < s 6 k(k + 1)/2, then one has

JKr
a,b(X)K� XεJKr−1

a,b (X)K
s−R−r
s−R−r+1 JKR

b,b′(X)K
1

s−R−r+1 , (2.8)

where b′ = (k − r + 1)b − (r − 1)a. Here, we note that when r = 1, we have
Kr−1
a,b (X) = K0

a,b(X)� Js,k(X/p
b), using the TDI property of the system (1.6).

The analysis of this new multigrade efficient congruencing method is nec-
essarily more complicated than with (2.6), since we have numerous quantities
Kr
a,b(X), with 1 6 r 6 R, in play. The treatment of the iteration involves a

complicated tree of possible outcomes. The analysis of [54, 55, 58] iterates the
relation (2.8) to obtain a relation of the shape

JKR
a,b(X)K� Xε(X/pb)Λφ0

R∏
r=1

JKR
b,br(X)Kφr ,

in which br = (k − r + 1)b − (r − 1)a and the exponents φr are appropriate
positive numbers with φ0 + . . .+ φR = 1. From here one can analyse the tree
structure of the iterative process by weighting the outcomes, simplifying to a
situation in which one has an averaged relation of the shape

JKR
a,b(X)K� XεJKR

b,br(X)Kψb/br(X/pb)Λφ0 ,

for some integer r with 1 6 r 6 R, with ψ a positive number determined by the
averaging process, and depending on s andR. Of critical importance is whether
or not the exponent ψ exceeds 1. If ψ > 1, then the p-adic concentration
argument is successful in delivering a contradiction to the assertion that Λ > 0,
much as before, and the main conjecture follows for the value of s in question.
On the other hand, if ψ < 1, then the iteration fails to deliver a contradiction.
It transpires that a choice for R may be made which permits s to be as large
as k(k + 1)/2 − k/3 + O(k2/3), and which allows the main conjecture to be
proved for Js,k(X) in this way.

It is at this point that nested efficient congruencing enters the scene. The
key observation is that the above iterative processes may be applied without
alteration when the system of equations (1.6) is replaced by a corresponding
system of congruences

s∑
i=1

(xji − y
j
i ) ≡ 0 (mod pB) (1 6 j 6 k), (2.9)

in which B should be interpreted as a large integral parameter. At least, such
is the case so long as two subsets of the variables xi and yi are restricted
to congruence classes modulo pa and pb, respectively, in which a and b are
sufficiently small that the limitation to a mod pB environment plays no role in
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the above arguments. Such is assured in the system (2.9) when kb 6 B. Thus,
when s 6 k(k + 1)/2 − k/3 + O(k2/3), then in the multigrade argument just
described, one may essentially conclude from (2.9) that in an average sense the
variables x and y are automatically constrained by the additional condition
xi ≡ yi (mod pH), with H = bB/kc. More is true. If one has a system of
polynomials ϕ1, . . . , ϕk ∈ Z[t] with ϕi(t) ≡ tj (mod pc), for some reasonably
large parameter c, then the relation (2.9) remains approximately true, since
it holds modulo pmin{c,B}. This may be exploited to show that, in an average
sense, one has xi ≡ yi (mod ph) with h = bc/kc. This additional information
refines the approximation to the relation (2.9) in a manner similar to the
conventional proof of Hensel’s lemma. By iterating this idea, one finds even in
this more general situation that in an average sense one has xi ≡ yi (mod pH).

The observation just sketched may be employed as a substitute for Hensel’s
lemma in congruence systems of the shape

u∑
i=1

(xi − η)j ≡
u∑
i=1

(yi − η)j (mod p(k−r+1)b) (k − r + 1 6 j 6 k),

analogous to (2.7), though with u as large as r(r + 1)/2. The resulting con-
gruence information on the variables xi and yi modulo pb

′
, with

b′ = b(k − r + 1)b/rc,

though weaker than in our earlier treatment, is spread out over many more
variables. This, it transpires, offers a sufficient advantage that the earlier defect
of k/3 variables may be remedied, thereby upgrading the applicability of the
multigrade method so as to establish the main conjecture for Js,k(X) when
s 6 k(k+ 1)/2. The basic approach to the p-adic concentration argument and
analysis of the tree of possible outcomes makes use of the same circle of ideas
as in the basic multigrade approach. The detailed prosecution of this method
will occupy our attention throughout §§3–12.

3. The infrastructure for nested efficient congruencing

We begin by introducing the apparatus required for our proof of Theorem
1.1 via nested efficient congruencing. Although analogous to that of our previ-
ous work (see especially [47, 54, 55, 58]) concerning Vinogradov’s mean value
theorem, we deviate significantly from our previous path. In particular, we
incorporate ideas from our work on discrete restriction theory [59] into the
method.

Let k be an integer with k > 1, and consider polynomials ϕ1, . . . , ϕk ∈ Z[t].
Throughout our discussion, we have in mind a fixed prime number p with
p > k, and a large positive integer B. We require the polynomials ϕj to be
sufficiently independent for 1 6 j 6 k. This is achieved by imposing the
condition that the system of polynomials ϕ be pc-spaced for an appropriate
positive integer c, meaning that

ϕj(t) ≡ tj (mod pc) (1 6 j 6 k). (3.1)
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For such a pc-spaced system of polynomials ϕ, one finds that the Wronskian
W (t;ϕ) defined in (1.1) is necessarily non-zero. Indeed, one has

W (t;ϕ) ≡ det
(
j(j − 1) · · · (j − i+ 1)tj−i

)
16i,j6k

=
k∏
j=1

j! 6≡ 0 (mod p),

whence W (t;ϕ) 6= 0. It transpires that the restriction to pc-spaced systems
of polynomials is easily accommodated when establishing such conclusions as
Theorem 1.1.

We next define the exponential sums and mean values central to our argu-
ments. Consider a complex sequence (an)n∈Z with

∑
n∈Z |an| <∞. We impose

the latter condition for convenience, since this ensures that the Fourier series
employed in our arguments are absolutely convergent, and hence that the mo-
ments of such series are finite. Formally speaking, all of our arguments apply
under the assumption only that

∑
n∈Z |an|r < ∞ for some r < 2, though this

requires some interpretation. We have in mind the device of normalising our
exponential sums. To this end, when h is a non-negative integer and ξ ∈ Z,
we define ρh(ξ) = ρh(ξ;a) by putting

ρh(ξ;a) =

( ∑
n≡ξ (mod ph)

|an|2
)1/2

. (3.2)

Here, we suppress the implicit assumption that the sum is taken over n ∈ Z.

For concision, we write ρ0 = ρ0(a) for ρ0(1;a) =
(∑

n∈Z |an|2
)1/2

. Note that,
for all h and ξ, one has ρh(ξ) 6 ρ0 <∞.

Next, write

ψ(n;α) = α1ϕ1(n) + . . .+ αkϕk(n). (3.3)

When h is a non-negative integer and ξ ∈ Z, we define the exponential sum
fh(α; ξ) = fh(α; ξ;a;ϕ) as follows. When ρh(ξ) > 0, we put

fh(α; ξ) = ρh(ξ)
−1

∑
n≡ξ (mod ph)

ane(ψ(n;α)), (3.4)

and otherwise, when ρh(ξ) = 0, we instead put fh(α; ξ) = 0. Of course,
in the second of these alternatives, one has an = 0 for each n ∈ Z with
n ≡ ξ (mod ph), and the summation in (3.4) is necessarily 0. It is occasionally
useful to abbreviate f0(α; ξ) to fa(α). Note that in the situation in which

an =

{
1, when 1 6 n 6 N,

0, otherwise,

one has

N1/2fa(α) =
∑

16n6N

e(α1ϕ1(n) + . . .+ αkϕk(n)).

In order to define the mean values of interest to us, we introduce some concise
notation to ease our exposition. We extend the notation (1.9) to accommodate
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implicit congruences as follows. Thus, when B is a positive integer, we write∮
pB
F (α) dα = p−kB

∑
u1 mod pB

. . .
∑

uk mod pB

F (u/pB), (3.5)

where the summations are taken over complete sets of residues modulo pB. We
then define the mean value UB

s,k(a) = UB,ϕ
s,k (a) by putting

UB
s,k(a) =

∮
pB
|fa(α)|2sdα. (3.6)

Note that, by orthogonality, the mean value UB
s,k(a) counts the integral solu-

tions of the simultaneous congruences

s∑
i=1

(ϕj(xi)− ϕj(yi)) ≡ 0 (mod pB) (1 6 j 6 k), (3.7)

with x,y ∈ Z, and with each solution x,y being counted with weight

ρ−2s
0

s∏
i=1

axiayi .

We consider also a mean value related to UB
s,k(a), though with underlying

variables restricted to a common congruence class. Thus, we define UB,h
s,k (a) =

UB,h,ϕ
s,k (a) by putting

UB,h
s,k (a) = ρ−2

0

∑
ξ mod ph

ρh(ξ)
2

∮
pB
|fh(α; ξ)|2s dα. (3.8)

In this instance, it follows via orthogonality that the integral on the right hand
side of (3.8) counts the integral solutions x,y of the system (3.7) satisfying
x ≡ y ≡ ξ (mod ph) with weight

ρh(ξ)
−2s

s∏
i=1

axiayi .

Observe that when H > 1, one may decompose the exponential sum fa(α)
according to residue classes modulo pH . Thus, it follows from (3.4) that

fa(α) = ρ−1
0

∑
ξ mod pH

∑
n≡ξ (mod pH)

ane(ψ(n;α))

= ρ−1
0

∑
ξ mod pH

ρH(ξ)fH(α; ξ).

An application of Hölder’s inequality therefore reveals that

|fa(α)|2s 6 ρ−2s
0

( ∑
ξ mod pH

1

)s( ∑
ξ mod pH

ρH(ξ)2

)s−1 ∑
ξ mod pH

ρH(ξ)2|fH(α; ξ)|2s.
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Since it follows from (3.2) that∑
ξ mod pH

ρH(ξ)2 =
∑
n∈Z

|an|2 = ρ2
0,

we deduce that

|fa(α)|2s 6 ρ−2
0 psH

∑
ξ mod pH

ρH(ξ)2|fH(α; ξ)|2s. (3.9)

We consequently deduce from (3.6) and (3.8) that

UB
s,k(a) 6 psHUB,H

s,k (a). (3.10)

This relation motivates us to seek an exponent λ having the property that, for
each ε > 0, one has

UB
s,k(a)� (pH)λ+εUB,H

s,k (a), (3.11)

with as much uniformity in the various parameters as is feasible. It is already
apparent from (3.10) that (3.11) holds for some positive number λ satisfying
the condition λ 6 s.

In order to make sense of the goal just enunciated, we make some simplifying
observations. Observe first that the definition (3.4) of fh(α; ξ) is scale invariant
with respect to the sequence (an). Thus, if γ > 0 and the sequence (an) is
replaced by (γan), then the exponential sum fh(α; ξ) remains unchanged, and
likewise therefore the mean value UB

s,k(a) defined in (3.6) remains unchanged.
Denote by D the set of sequences (an)n∈Z with |an| 6 1 (n ∈ Z) and

0 <
∑
n∈Z

|an| <∞.

Also, write D0 = D ∪ {0}. Then we see that there is no loss of generality in
restricting the sequences (an) under consideration to lie in D.

Next, when τ > 0, denote by Φτ (B) the set of pc-spaced k-tuples of polyno-
mials ϕ, with c > τB. The relation (3.10) ensures that for each fixed B ∈ N
and ϕ ∈ Φτ (B), one has

sup
(an)∈D

log(UB
s,k(a)/UB,H

s,k (a))

log(pH)
6 s

for every non-negative integer H. On the other hand, by considering a sequence
(bn) ∈ D with bn = 0 whenever n 6≡ 0 (mod pH), one discerns from (3.8) that

UB
s,k(b) = UB,H

s,k (b), whence

sup
(an)∈D

log(UB
s,k(a)/UB,H

s,k (a))

log(pH)
> 0.

Given s > 0, θ > 1 and τ > 0, write H = dB/θe, and define

λ∗(s, θ; τ) = lim sup
B→∞

sup
ϕ∈Φτ (B)

sup
(an)∈D

log(UB
s,k(a)/UB,H

s,k (a))

log(pH)
. (3.12)
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Then we may be assured that 0 6 λ∗(s, θ; τ) 6 s. Finally, we define the
limiting exponent

λ(s, θ) = lim sup
τ→0

λ∗(s, θ; τ), (3.13)

noting that, once again, one has

0 6 λ(s, θ) 6 s. (3.14)

We are now equipped to announce a pivotal estimate that underpins the
main inductive step in our argument.

Theorem 3.1. Suppose that k ∈ N and that p is a prime number with p > k.
Then one has λ(k(k + 1)/2, k) = 0.

Our methods would show, in fact, that for each natural number k and pos-
itive number s, one has

λ(s, k) = max{0, s− k(k + 1)/2}. (3.15)

Our main discussion restricts attention to the special case s = k(k + 1)/2
recorded in Theorem 3.1. This case may be described in a more accessible
manner, and is all that is required for the proof of the conclusions recorded in
the introduction.

Theorem 3.1 may appear difficult to interpret, and for this reason we present
the following corollary.

Corollary 3.2. Suppose that k ∈ N and that p is a prime number with p > k.
In addition, let τ > 0 and ε > 0. Finally, let B be sufficiently large in terms of
k, τ and ε. Put s = k(k + 1)/2 and H = dB/ke. Then for every ϕ ∈ Φτ (B),
and every sequence (an) ∈ D0, one has

UB
s,k(a)� pBεUB,H

s,k (a). (3.16)

We emphasise that the implicit constant in (3.16) may depend on k, τ and
ε, but is independent of ϕ. We note also that the validity of the relation (3.15)
implies that (3.16) holds for all positive numbers s 6 k(k + 1)/2. The con-
clusion of Corollary 3.2 provides an essentially cost-free concentration towards
the diagonal when s 6 k(k + 1)/2. For then the weighted count of solutions
of the system (3.7) is dominated by a diagonal contribution in which one may
suppose, essentially speaking, that the variables are subject to the additional
condition that x ≡ y (mod pdB/ke). In order to be more concrete concerning
this phenomenon, consider the mean value∮

pB
|fH(α; ξ)|2s dα (3.17)

occurring in the definition (3.8) of UB,H
s,k (a). Should this mean value exhibit

square-root cancellation, then in view of the normalisation visible in (3.4), it

follows from (3.8) that UB,H
s,k (a) � 1. The conclusion of Corollary 3.2 then
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shows that UB
s,k(a)� pBε, which is tantamount to square-root cancellation in

the mean value ∮
pB
|fa(α)|2s dα. (3.18)

Yet, a priori, the mean value (3.17) is more likely to exhibit square-root can-
cellation than is (3.18), since the former constrains its underlying variables to
an arithmetic progression modulo pH .

We remark that it would be possible to eliminate the condition p > k.
Here, two approaches are possible. On the one hand, one could incorporate
coefficients divisible by p arising from the extraction of derivatives directly,
taking account of the extent to which this inflates subsequent estimates. The
impact is modest. Alternatively, one could replace the powers tj occurring in
our definition of pc-spaced systems by the binomial polynomials

(
t+j−1
j

)
.

We next introduce certain auxiliary mean values that play a key role in our
arguments. Throughout, we fix s = k(k + 1)/2. Let a, b, c and ν be non-
negative integers. We consider a pc-spaced k-tuple of polynomials ϕ ∈ Z[t]k,
and we fix a complex sequence (an) ∈ D0. When 0 6 r 6 k, we define the
mean value Kr

a,b = Kr,ϕ,ν
a,b,c (a) by putting

Kr,ϕ,ν
a,b,c (a) = ρ−4

0

∑
ξ mod pa

∑
η mod pb

ξ 6≡η (mod pν)

ρa(ξ)
2ρb(η)2Kr,ϕ,ν

a,b,c (a; ξ, η), (3.19)

in which

Kr,ϕ,ν
a,b,c (a; ξ, η) =

∮
pB
|fa(α; ξ)2Rfb(α; η)2s−2R| dα (3.20)

and R = r(r+ 1)/2. Notice here that in the definition (3.20) of Kr,ϕ,ν
a,b,c (a; ξ, η),

the parameter ν is in a sense otiose. However, its inclusion as a superscript
serves to remind us of the implicit assumption that pν - (ξ − η). By or-
thogonality, the mean value Kr,ϕ,ν

a,b,c (a; ξ, η) counts the integral solutions of the
simultaneous congruences

R∑
i=1

(ϕj(xi)− ϕj(yi)) ≡
s−R∑
l=1

(ϕj(vl)− ϕj(wl)) (mod pB) (1 6 j 6 k), (3.21)

satisfying

x ≡ y ≡ ξ (mod pa) and v ≡ w ≡ η (mod pb), (3.22)

with each solution being counted with weight

ρa(ξ)
−2Rρb(η)2R−2s

( R∏
i=1

axiayi

)(s−R∏
l=1

avlawl

)
. (3.23)

As in our previous work on efficient congruencing, our arguments are con-
siderably simplified by making transparent the relationship between various
mean values, on the one hand, and their anticipated magnitudes, on the other.
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We therefore consider normalised versions of these mean values Kr
a,b as follows.

When 1 6 r 6 k − 1 and ∆ is a positive number, we define

JKr,ϕ,ν
a,b,c (a)K∆ =

(
Kr,ϕ,ν
a,b,c (a)

p∆HUB,H
s,k (a)

) k−1
r(k−r)

. (3.24)

For much of our discussion, the choices of a, ϕ, ν and c will be considered fixed,
and in such circumstances we suppress mention of them from our notation. We
note that the presence of the exponent

k − 1

r(k − r)
is designed to equalise the weights with which the mixed mean values Kr

a,b

occur within our arguments. The utility of this device will become apparent
in due course.

4. Translation-dilation invariant families

Consider a pc-spaced system of polynomials ϕ. In general, of course, the
system of congruences

s∑
i=1

ϕj(xi) ≡
s∑
i=1

ϕj(yi) (mod pB) (1 6 j 6 k) (4.1)

will not be translation-dilation invariant. However, in such special cases as the
system given by ϕj(t) = tj (1 6 j 6 k), it follows via an application of the
binomial theorem that whenever a ∈ Z and q ∈ N, and (x,y) = (qu+a, qv+a)
is a solution of (4.1), then so too is (x,y) = (u,v). This translation-dilation
invariance property may be preserved in families of systems ϕ which are not
individually translation-dilation invariant. Thus, given a ∈ Z and b ∈ N, and
a solution (x,y) = (pbu + a, pbv + a) of the system (4.1), one finds that (u,v)
is a solution of the system

s∑
i=1

ψj(ui) ≡
s∑
i=1

ψj(vi) (mod pB
′
) (1 6 j 6 k),

for some other pc-spaced system of polynomials ψ, with B′ an integer depend-
ing on B and b. It is our goal in this section to establish estimates making this
property explicit.

Our first lemma shows that restriction to arithmetic progressions modulo ph

leads to bounds on mean values of the type UB
s,k(a) that scale appropriately

with respect to the height of the arithmetic progression.

Lemma 4.1. Suppose that k ∈ N and that p is a prime number with p > k.
Let τ , ε and δ be positive numbers with ε < τ < δ < 1, and let B be sufficiently
large in terms of s, k and ε. Write H = dB/ke. Then for every ϕ ∈ Φτ (B),
every sequence (an) ∈ D0, and every non-negative integer h with h 6 (1−δ)H,
one has

UB,h
s,k (a)� (pH−h)λ(s,k)+εUB,H

s,k (a).
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Proof. Consider a pc-spaced k-tuple of polynomials ϕ with c > τB, and a com-
plex sequence (an) ∈ D0, with associated parameters satisfying the hypotheses
of the statement of the lemma. Also, let h be an integer with 0 6 h 6 (1−δ)H.
From the definition (3.4) of the exponential sum fh(α; ξ), one has

fh(α; ξ) = ρh(ξ)
−1
∑
y∈Z

by(ξ)e(ψ(phy + ξ;α)), (4.2)

in which ψ(n;α) is given by (3.3), and the coefficients by = by(ξ) are defined
by putting

by(ξ) = aphy+ξ (y ∈ Z). (4.3)

By orthogonality, the integral on the right hand side of (3.8) counts the integral
solutions y, z of the simultaneous congruences

s∑
i=1

ϕj(p
hyi + ξ) ≡

s∑
i=1

ϕj(p
hzi + ξ) (mod pB) (1 6 j 6 k), (4.4)

with each solution being counted with weight

ρh(ξ)
−2s

s∏
i=1

byibzi . (4.5)

The polynomial system ϕ is pc-spaced, and hence it follows from (3.1) that
for suitable polynomials ψj ∈ Z[t], one may write

ϕj(t) =
k∑
i=1

ωijt
i + pctk+1ψj(t) (1 6 j 6 k),

for some integral coefficient matrix A1 = (ωij)16i,j6k congruent modulo pc to
the k × k identity matrix Ik. Since A1 ≡ Ik (mod pc), it follows that A1

possesses a multiplicative inverse A−1
1 modulo pB having integral coefficients.

By replacing ϕ by A−1
1 ϕ and ψ by A−1

1 ψ, which amounts to taking suitable
integral linear combinations of the congruences comprising (4.4), we discern
that there is no loss of generality in supposing that for 1 6 j 6 k, one has

ϕj(t) = tj + pctk+1ψj(t) (1 6 j 6 k). (4.6)

With the latter assumption in hand, we apply the binomial theorem to (4.6).
Thus, when 1 6 j 6 k, one finds that for suitable polynomials Ψj ∈ Z[t], one
has ϕj(p

hy + ξ)− ϕj(ξ) = Φj(p
hy), in which

Φj(t) =
k∑
i=1

Ωijξ
j−iti + pctk+1Ψj(t) (1 6 j 6 k),

and the integral coefficients Ωij satisfy

Ωij ≡
(
j

i

)
(mod pc) (1 6 i, j 6 k).

Here, we adopt the convention that the binomial coefficient
(
j
i

)
is zero for

i > j. Our hypothesis that p > k ensures that the matrix A2 = (Ωij)16i,j6k

possesses a multiplicative inverse A−1
2 modulo pB having integral coefficients,
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since it is triangular modulo pc with diagonal entries all equal to 1. We now
replace Φ by A−1

2 Φ and Ψ by A−1
2 Ψ. Again, this amounts to taking suitable

integral linear combinations of the congruences comprising (4.4), and we see
that there is no loss of generality in supposing that the coefficient matrix A2

is equal to Ik. Hence, there exist polynomials Υj ∈ Z[t] having the property
that whenever the system (4.4) is satisfied, then

s∑
i=1

(ph)j (Φj(yi)− Φj(zi)) ≡ 0 (mod pB) (1 6 j 6 k), (4.7)

in which Φj has been redefined by

Φj(t) = tj + pc+htk+1Υj(t). (4.8)

The integral solutions y, z of the original system of congruences (4.4), counted

with the weight (4.5) associated with the definition (3.8) of UB,h
s,k (a), are there-

fore constrained by the additional system of congruences

s∑
i=1

Φj(yi) ≡
s∑
i=1

Φj(zi) (mod pB−kh) (1 6 j 6 k). (4.9)

In order to incorporate the extra condition (4.9) into the mean value UB,h
s,k (a),

we introduce the exponential sum

gh(α,β; ξ) = ρh(ξ)
−1
∑
y∈Z

cy(ξ;α)e(ψ∗(y;β)), (4.10)

where

cy(ξ;α) = by(ξ)e(ψ(phy + ξ;α)) (4.11)

and

ψ∗(y;β) = β1Φ1(y) + . . .+ βkΦk(y).

Equipped with this notation, it follows via orthogonality that∮
pB
|fh(α; ξ)|2s dα =

∮
pB

∮
pB−kh

|gh(α,β; ξ)|2s dβ dα. (4.12)

Note that the polynomial system Φ defined via (4.8) is pc+h-spaced. Since
we may assume that h 6 (1− δ)H, moreover, one has

B − kh > B − kdB/ke+ kδdB/ke > δB − k,

so that B − kh may be assumed to be sufficiently large in terms of s, k and ε.
It therefore follows from the definitions (3.12) and (3.13) that

UB−kh
s,k (c)� (pH−h)λ(s,k)+εUB−kh,H−h

s,k (c).

In view of the definition (4.10), we therefore deduce that∮
pB−kh

|gh(α,β; ξ)|2s dβ � (pH−h)λ(s,k)+εI1, (4.13)
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where

I1 = ρh(ξ)
−2

∑
η mod pH−h

ρH−h(p
hη + ξ)2

∮
pB−kh

|g∗H−h(α,β; ξ, η)|2s dβ,

and

g∗H−h(α,β; ξ, η) = ρH−h(p
hη + ξ)−1

∑
y≡η (mod pH−h)

cy(ξ;α)e(ψ∗(y;β)).

Observe that there is a correspondence between residues ζ modulo pH and
pairs (ξ, η) of residues modulo ph, and modulo pH−h, respectively. Indeed, if
1 6 ζ 6 pH , then we may identify ξ and η via the relations ξ ≡ ζ (mod ph) and
η ≡ (ζ − ξ)p−h (mod pH−h). Likewise, given (ξ, η), we put ζ = phη + ξ. With
this correspondence in mind, we find from (4.3) and (4.11) that g∗H−h(α,β; ξ, η)
is equal to

ρH(ζ)−1
∑
y∈Z

phy+ξ≡ζ (mod pH)

aphy+ξe(ψ(phy + ξ;α) + ψ∗(y;β)).

In particular, we deduce from (4.12) and (4.13) that∑
ξ mod ph

ρh(ξ)
2

∮
pB
|fh(α; ξ)|2s dα

� (pH−h)λ(s,k)+ε
∑

ζ mod pH

ζ=phη+ξ

ρH(ζ)2

∮
pB

∮
pB−kh

|g∗H−h(α,β; ξ, η)|2s dβ dα.

(4.14)

By orthogonality, the mean value on the right hand side of (4.14) counts
integral solutions of the system of congruences (4.4), with each solution being
counted with weight (4.5), but subject to the additional condition that

phy + ξ ≡ phz + ξ ≡ ζ (mod pH),

and further subject to the congruence conditions (4.9). The latter congruence
conditions are generated by the integral over β in (4.14). However, the condi-
tions (4.9) are implied by (4.4), as we have shown in the discussion above. We
note also that when ζ = phη + ξ, then

g∗H−h(α,0; ξ, η) = ρH(ζ)−1
∑

n≡ζ (mod pH)

ane(ψ(n;α)) = fH(α; ζ).

Then on recalling the definition (3.8), and noting that the conditions (4.9) may
be omitted, we deduce that

UB,h
s,k (a)� (pH−h)λ(s,k)+ερ−2

0

∑
ζ mod pH

ρH(ζ)2

∮
pB
|fH(α; ζ)|2s dα

= (pH−h)λ(s,k)+εUB,H
s,k (a).

This completes the proof of the lemma. �
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It is tempting to replace the proof of Lemma 4.1 with an informal argument
appealing to Taylor expansions, rescaling and an appeal to translation invari-
ance. However, as should be apparent from our proof above, there are subtle
technical issues that arise in a detailed argument that threaten to sabotage
the desired conclusion. We therefore offer no apology (beyond this remark) for
expending space on the detailed account above.

The estimate supplied by Lemma 4.1 is easily transformed into a crude esti-
mate for the mean value Kr,ϕ,ν

a,b,c (a) which nonetheless has considerable utility.

Lemma 4.2. Suppose that k ∈ N and that p is a prime number with p > k. Let
τ , ε and δ be positive numbers with ε < τ < δ < 1, and let B be sufficiently
large in terms of s, k and ε. Write H = dB/ke and suppose that r and
ν are non-negative integers with 1 6 r 6 k − 1. In addition, suppose that
0 < Λ 6 λ(s, k). Then for every ϕ ∈ Φτ (B), every sequence (an) ∈ D0, and
all non-negative integers a and b satisfying max{a, b} 6 (1− δ)H, one has

JKr,ϕ,ν
a,b,c (a)KΛ � (pH)λ(s,k)−Λ+ε.

Proof. An application of Hölder’s inequality delivers the estimate

ρ−4
0

∑
ξ mod pa

∑
η mod pb

ρa(ξ)
2ρb(η)2

∮
pB
|fa(α; ξ)2Rfb(α; η)2s−2R| dα 6 I

R/s
1 I

1−R/s
2 ,

(4.15)
where

I1 = ρ−4
0

∑
ξ mod pa

∑
η mod pb

ρa(ξ)
2ρb(η)2

∮
pB
|fa(α; ξ)|2s dα

and

I2 = ρ−4
0

∑
ξ mod pa

∑
η mod pb

ρa(ξ)
2ρb(η)2

∮
pB
|fb(α; η)|2s dα.

By reference to (3.2) and (3.8), one finds that

I1 = ρ−2
0

( ∑
η mod pb

ρb(η)2

)
UB,a
s,k (a) = UB,a

s,k (a),

and likewise one sees that I2 = UB,b
s,k (a). Consequently, on applying Lemma

4.1, we deduce from (3.19) and (4.15) that

Kr,ϕ,ν
a,b,c (a)�

(
(pH−a)λ(s,k)+ε

)R/s (
(pH−b)λ(s,k)+ε

)1−R/s
UB,H
s,k (a). (4.16)

Next we recall (3.24). This conveys us from the estimate (4.16) to the
corresponding normalised bound

JKr,ϕ,ν
a,b,c (a)K

r(k−r)
k−1

Λ �
(
(pH−a)R/s(pH−b)1−R/s)λ(s,k)+ε

p−ΛH .

But when 1 6 r 6 k − 1, one finds that r(k − r) > k − 1, whence

r(k − r)
k − 1

> 1.
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Thus we conclude that

JKr,ϕ,ν
a,b,c (a)KΛ �

(
pH(λ(s,k)−Λ+ε)

) k−1
r(k−r) � (pH)λ(s,k)−Λ+ε.

This completes the proof of the lemma. �

5. The base of the induction: the trivial case k = 1

Most of the basic infrastructure and the skeletal properties of the key mean
values are now in place. Our overarching strategy is to establish Theorem 3.1
by induction. Thus, assuming the validity of Theorem 3.1 for exponents smaller
than k, we seek to establish its conclusion for the exponent k. We begin in
this section by establishing the base case k = 1. Although essentially trivial,
the underlying ideas are instructive. We remark that the passing similarity
with the argument underlying the conventional proof of Hensel’s lemma is not
accidental.

Lemma 5.1. For any prime number p, one has λ(1, 1) = 0.

Proof. Let τ be a small positive number, and let B be a positive integer suf-
ficiently large in terms of τ . Consider any sequence (an) ∈ D and polynomial
ϕ ∈ Φτ (B). We may suppose that ϕ is a pc-spaced polynomial for some c > τB,
so that ϕ(t) = t + pcψ(t) for a polynomial ψ ∈ Z[t]. The mean value UB

1,1(a)
counts the integral solutions of the congruence

ϕ(x) ≡ ϕ(y) (mod pB), (5.1)

with each solution x, y being counted with weight ρ−2
0 axay. The congruence

(5.1) is in fact the relation

x+ pcψ(x) ≡ y + pcψ(y) (mod pB), (5.2)

from which we infer that x ≡ y (mod (pc, pB)). Here, we take the liberty of
writing pmin{c,B} as the highest common factor (pc, pB), this being cosmetically
slightly less awkward.

Since x− y divides ψ(x)− ψ(y), it follows that the highest common factor
(pc, pB) divides ψ(x) − ψ(y). Substituting this relation back into (5.2), we
deduce that x ≡ y (mod (p2c, pB)). By repeating this argument no more than
d1/τe times, we conclude that x ≡ y (mod pB). We may therefore classify the
solutions of the congruence (5.2) according to the common congruence class ξ
modulo pB of x and y. On recalling the definitions (3.4), (3.6) and (3.8), we
infer via orthogonality that

UB
1,1(a) = ρ−2

0

∑
16ξ6pB

ρB(ξ)2

∮
pB
|fB(α; ξ)|2 dα = UB,B

1,1 (a).

Thus we conclude that

log
(
UB

1,1(a)/UB,B
1,1 (a)

)
= 0,

and it is immediate from (3.12) that λ∗(1, 1; τ) = 0. We therefore conclude
from (3.13) that λ(1, 1) = 0, completing the proof of the lemma. �
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6. The initial conditioning process

We now move on to our main inductive task of establishing Theorem 3.1
for the exponent k > 2, assuming its validity for exponents smaller than k.
The initial step in the estimation of UB

s,k(a) is to bound it in terms of a mean

value of the shape K1,ϕ,ν
a,b,c (a). In this section we describe the initial set-up to be

applied in later sections, as well as the conditioning of the variables underlying
the mean value K1,ϕ,ν

a,b,c (a).

Recall the definitions (3.12) and (3.13). We fix a prime number p with p > k
and we also fix s = k(k+1)/2, and then we seek to show that λ(s, k) = 0. This
we achieve by deriving a contradiction to the assumption that λ(s, k) = Λ > 0.
Note here that in view of (3.14), there is no loss of generality in assuming that

0 < Λ 6 s. (6.1)

We next introduce a hierarchy of sufficiently small positive numbers ε, τ , δ
and µ with

ε < τ < δ < µ < 1. (6.2)

We suppose that each element in the hierarchy is sufficiently small in terms
of k, Λ, and the larger elements of the hierarchy. It follows from (3.13) that
there is no loss of generality in supposing that λ∗(s, k; τ) > Λ− ε/2. Thus, in
view of (3.12), there exists a sequence (Bm)∞m=1, with Bm → ∞ as m → ∞,
having the property that whenever m is sufficiently large, then there exists

ϕm ∈ Φτ (Bm) and (a
(m)
n ) ∈ D for which

UBm
s,k (a(m)) > (pHm)Λ−εUBm,Hm

s,k (a(m)), (6.3)

where we have written Hm = dBm/ke. We now fix such an integer m with
the property that B = Bm is sufficiently large in terms of k, Λ, µ, δ, τ and ε.
In our discussion to come, we may henceforth omit mention of the subscript

or superscript m in ϕm, (a
(m)
n ), Hm. Observe that since B is sufficiently large

in terms of the basic parameters, then we may suppose also that εB is also
sufficiently large in terms of k, Λ, µ, τ , δ and ε.

Also, by virtue of Lemma 4.1, we may assume that for every non-negative
integer h with h 6 (1− δ)H, uniformly in ϕ′ ∈ Φτ (B) and (a′n) ∈ D0, one has

UB,h
s,k (a′) 6 (pH−h)Λ+εUB,H

s,k (a′). (6.4)

We may now announce our first bound for UB
s,k(a) in terms of mean values

of the shape K1,ϕ,ν
a,b,c (a). Here, we fix a choice for the parameter ν for future

use by setting

ν = d4εHΛ−1e. (6.5)

Since we may suppose that ϕ ∈ Φτ (B), it follows that there exists an integer
c with c > τB with the property that ϕ is pc-spaced.

Lemma 6.1. One has UB
s,k(a)� psνK1,ϕ,ν

ν,ν,c (a).
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Proof. In view of the definition of fa(α) and the definition (3.4), one has

ρ2
0fa(α)2 =

∑
ξ mod pν

ρν(ξ)fν(α; ξ) (ρ0fa(α)) .

Moreover, for each given residue ξ modulo pν , one has

ρ0fa(α) = ρν(ξ)fν(α; ξ) +
∑

η mod pν

η 6≡ξ (mod pν)

ρν(η)fν(α; η).

Thus

|fa(α)|2 6 T1(α) + T2(α), (6.6)

where

T1(α) = ρ−2
0

∑
ξ mod pν

ρν(ξ)
2|fν(α; ξ)|2

and

T2(α) = ρ−2
0

∑
ξ mod pν

∑
η mod pν

η 6≡ξ (mod pν)

ρν(ξ)ρν(η)|fν(α; ξ)fν(α; η)|.

In much the same manner as in the derivation of the relation (3.9), an
application of Hölder’s inequality reveals that

T1(α)s 6 ρ−2s
0

( ∑
ξ mod pν

ρν(ξ)
2

)s−1 ∑
ξ mod pν

ρν(ξ)
2|fν(α; ξ)|2s

= ρ−2
0

∑
ξ mod pν

ρν(ξ)
2|fν(α; ξ)|2s. (6.7)

Meanwhile, again applying Hölder’s inequality, one finds that

T2(α)2s 6 ρ−4s
0 T s3T

s−2
4 T5T6,

where

T3 =
∑

ξ mod pν

∑
η mod pν

1,

T4 =
∑

ξ mod pν

∑
η mod pν

ρν(ξ)
2ρν(η)2,

T5 =
∑

ξ mod pν

∑
η mod pν

η 6≡ξ (mod pν)

ρν(ξ)
2ρν(η)2|fν(α; ξ)2fν(α; η)2s−2|,

T6 =
∑

ξ mod pν

∑
η mod pν

η 6≡ξ (mod pν)

ρν(ξ)
2ρν(η)2|fν(α; η)2fν(α; ξ)2s−2|.

We have T3 = p2ν and T4 = ρ4
0. Also, by symmetry, one has T5 = T6. We

therefore deduce that

T2(α)s 6 ρ−4
0 pνs

∑
ξ mod pν

∑
η mod pν

η 6≡ξ (mod pν)

ρν(ξ)
2ρν(η)2|fν(α; ξ)2fν(α; η)2s−2|. (6.8)
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On recalling the definitions (3.8) and (3.19), we deduce from (6.7) and (6.8)
that ∮

pB
T1(α)s dα 6 UB,ν

s,k (a) and

∮
pB
T2(α)s dα 6 pνsK1,ϕ,ν

ν,ν,c (a).

Since it follows from (6.6) that

|fa(α)|2s � |T1(α)|s + |T2(α)|s,

we deduce from the definition (3.6) that

UB
s,k(a)� UB,ν

s,k (a) + pνsK1,ϕ,ν
ν,ν,c (a). (6.9)

Next we make use of the estimate (6.4) to obtain the bound

UB,ν
s,k (a) 6 (pH−ν)Λ+εUB,H

s,k (a).

Since the definition (6.5) ensures that

(Λ + ε)(H − ν)− (Λ− ε)H = 2εH − (Λ + ε)ν < −2εH,

we conclude via (6.3) that

UB,ν
s,k (a) 6 p−2εH(pH)Λ−εUB,H

s,k (a) 6 p−2εHUB
s,k(a).

Thus we infer from (6.9) that

UB
s,k(a)� p−2εHUB

s,k(a) + pνsK1,ϕ,ν
ν,ν,c (a),

whence

UB
s,k(a)� pνsK1,ϕ,ν

ν,ν,c (a).

This completes the proof of the lemma. �

The congruence condition implicit in the mean value K1,ϕ,ν
ν,ν,c (a) is not yet

strong enough to pursue our main iteration, and so we pause to strengthen it
before proceeding further. It is at this point that the parameter µ enters the
scene. We put

θ = dµHe. (6.10)

We briefly pause to record a useful, though essentially trivial, upper bound
permitting us to relate exponential sums restricted to congruences associated
with differing powers of p.

Lemma 6.2. Suppose that a and b are non-negative integers with a 6 b. Then
for any positive number w and any integer ξ, one has

ρa(ξ)
2|fa(α; ξ)|2w 6 (pb−a)w

∑
ζ mod pb

ζ≡ξ (mod pa)

ρb(ζ)2|fb(α; ζ)|2w.
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Proof. By applying Hölder’s inequality in combination with (3.4), one obtains

ρa(ξ)
2w|fa(α; ξ)|2w =

∣∣∣∣ ∑
ζ mod pb

ζ≡ξ (mod pa)

ρb(ζ)fb(α; ζ)

∣∣∣∣2w

6 Uw
1 U

w−1
2

∑
ζ mod pb

ζ≡ξ (mod pa)

ρb(ζ)2|fb(α; ζ)|2w, (6.11)

where

U1 =
∑

ζ mod pb

ζ≡ξ (mod pa)

1 = pb−a

and

U2 =
∑

ζ mod pb

ζ≡ξ (mod pa)

ρb(ζ)2 =
∑

n≡ξ (mod pa)

|an|2 = ρa(ξ)
2.

The desired conclusion is immediate on substituting the latter relations into
(6.11) �

Lemma 6.3. One has UB
s,k(a)� psθK1,ϕ,ν

θ,θ,c (a).

Proof. On recalling (3.20), we deduce via two applications of Lemma 6.2 that
the mean value K1,ϕ,ν

ν,ν,c (a; ξ, η) is bounded above by

ρν(ξ)
−2ρν(η)−2(pθ−ν)s

∑
ξ′,η′ mod pθ

ρθ(ξ
′)2ρθ(η

′)2

∮
pB
|fθ(α; ξ′)2fθ(α; η′)2s−2| dα,

where the summation over ξ′ and η′ is subject to the conditions

ξ′ ≡ ξ (mod pν) and η′ ≡ η (mod pν).

Thus K1,ϕ,ν
ν,ν,c (a; ξ, η) is at most

ρν(ξ)
−2ρν(η)−2(pθ−ν)s

∑
ξ′,η′ mod pθ

ρθ(ξ
′)2ρθ(η

′)2K1,ϕ,ν
θ,θ,c (a; ξ′, η′).

In view of the definition (3.19), we find that

K1,ϕ,ν
ν,ν,c (a) 6 ρ−4

0 (pθ−ν)s
∑

ξ′ mod pθ

∑
η′ mod pθ

η′ 6≡ξ′ (mod pν)

ρθ(ξ
′)2ρθ(η

′)2K1,ϕ,ν
θ,θ,c (a; ξ′, η′)

= (pθ−ν)sK1,ϕ,ν
θ,θ,c (a).

By substituting this bound into the estimate supplied by Lemma 6.1, we arrive
at the bound

UB
s,k(a)� ps(θ−ν)+sνK1,ϕ,ν

θ,θ,c (a),

and the conclusion of the lemma follows at once. �
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7. Harnessing approximate translation-dilation invariance

This is the section of the paper that does the heavy lifting, for we now initiate
our iterative process. Throughout, we suppose that k > 2, and we assume the
validity of Theorem 3.1 for exponents smaller than k. Our strategy is to
approximate the system of congruences underlying the mean value Kr,ϕ,ν

a,b,c (a)
by a corresponding system of Vinogradov type. As in our earlier efficient
congruencing methods, we are able to extract a strong congruence condition
on the underlying variables. Throughout, the conventions of the previous
section remain in play, and in particular we write R = r(r + 1)/2.

Lemma 7.1. Suppose that a, b and r are integers with

1 6 r 6 k − 1, a > δθ, b > δθ and ra 6 (k − r + 1)b 6 B. (7.1)

Put
b′ = d(k − r + 1)b/re. (7.2)

Then one has
Kr,ϕ,ν
a,b,c (a)� pk

2νKr,ϕ,ν
b′,b,c (a).

Proof. In view of the definition (3.19), we focus initially on the mean value
Kr,ϕ,ν
a,b,c (a; ξ, η), in which we may suppose that η 6≡ ξ (mod pν). The latter

condition permits us the hypothesis pγ‖(ξ − η) for some non-negative integer
γ with γ < ν. We define the integer ω by putting ω = (ξ − η)p−γ, so that one
has (ω, p) = 1. It is convenient for future use to introduce the parameter

B′ = (k − r + 1)b− ra− (k − r)γ. (7.3)

It transpires that in our main argument it is useful to have a little extra room
in which to work. We therefore begin by exploring the situation in which
B′ 6 ν. In such circumstances, it follows from (7.3) that

(k − r + 1)b− ra 6 ν + (k − r)γ 6 kν.

On recalling (7.2), one then finds that

b′ − a 6 1 + kν/r, (7.4)

and an application of Lemma 6.2 leads to the bound

ρa(ξ)
2|fa(α; ξ)|2R 6 (pb

′−a)R
∑

ζ mod pb
′

ζ≡ξ (mod pa)

ρb′(ζ)2|fb′(α; ζ)|2R.

Thus we discern from (3.19) and (3.20) that

Kr,ϕ,ν
a,b,c (a) 6 (pb

′−a)RKr,ϕ,ν
b′,b,c (a).

Consequently, in view of (7.4) and the relation R = r(r + 1)/2 < kr/2, we
obtain the estimate

Kr,ϕ,ν
a,b,c (a) 6 pk

2νKr,ϕ,ν
b′,b,c (a).

This bound delivers the conclusion of the lemma when B′ 6 ν.

We now focus on the alternate situation with

B′ > ν. (7.5)
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We recall that, by orthogonality and the definition (3.20), the mean value
Kr,ϕ,ν
a,b,c (a; ξ, η) counts the integral solutions of the simultaneous congruences

(3.21), with their attendant conditions (3.22), and with each solution being
counted with weight (3.23). We temporarily focus exclusively on the nature of
these congruences.

In the first phase of our argument, we seek to extract from the right hand
side of (3.21) a system resembling one of Vinogradov type. Observe that ϕ is
a pc-spaced system, so it follows just as in the argument of the proof of Lemma
4.1 leading to (4.6) that, in the first instance, there is no loss of generality in
supposing that

ϕj(t) = tj + pctk+1ψj(t) (1 6 j 6 k),

for appropriate polynomials ψj ∈ Z[t]. In view of the constraints (3.22), we
may substitute

vl = pbul + η and wl = pbzl + η (1 6 l 6 s−R),

and (3.21) is transformed into the new system

R∑
i=1

(ϕj(xi)− ϕj(yi)) ≡
s−R∑
l=1

(
ϕj(p

bul + η)− ϕj(pbzl + η)
)

(mod pB)

(1 6 j 6 k). (7.6)

Next, as in the argument of the proof of Lemma 4.1 leading from (4.6) to
(4.7) and (4.8), we may take appropriate integral linear combinations of the
congruences comprising (7.6) to confirm that there exist polynomials Ψj ∈ Z[t]
for which

R∑
i=1

(Φj(xi − η)− Φj(yi − η)) ≡
s−R∑
l=1

(
Φj(p

bul)− Φj(p
bzl)
)

(mod pB)

(1 6 j 6 k),

in which

Φj(t) = tj + pctk+1Ψj(t). (7.7)

In particular, the system Φ is pc-spaced, and one has

R∑
i=1

Φj(xi − η) ≡
R∑
i=1

Φj(yi − η) (mod (pjb, pB)) (1 6 j 6 k). (7.8)

In the second phase of our analysis, we seek to extract from (7.8) a system
resembling one of Vinogradov type. With a limited supply of variable names
available, it will be expedient to recycle letters in circumstances where confu-
sion is easily avoided. We recall from (3.22) that in the solutions of (3.21) of
interest to us, we have x ≡ y ≡ ξ (mod pa). Thus we may substitute

xi = paui + ξ and yi = pazi + ξ (1 6 i 6 R). (7.9)

We recall that ξ − η = ωpγ, and that we may suppose that B > (k − r + 1)b.
Thus, by dropping mention in (7.8) of those congruences with index j satisfying
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1 6 j 6 k − r, and substituting (7.9) into (7.8), we deduce that

R∑
i=1

Φj(p
aui + ωpγ) ≡

R∑
i=1

Φj(p
azi + ωpγ) (mod p(k−r+1)b)

(k − r + 1 6 j 6 k). (7.10)

The situation in (7.10) is somewhat akin to that encountered in the argument
leading from (4.6) to (4.7) and (4.8). We apply the binomial theorem within
(7.7). In this way, when 1 6 l 6 r, we find that for suitable polynomials
Θl ∈ Z[t], one has

Φk−r+l(p
ay + ωpγ)− Φk−r+l(ωp

γ) = Υl(p
ay),

in which

Υl(t) =
r∑
i=1

Ωil(ωp
γ)k−r+l−iti + tr+1Θl(t),

and the integral coefficients Ωil satisfy the congruence

Ωil ≡
(
k − r + l

i

)
(mod pc) (1 6 i, l 6 r).

Much as in the argument of the proof of [49, Lemma 3.2], our hypothesis p > k
ensures that the matrix A = (Ωil)16i,l6r satisfies det(A) 6≡ 0 (mod p), and
hence that A possesses a multiplicative inverse A−1 modulo p(k−r+1)b having
integral coefficients. Indeed, it is apparent that (1!·2! · · · r!) det(A) is congruent
modulo p to

det ((k − j + 1) · · · (k − j + 1− (i− 1)))16i,j6r = det
(
(k − j + 1)i

)
16i,j6r

,

and hence also to( r∏
l=1

(k − l + 1)

)( ∏
16i<j6r

((k − j + 1)− (k − i+ 1))

)
6≡ 0 (mod p).

Here, we have corrected an inconsequential oversight in the evaluation of a
determinant in the proof of [49, Lemma 3.2].

We now replace Υ by A−1Υ and Θ by A−1Θ. This once again amounts
to taking suitable integral linear combinations of the congruences comprising
(7.10). In this way, we see that there is no loss of generality in supposing that
the coefficient matrix A is equal to Ir. Since (ω, p) = 1, moreover, there is an
integral multiplicative inverse ω−1 for ω modulo p(k−r+1)b. Hence, there exist
polynomials Ξl ∈ Z[t] having the property that whenever the system (7.10) is
satisfied, then

(ωpγ)k−r
R∑
i=1

(pa)l (Ψl(ui)−Ψl(zi)) ≡ 0 (mod p(k−r+1)b) (1 6 l 6 r),

in which

Ψl(t) = tl + pa−(k−r)γΞl(t). (7.11)
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Notice here that, since we may suppose from (7.1) that a > δθ, and γ 6 ν,
our hypothesis concerning the hierarchy (6.2) combines with (6.5) and (6.10)
to give

kγ 6 kd4εHΛ−1e < δ2dµHe 6 δa,

and hence

a− (k − r)γ > (1− δ)a > δ(1− δ)µH > τB.

The exponent of p on the right hand side of (7.11) is therefore positive, and
indeed the system Ψ is pc-spaced for some c > τ(k − r + 1)b.

The integral solutions x = pau+ξ, y = paz+ξ, v, w of the original system of
congruences (3.21), counted with weight (3.23) associated with the definition
(3.20) of Kr,ϕ,ν

a,b,c (a; ξ, η), are therefore constrained by the additional system of
congruences

R∑
i=1

Ψl(ui) ≡
R∑
i=1

Ψl(zi) (mod pB
′
) (1 6 l 6 r), (7.12)

in which B′ is defined by (7.3).

Our goal at this point is to apply the inductive hypothesis, meaning the
conclusion of Theorem 3.1 with k replaced by r, so as to extract congruence
information from the relations (7.12). We recall at this point that in view of
(7.5), we may suppose that B′ > ν. Write H ′ = dB′/re. Then in view of (7.2)
and (7.3), one has

b′ −H ′ 6 a+ 1 + (k − r)γ/r. (7.13)

We note from (6.5) that B′ > 4εHΛ−1, so our hypotheses concerning B and
the hierarchy (6.2) ensure that B′ is sufficiently large in terms of k, Λ, µ, τ ,
δ and ε. We reinterpret the definition (3.4) of fh(α; ξ) in the shape (4.2), so
that

fa(α; ξ) = ρa(ξ)
−1
∑
y∈Z

cy(α), (7.14)

where

cy(α) = apay+ξe(ψ(pay + ξ;α)) (y ∈ Z),

and ψ(n;α) is defined by (3.3). Notice that

ρ0(1; c)2 =
∑
y∈Z

|cy(α)|2 =
∑
y∈Z

|apay+ξ|2 = ρa(ξ)
2. (7.15)

Finally, define the exponential sum

gc(α,β) = ρ0(1; c)−1
∑
y∈Z

cy(α)e(β1Ψ1(y) + . . .+ βrΨr(y)), (7.16)

and the mean value

J(α) =

∮
pB′
|gc(α,β)|2R dβ.
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By orthogonality, the mean value J(α) counts the integral solutions of the
system of congruences (7.12), with each solution u, z being counted with weight

ρ0(1; c)−2R

R∏
i=1

cui(α)czi(α)

= ρa(ξ)
−2R

( R∏
i=1

apaui+ξapazi+ξ

)
e

( R∑
i=1

(ψ(paui + ξ;α)− ψ(pazi + ξ;α))

)
.

But the conditions (7.12) on x = pau + ξ and y = paz + ξ are implied by
(3.21), as we have seen. Thus, on noting that from (7.14)-(7.16), one has

gc(α,0) = fa(α; ξ),

we deduce that∮
pB
|fa(α; ξ)2Rfb(α; η)2s−2R| dα =

∮
pB

∮
pB′
|gc(α,β)2Rfb(α; η)2s−2R| dβ dα,

(7.17)
whence

Kr,ϕ,ν
a,b,c (a; ξ, η) =

∮
pB
J(α)|fb(α; η)|2s−2R dα. (7.18)

The point here is that the inner integral over β on the right hand side of
(7.17) is essentially redundant, since the integral over α already restricts the
variables underlying the term |gc(α,β)|2R to satisfy the system of congruences
(7.12).

The mean value J(α) is of the type estimated in Corollary 3.2 to Theorem
3.1. The system Ψ is pc-spaced for some c > τB′ and B′ is sufficiently large
in terms of k, τ and ε2. Hence

J(α) = UB′

R,r(c)� pB
′ε2UB′,H′

R,r (c)

= pB
′ε2ρ0(1; c)−2

∑
ζ mod pH′

ρH′(ζ; c)2

∮
pB′
|gc′(α,β)|2R dβ, (7.19)

in which the sequence c′ = (c′n(α))n∈Z is defined by putting

c′n(α) =

{
cn(α), when n ≡ ζ (mod pH

′
),

0, otherwise.

We have ρ0(1; c) = ρa(ξ). Also, on writing κ = paζ + ξ, we see that

ρH′(ζ; c)2 =
∑

y≡ζ (mod pH′ )

|apay+ξ|2 =
∑

n≡κ (mod pa+H′ )

|an|2 = ρa+H′(κ)2.
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Thus, on substituting (7.19) into (7.18), we conclude that

ρa(ξ)
2Kr,ϕ,ν

a,b,c (a; ξ, η)

� pB
′ε2

∑
κ mod pa+H

′

κ≡ξ (mod pa)

ρa+H′(κ)2

∮
pB

∮
pB′
|gc′(α,β)2Rfb(α; η)2s−2R| dβ dα.

(7.20)

We next unravel the mean value occurring on the right hand side of (7.20),
reversing our previous course. The mean value∮

pB′
|gc′(α,β)|2R dβ

counts the integral solutions of the system of congruences (7.12), with each
solution u, z being counted with weight

ρ0(1; c′)−2R

R∏
i=1

c′ui(α)c′zi(α)

= ρa+H′(κ)−2R

( R∏
i=1

apaui+ξapazi+ξ

)
e

( R∑
i=1

(ψ(paui + ξ;α)− ψ(pazi + ξ;α))

)
,

but now subject to the constraint u ≡ z ≡ ζ (mod pH
′
). The conditions (7.12)

on x = pau + ξ and y = paz + ξ are again implied by (3.21). Then since

gc′(α; 0) = fa+H′(α;κ),

we deduce that∮
pB

∮
pB′
|gc′(α,β)2Rfb(α; η)2s−2R| dβ dα

=

∮
pB
|fa+H′(α;κ)2Rfb(α; η)2s−2R| dα. (7.21)

Moreover, on making use of Lemma 6.2, one sees that

ρa+H′(κ)2|fa+H′(α;κ)|2R 6
(
pb
′−(a+H′)

)R ∑
ξ′ mod pb

′

ξ′≡κ (mod pa+H
′
)

ρb′(ξ
′)2|fb′(α; ξ′)|2R.

(7.22)
Thus, on substituting (7.22) into (7.21) and thence into (7.20), we obtain the
bound

ρa(ξ)
2Kr,ϕ,ν

a,b,c (a; ξ, η)� pB
′ε2+R(b′−a−H′)

∑
ξ′ mod pb

′

ξ′≡ξ (mod pa)

ρb′(ξ
′)2Kr,ϕ,ν

b′,b,c (a; ξ′, η).

(7.23)
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Next, substituting (7.23) into (3.19), we conclude that

ρ4
0K

r,ϕ,ν
a,b,c (a)� pB

′ε2+R(b′−a−H′)
∑

ξ′ mod pb′

∑
η mod pb

η 6≡ξ′ (mod pν)

ρb′(ξ
′)2ρb(η)2Kr,ϕ,ν

b′,b,c (a; ξ′, η),

whence
Kr,ϕ,ν
a,b,c (a)� pB

′ε2+R(b′−a−H′)Kr,ϕ,ν
b′,b,c (a). (7.24)

In order to complete the proof of the lemma, it remains only to note that,
from (7.13), one has

R(b′ − a−H ′) = r(r + 1)(b′ − a−H ′)/2
6 (r + 1)(r + (k − r)γ)/2 < k2ν/2.

Thus, in view of the definition (6.5) and our hierarchy (6.2),

B′ε2 +R(b′ − a−H ′) < ν + k2ν/2 < k2ν.

The conclusion of the lemma therefore follows from (7.24) in this second situ-
ation with B′ > ν. �

8. The iterative step

The work of the previous section shows how to generate powerful congruence
constraints on the variables underlying the mean value Kr,ϕ,ν

a,b,c (a). As in earlier
efficient congruencing methods, we must now interchange the roles of the two
sets of variables so that these congruence constraints may be employed anew
to generate yet stronger constraints. In our earlier multigrade method, this
was achieved by employing Hölder’s inequality in a somewhat greedy manner.
On this occasion, we take a slightly more measured approach, though the
underlying ideas remain the same. At this point, the parameters ϕ, ν and
c have ceased to possess any particular significance, and we omit mention of
them in our various notations. Also, throughout this section, we suppose that
a, b and r are integers satisfying (7.1), and we define b′ via (7.2).

Lemma 8.1. When r > 2, one has

Kr
a,b(a)� pk

2νKk−r
b,b′ (a)

1
k−r+1Kr−1

b′,b (a)
k−r
k−r+1 . (8.1)

Meanwhile, when r = 1, one instead has

K1
a,b(a)� pk

2νKk−1
b,kb (a)1/kUB,b

s,k (a)1−1/k. (8.2)

Proof. Observe that

k(k + 1)− r(r + 1) = (k + r)(k − r) + (k − r)

=
(k − r)(k − r + 1)

k − r + 1
+ (k(k + 1)− r(r − 1)) · k − r

k − r + 1
.

Then for any integers ζ and η, it is a consequence of Hölder’s inequality that
when 1 6 r 6 k − 1, one has∮

pB
|fb′(α; ζ)r(r+1)fb(α; η)k(k+1)−r(r+1)| dα 6 U

1
k−r+1

1 U
k−r
k−r+1

2 ,
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where

U1 =

∮
pB
|fb(α; η)(k−r)(k−r+1)fb′(α; ζ)k(k+1)−(k−r)(k−r+1)| dα

and

U2 =

∮
pB
|fb′(α; ζ)r(r−1)fb(α; η)k(k+1)−r(r−1)| dα.

Thus, on recalling (3.19) and (3.20), we deduce first that

Kr
b′,b(a; ζ, η) 6 Kk−r

b,b′ (a; η, ζ)
1

k−r+1Kr−1
b′,b (a; ζ, η)

k−r
k−r+1 ,

and hence, by another application of Hölder’s inequality, that

Kr
b′,b(a) 6 Kk−r

b,b′ (a)
1

k−r+1Kr−1
b′,b (a)

k−r
k−r+1 . (8.3)

Since Lemma 7.1 shows that Kr
a,b(a) � pk

2νKr
b′,b(a), the conclusion (8.1) of

the lemma is immediate from (8.3) in the case r > 2.

In order to handle the case r = 1, we begin by noting that from (3.19) and
(3.20), one has

K0
b′,b(a) = ρ−4

0

∑
ξ mod pb′

∑
η mod pb

ξ 6≡η (mod pν)

ρb′(ξ)
2ρb(η)2

∮
pB
|fb(α; η)|2s dα.

Since it follows from (3.8) that∑
η mod pb

ρb(η)2

∮
pB
|fb(α; η)|2s dα = ρ2

0U
B,b
s,k (a)

and ∑
ξ mod pb′

ρb′(ξ)
2 = ρ2

0,

it follows that K0
b′,b(a) = UB,b

s,k (a), and so the desired conclusion (8.2) again
follows from (8.3) when r = 1. �

We next interpret the conclusion of Lemma 8.1 in terms of the anticipated
order of magnitude normalisation defined in (3.24).

Lemma 8.2. Suppose that b 6 (1− δ)B/k. Then, when r > 2, one has

JKr
a,b(a)KΛ � pk

2νJKk−r
b,b′ (a)K1/(k−r+1)

Λ
JKr−1

b′,b (a)K1−1/r
Λ

. (8.4)

Meanwhile, when r = 1 one instead has

JK1
a,b(a)KΛ � p2k2νJKk−1

b,kb (a)K1/k
Λ

(p−b)Λ(1−1/k). (8.5)

Proof. By reference to (3.24), we deduce from Lemma 8.1 that for r > 2, one
has

JKr
a,b(a)KΛ � (pk

2ν)
k−1
r(k−r)V

1
k−r+1

1 V
k−r
k−r+1

2 ,
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where

V1 =

(
Kk−r
b,b′ (a)

pΛHUB,H
s,k (a)

) k−1
r(k−r)

= JKk−r
b,b′ (a)KΛ ,

and

V2 =

(
Kr−1
b′,b (a)

pΛHUB,H
s,k (a)

) k−1
r(k−r)

= JKr−1
b′,b (a)K

(
r−1
r

) (
k−r+1
k−r

)
Λ .

The first conclusion (8.4) is now immediate for r > 2. Here, we have made use
of the elementary fact that

max
16r6k−1

k − 1

r(k − r)
= 1.

When r = 1, on the other hand, one finds in like manner that

JK1
a,b(a)KΛ � pk

2νV
1/k

3 V
1−1/k

4 , (8.6)

where

V3 =

(
Kk−1
b,kb (a)

pΛHUB,H
s,k (a)

)
= JKk−1

b,kb (a)KΛ (8.7)

and

V4 =
UB,b
s,k (a)

pΛHUB,H
s,k (a)

.

In view of the upper bound (6.4), one has

UB,b
s,k (a) 6 (pH−b)Λ+εUB,H

s,k (a),

and hence, on recalling (6.1) and (6.5), one finds that

V4 6 p(H−b)ε−Λb 6 pΛν−Λb 6 psν−Λb.

On substituting this bound together with (8.7) into (8.6), we conclude that

JK1
a,b(a)KΛ � p(k2+s)νJKk−1

b,kb (a)K1/k
Λ

(p−b)Λ(1−1/k),

and the conclusion (8.5) of the lemma follows on recalling that

s = k(k + 1)/2 6 k2.

�

9. Distilling multigrade combinations into monograde processes

We turn our attention next to the problem of analysing the impact of ap-
plying Lemma 8.2 iteratively so as to estimate Kr

a,b(a) in terms of a tree of
possible outcomes. Such processes seem, at first appearance, difficult to con-
trol. However, the multigrade efficient congruencing method of [54, 55, 58]
offers the tools to accommodate such an analysis. In broad terms, we weight
the possible outcomes in such a manner that one can follow any single path
through the tree, and compute the outcome without reference to the multitude
of alternate paths available.
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In this section and the next, in the interests of concision, we write

K̃r
a,b = JKr

a,b(a)KΛ .

Also, when 1 6 j 6 k − 1, we write

ρj =
j

k − j + 1
and bj =

⌈
b

ρj

⌉
.

Lemma 9.1. Suppose that

1 6 r 6 k − 1, a > δθ, b > kδθ and ra 6 (k − r + 1)b. (9.1)

Then whenever kb 6 (1− δ)B, one has

K̃r
a,b � p(r+1)k2ν(p−b)(1−1/k)Λ/r

r∏
j=1

(
K̃k−j
b,bj

)ρj/r
. (9.2)

Proof. We establish (9.2) by induction on r. Observe that in the case r = 1,
it follows from Lemma 8.2 that

K̃1
a,b � p2k2ν(K̃k−1

b,kb )1/k(p−b)(1−1/k)Λ,

and this delivers (9.2) in this initial case. Note here that the hypotheses
(9.1) together with the assumption kb 6 (1 − δ)B imply the corresponding
hypotheses (7.1) implicitly assumed in the statement of Lemma 8.2.

Suppose next that when kb 6 (1−δ)B, the estimate (9.2) has been confirmed
for all indices r < P, for some integer P with 2 6 P 6 k − 1. In these
circumstances, it follows from Lemma 8.2 that

K̃P
a,b � pk

2ν(K̃k−P
b,bP

)ρP/P(K̃P−1
bP,b

)1−1/P, (9.3)

with

bP =

⌈
k − P + 1

P
b

⌉
>

2b

k
> δθ.

The latter lower bound, together with the upper bound

(P− 1)bP 6 (P− 1)

(
k − P + 1

P
b+ 1

)
< (k − P + 2)b,

ensures that the conditions are satisfied permitting the inductive hypothesis

(9.2) to be deployed to estimate K̃P−1
bP,b

. Thus, we have

K̃P−1
bP,b
� pPk2ν(p−b)(1−1/k)Λ/(P−1)

P−1∏
j=1

(K̃k−j
b,bj

)ρj/(P−1).

On substituting this bound into (9.3), we deduce that

K̃P
a,b � pPk2ν(p−b)(1−1/k)Λ/P(K̃k−P

b,bP
)ρP/P

P−1∏
j=1

(K̃k−j
b,bj

)ρj/P,

and the inductive hypothesis (9.2) follows when r = P. The desired conclusion
(9.2) therefore follows by induction for 1 6 r 6 k − 1. �
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An immediate consequence of Lemma 9.1 provides an intermediate mono-
grade iterative relation.

Lemma 9.2. Suppose that 1 6 r 6 k− 1 and kb 6 (1− δ)B. Suppose further
that the conditions (9.1) hold. Then there exists an integer r′ with 1 6 r′ 6 r
having the property that

K̃r
a,b � (K̃k−r′

b,br′
)ρr′ (p−b)Λ/(2k).

Proof. By employing the elementary inequality

|z1 · · · zn| 6 |z1|n + . . .+ |zn|n,

it follows from the relation (9.2) of Lemma 9.1 that

K̃r
a,b � p(r+1)k2ν(p−b)(1−1/k)Λ/r

r∑
j=1

(K̃k−j
b,bj

)ρj .

Thus we deduce that there exists an integer r′ with 1 6 r′ 6 r such that

K̃r
a,b � p(r+1)k2ν(p−b)(1−1/k)Λ/r(K̃k−r′

b,br′
)ρr′ . (9.4)

Note that when 1 6 r 6 k − 1, one has (1− 1/k)/r > 1/k. Moreover, in view
of (6.5), (6.10), (9.1) and the hierarchy (6.2), one has

bΛ/k > δθΛ > δµHΛ > 2k3ν > 2(r + 1)k2ν.

Thus we infer that

p(r+1)k2ν(p−b)(1−1/k)Λ/r 6 (p−b)Λ/(2k).

The conclusion of Lemma 9.2 follows by substituting this bound into (9.4). �

The estimate supplied by Lemma 9.2 bounds K̃r
a,b in terms of K̃k−r′

b,br′
, for

a suitable integer r′ with 1 6 r′ 6 r. It is possible that the parameter br′
might be substantially smaller than b, and thus one might fear that continued
iteration of such a relation might be limited by this shrinking parameter. At
this point, we take the opportunity to dispell such fears once and for all.

Lemma 9.3. Suppose that

1 6 r 6 k − 1, a > δθ, b > k2δθ and ra 6 (k − r + 1)b. (9.5)

Then, whenever k2b 6 (1− δ)B, there exist integers a′, b′, r′, and there exists
a positive number ρ, having the property that

K̃r
a,b � (K̃r′

a′,b′)
ρp−bΛ/(2k), (9.6)

with

a′ > δθ, b′ > k2δθ, r′a′ 6 (k − r′ + 1)b′, (9.7)

1 6 r′ 6 k − 1, 0 < ρ < (1− 1/k)2, (9.8)

(1 + 2/k)b 6 b′ 6 k2b, b′ =

⌈
r′ + 1

k − r′
a′
⌉
, ρb′ > b. (9.9)



38 TREVOR D. WOOLEY

Proof. We recall that we are permitted the assumption that a, b, r satisfy
(9.5). Thus, as a consequence of Lemma 9.2, there exists an integer r1 with
1 6 r1 6 r having the property that

K̃r
a,b � (K̃k−r1

b,br1
)ρr1 (p−b)Λ/(2k), (9.10)

where

br1 =

⌈
k − r1 + 1

r1

b

⌉
and ρr1 =

r1

k − r1 + 1
.

Notice here that b > k2δθ > δθ,

br1 > b/k > kδθ and br1 6 kb 6 k−1(1− δ)B.

Moreover, one has

(k − r1)b 6 (r1 + 1)

⌈
k − r1 + 1

r1

b

⌉
= (r1 + 1)br1 .

We are therefore at liberty to apply Lemma 9.2 to estimate K̃k−r1
b,br1

. Thus, there

exists an integer r2 with 1 6 r2 6 k − r1 having the property that

K̃k−r1
b,br1
� (K̃k−r2

br1 ,br2
)ρr2 (p−br1 )Λ/(2k), (9.11)

where

br2 =

⌈
k − r2 + 1

r2

br1

⌉
and ρr2 =

r2

k − r2 + 1
.

On substituting (9.11) into (9.10), we find that

K̃r
a,b � (K̃r′

a′,b′)
ρp−σΛ/(2k), (9.12)

where

a′ = br1 , b′ = br2 , r′ = k − r2, ρ = ρr1ρr2 and σ = b+ ρr1br1 .

Since σ > b, the upper bound (9.12) will deliver the conclusion of the lemma
provided that we are able to verify the conditions (9.7)-(9.9), a matter that we
now address.

Observe first that since 1 6 r2 6 k − r1 and 1 6 r1 6 k − 1, one has

1 6 r1 6 r′ = k − r2 6 k − 1.

Moreover,

ρ = ρr1ρr2 =
r1

k − r1 + 1
· r2

k − r2 + 1
6

r1

k − r1 + 1
· k − r1

r1 + 1
.

Thus

ρ 6
r1

r1 + 1
· k − r1

k − r1 + 1
< (1− 1/k)2.

We have therefore verified that the conditions (9.8) are satisfied.

Next, we have

b′ = br2 6 kbr1 6 k2b,
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and since 1 6 r2 6 k − r1, we also have

b′ = br2 >
k − r2 + 1

r2

br1 >
r1 + 1

k − r1

br1

>
r1 + 1

k − r1

· k − r1 + 1

r1

b =
r1 + 1

r1

· k − r1 + 1

k − r1

b

> (k/(k − 1))2b > (1 + 2/k)b.

Thus (1 + 2/k)b 6 b′ 6 k2b. Also, since r′ = k− r2 and a′ = br1 , one finds that⌈
r′ + 1

k − r′
a′
⌉

=

⌈
k − r2 + 1

r2

br1

⌉
= b′.

In addition, we have

b′

b
>
br1/ρr2
b
>
b/ρr1
ρr2b

=
1

ρr1ρr2
=

1

ρ
.

Then the conditions (9.9) are satisfied.

Finally, we have

a′ = br1 =

⌈
k − r1 + 1

r1

b

⌉
>
b

k
> kδθ

and
b′ > (1 + 2/k)b > k2δθ.

Meanwhile,
r′a′ = (k − r2)br1 < (k − r2 + 1)br1 ,

whilst

(k − r′ + 1)b′ = (r2 + 1)br2 >
k − r2 + 1

r2

(r2 + 1)br1 ,

so that r′a′ 6 (k−r′+1)b′. This confirms that the conditions (9.7) are satisfied.
All of the conditions (9.7)-(9.9) having been confirmed, the proof of the lemma
is complete. �

10. The proof of Theorem 3.1

Our apparatus for the main p-adic concentration argument has now been
assembled, in the shape of Lemma 9.3. The lower bound (6.3) may be exploited

to show that an initial mean value K̃1
θ,θ is large. Then, whenever K̃r

a,b is large,

the estimate (9.6) of Lemma 9.3 shows that a related mean value K̃r′

a′,b′ is larger

still, and inflated by an additional factor pbΛ/(2ρk). After iteration of this idea,
this overabundance of “p-adic energy” blows up to the point that it exceeds
even the trivial estimate supplied by Lemma 4.2, delivering a contradiction to
the hypothesis that Λ > 0.

The proof of Theorem 3.1. Throughout, we consider a natural number k and
we put s = k(k + 1)/2. In view of Lemma 5.1, we may suppose that k > 2,
and we may also suppose that the conclusion of Theorem 3.1 has already been
established for exponents smaller than k.
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We aim to show that λ(s, k) 6 0. We may therefore work throughout under
the assumption that λ(s, k) = Λ with Λ > 0, and seek a contradiction. Of
course, should λ(s, k) 6 0, then there is nothing to prove. We initiate the
iteration with an appeal to Lemma 6.3, which shows that

UB
s,k(a)� psθK1

θ,θ(a).

In view of the assumption (6.3), we deduce from (3.24) that

JK1
θ,θ(a)KΛ �

p−sθUB
s,k(a)

pΛHUB,H
s,k (a)

> p−sθ−Hε.

Our hierarchy (6.2) combines with (6.10), therefore, to ensure that

K̃1
θ,θ � p−2sθ. (10.1)

Next, we apply Lemma 9.3 repeatedly. Put

N = d16sk/Λe. (10.2)

Our assumption that B, and hence also H, is sufficiently large in terms of
our hierarchy of parameters (6.2) ensures that 2k2N+2θ < H. We claim that
sequences (an), (bn), (rn), (ρn) may be defined for 0 6 n 6 N in such a manner
that

1 6 rn 6 k − 1, k2δθ 6 bn 6 k2n+2θ, (10.3)

δθ 6 an 6 (k − rn + 1)bn/rn, (10.4)

0 < ρn < (1− 1/k)2, ρnbn > bn−1 (n > 1), (10.5)

and so that

K̃1
θ,θ � (K̃rn

an,bn
)ρ1···ρn(p−Λ/(2k))nb0 . (10.6)

We initiate these sequences by putting a0 = b0 = θ and ρ0 = r0 = 1, so that
(10.6) is immediate in the case n = 0 from the usual convention that an empty
product is 1, whence ρ1 · · · ρn = 1 for n = 0.

We now attend to the task of confirming this claim, proceeding by induction
on n. Suppose that such has already been confirmed for 0 6 n < m, with
1 6 m 6 N . Then we have

K̃1
θ,θ � (K̃

rm−1

am−1,bm−1
)ρ1···ρm−1(p−Λ/(2k))(m−1)b0 . (10.7)

We estimate K̃
rm−1

am−1,bm−1
by appealing to Lemma 9.3. The conditions (10.3)-

(10.5) may be assumed to hold with n = m− 1. Thus, since

k2bm−1 6 k2m+2θ 6 k2N+2θ < H/2,

we see that the hypotheses required to apply Lemma 9.3 are satisfied. Conse-
quently, there exist integers am, bm, rm, ρm having the property that

K̃
rm−1

am−1,bm−1
� (K̃rm

am,bm
)ρmp−bm−1Λ/(2k), (10.8)

with

am > δθ, bm > k2δθ, rmam 6 (k − rm + 1)bm,

1 6 rm 6 k − 1, 0 < ρm < (1− 1/k)2,
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(1 + 2/k)bm−1 6 bm 6 k2bm−1, bm =

⌈
rm + 1

k − rm
am

⌉
, ρmbm > bm−1.

Since we may suppose from (10.3) in the case n = m − 1 that bm−1 6 k2mθ,
we see that bm 6 k2bm−1 6 k2m+2θ, and so the conditions (10.3)-(10.5) are all
met with n = m. Moreover, on substituting (10.8) into (10.7), we obtain the
bound

K̃1
θ,θ � (K̃rm

am,bm
)ρ1···ρm(p−Λ/(2k))(m−1)b0+ρ1···ρm−1bm−1 .

However, the condition (10.5) for 1 6 n 6 m− 1 ensures that

ρ1 · · · ρm−1bm−1 > ρ1 · · · ρm−2bm−2 > . . . > ρ1b1 > b0,

and so
(m− 1)b0 + ρ1 · · · ρm−1bm−1 > mb0.

We therefore conclude that (10.6) holds for n = m, and hence our claimed
assertion follows by induction for 0 6 n 6 N .

At this point in our argument, we may combine the lower bound (10.1) with
the upper bound (10.6) in the case n = N . Thus we see that

p−2sθ � K̃1
θ,θ � (K̃rN

aN ,bN
)ρ(p−Λ/(2k))Nθ, (10.9)

where ρ = ρ1 · · · ρN < 1. On recalling the definition (3.24) and the assumption
that λ(s, k) = Λ, the conclusion of Lemma 4.2 shows that

JKrN
aN ,bN

KΛ � pHε.

Then, again employing the properties of our hierarchy (6.2), we may suppose

that K̃rN
aN ,bN

� pθ, whence (10.9) delivers the bound

p−2sθ � pθ(1−NΛ/(2k)),

and hence
(pθ)4s � (pθ)NΛ/(2k). (10.10)

Observe that the definition (6.10) of θ shows that pθ is sufficiently large in
terms of s, k and Λ. Hence, the upper bound (10.10) can hold only when

4s > NΛ/(2k).

In view of (10.2), we therefore obtain the bound

Λ 6 8sk/N 6 Λ/2,

which yields a contradiction to the assumption that Λ > 0.

We are therefore forced to conclude that Λ cannot be positive, whence
λ(s, k) = 0. This completes the proof of Theorem 3.1 for the exponent k,
and the theorem follows in full by induction on k. �

Corollary 3.2 follows from Theorem 3.1 by simply interpreting the definitions
(3.12) and (3.13) of λ∗(s, θ; τ) and λ(s, θ). Thus, since λ(s, k) = 0, we may
suppose that for every ε > 0, whenever τ > 0 is sufficiently small, one has
λ∗(s, k; τ) < ε. But for each ε > 0, one has

UB
s,k(a)� p(λ∗(s,k;τ)+ε)HUB,H

s,k (a)
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for all sequences (an) ∈ D, all ϕ ∈ Φτ (B) and all large enough values of B.
The corresponding conclusion for the zero sequence (an) ∈ D0 \D is, of course,
trivial.

The inquisitive reader might wonder at what point in the proof of Theorem
3.1 and Corollary 3.2 did we find ourselves limited to the situation in which
H = dB/ke, rather than allowing the possibility that H might exceed dB/ke.
This is a little subtle, since at face value our argument does not involve esti-
mates for Kr,ϕ,ν

a,b,c (a) with a and b close in size to B/k. However, in the proof
of Lemma 4.1, in equation (4.9), one encounters a situation wherein certain
congruences would be trivially satisfied were h to exceed B/k. This failure
of independence amongst the congruences would compromise our estimates,
and implicitly generate associated difficulties in §8. Since we are imposing the
condition h 6 (1− δ)H in Lemma 4.1, one finds it necessary to restrict H to
be no larger than about B/k.

11. Solutions of congruences in short intervals

Rather than embark at once on the proof of Theorem 1.1 and its corollar-
ies, we spend some time in this section on a more immediate application of
Theorem 3.1 to the topic of solutions of congruences in short intervals. We
are interested in rational functions χj ∈ Q(t) (1 6 j 6 k), and the number of
integral solutions of systems of congruences of the shape

s∑
i=1

χj(xi) ≡
s∑
i=1

χj(yi) (mod pB) (1 6 j 6 k), (11.1)

with X < xi, yi 6 X+Y . Writing χj(t) = ϕj(t)/γj(t) for suitable polynomials
ϕj, γj ∈ Z[t] with (ϕj(t), γj(t)) = 1, it is apparent that it is sensible to exclude
choices for the variables x with γj(x) ≡ 0 (mod p). With such choices for x
excluded, there is a multiplicative inverse for γj(x), say γj(x)−1 modulo pB,
and this counting problem makes sense. We are also able to make sense of
the Wronskian W (t;χ) defined by (1.1) in these circumstances. Indeed, as a
rational number A/Q in lowest terms, the WronskianW (x;χ) has denominator
Q not divisible by p in the situation under discussion. If Q−1 denotes an integer
defining the multiplicative inverse of Q modulo pB, then we shall always replace
W (x;χ) by the integer AQ−1.

We obtain strong estimates for the number of solutions of the system (11.1)
when s 6 k(k + 1)/2 and Y 6 pB/k, and we restrict to solutions with both
denominators γj and the Wronskian non-vanishing modulo p.

Theorem 11.1. When k ∈ N and 1 6 j 6 k, suppose that χj ∈ Q(t) is
a rational function with χj = ϕj/γj for suitable polynomials ϕj, γj ∈ Z[t]
satisfying (ϕj, γj) = 1. Let s be a positive number with s 6 k(k+ 1)/2, and let
p be a prime number with p > k. Also, suppose that (an)n∈Z is a sequence of
complex numbers. Define

h(α;X, Y ) =
∑∗

X<n6X+Y

ane(α1χ1(n) + . . .+ αkχk(n)),
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where the summation is restricted by the conditions

(W (n;χ), p) = 1 and (γj(n), p) = 1 (1 6 j 6 k). (11.2)

Then whenever ε > 0 and B is sufficiently large in terms of ε and k, one has∮
pB
|h(α;X, Y )|2s dα� pBε

(
1 +

Y

pB/k

)s( ∑
X<n6X+Y

|an|2
)s
. (11.3)

Corollary 11.2. With the hypotheses of Theorem 11.1, denote by NB(X, Y )
the number of integral solutions of the system of congruences (11.1) subject for
1 6 i 6 s to the conditions X < xi, yi 6 X + Y and

(W (xi;χ)W (yi;χ), p) = 1 and (γj(xi)γj(yi), p) = 1 (1 6 j 6 k).

Then whenever ε > 0 and B is sufficiently large in terms of ε and k, one has

NB(X, Y )� pBε(Y + 1)s
(

Y

pB/k
+ 1

)s
.

In particular, when pB > Y k, one has NB(X, Y )� pBε(Y + 1)s.

It is apparent that, in general, the diagonal solutions in (11.1) make a con-
tribution of order Y s to NB(X, Y ), so the conclusion of Corollary 11.2 is es-
sentially best possible.

The proof of Theorem 11.1. Our goal is to transform the mean value on the
left hand side of (11.3) into one amenable to Theorem 3.1. We may plainly
suppose that the sequence (an) satisfies the condition that an = 0 for n 6 X
and for n > X + Y . We are also at liberty, moreover, to assume that an = 0
unless the conditions (11.2) all hold. Recalling the notation of §3, we may then
define

Fp(α) = ρ0(a)−1
∑
n∈Z

ane(ψ(n;α)),

where we now write

ψ(n;α) = α1χ1(n) + . . .+ αkχk(n).

With this notation, the claimed bound (11.3) translates into the assertion that∮
pB
|Fp(α)|2s dα� pBε

(
Y

pB/k
+ 1

)s
, (11.4)

and it is this that we now seek to establish. An application of Hölder’s in-
equality delivers the conclusion (11.4) for 0 < s 6 k(k+ 1)/2 from that in the
special case s = k(k + 1)/2. We therefore restrict attention henceforth to the
case s = k(k + 1)/2.

Some preparation is required prior to the proof of the estimate (11.4) via
Corollary 3.2. Let τ > 0 be sufficiently small in terms of s and k. Then
we may suppose that B is sufficiently large in terms of τ , as well as s, k
and ε. We put c = dτBe. Next we sort the implicit summation in Fp(α) into
arithmetic progressions modulo pc. In view of our assumptions on the sequence
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(an) implied by the conditions (11.2), we may suppose that an = 0 whenever
n ≡ ξ (mod pc) and

W (ξ;χ)γ1(ξ) · · · γk(ξ) ≡ 0 (mod p).

With this assumption, one finds that

Fp(α) = ρ0(a)−1
∑

ξ mod pc

ρc(ξ)fc(α; ξ),

and hence Lemma 6.2 delivers the bound

ρ0(a)2|Fp(α)|2s 6 psc
∑

ξ mod pc

ρc(ξ)
2|fc(α; ξ)|2s.

Thus we obtain the estimate∮
pB
|Fp(α)|2s dα 6 pscρ0(a)−2

∑
ξ mod pc

ρc(ξ)
2Ip(ξ), (11.5)

where

Ip(ξ) =

∮
pB
|fc(α; ξ)|2s dα.

The mean value Ip(ξ) counts the integral solutions y, z of the system of
congruences

s∑
i=1

(χj(p
cyi + ξ)− χj(pczi + ξ)) ≡ 0 (mod pB) (1 6 j 6 k), (11.6)

with each solution being counted with weight

ρc(ξ)
−2s

s∏
i=1

apcyi+ξapczi+ξ. (11.7)

Here, we note that we may restrict attention to the situation in which

W (ξ;χ)γ1(ξ) · · · γk(ξ) 6≡ 0 (mod p) and ρc(ξ) > 0.

In particular, it follows from (3.8) and (11.5) that∮
pB
|Fp(α)|2s dα 6 pscUB,c

s,k (a).

We reinterpret the system (11.6) by applying Taylor’s theorem to expand
the rational functions χj(p

ct + ξ). When 1 6 j 6 k, we find that for suitable
polynomials Φj ∈ Z[t], one has

χj(p
ct+ ξ)− χj(ξ) ≡

k∑
l=1

ωlj(p
ct)l + (pct)k+1Φj(p

ct) (mod pB),

in which the integral coefficients ωlj are defined by taking

ωlj = (l!)−1χ
(l)
j (ξ) (1 6 l, j 6 k).
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A few words of explanation are in order here. First, since ϕj = γjχj, it follows
from the differentiation rule of Leibniz that

ϕ
(l)
j =

l∑
m=0

(
l

m

)
γ

(m)
j χ

(l−m)
j ,

whence one obtains the iterative relation

γj(ξ)
χ

(l)
j (ξ)

l!
=
ϕ

(l)
j (ξ)

l!
−

l∑
m=1

(
l

m

)(
γ

(m)
j (ξ)

m!

)(
χ

(l−m)
j (ξ)

(l −m)!

)
.

But since γj, ϕj ∈ Z[t], one finds that m! divides every coefficient of γ
(m)
j (t),

and likewise l! divides every coefficient of ϕ
(l)
j (t). In addition, we may suppose

that γj(ξ) 6≡ 0 (mod p). An inductive argument therefore conveys us from

this iterative relation to the conclusion that ordp(l!) 6 ordp(χ
(l)
j (ξ)) for all

non-negative integers l. By multiplying through by appropriate multiplicative

inverses modulo pB, we may thus suppose that (l!)−1χ
(l)
j (ξ) is an integer for

l > 0. Second, the expansion of χj(p
ct + ξ) might be expected to be a non-

terminating infinite series. However, the terms (l!)−1χ
(l)
j (ξ)(pct)l are necessarily

congruent to 0 modulo pB whenever l is sufficiently large in terms of B.

The determinant of the coefficient matrix Ω = (ωlj)16l,j6k is given by the
formula

det(Ω) = W (ξ;χ)

( k∏
l=1

l!

)−1

.

Since we may suppose that p > k, the hypothesis (W (ξ;χ), p) = 1 permits us
to conclude that (det(Ω), p) = 1, whence Ω possesses a multiplicative inverse
Ω−1 modulo pB having integral coefficients. We now replace χ by Ω−1χ and
Φ by Ω−1Φ. This amounts to taking suitable integral linear combinations
of the congruences comprising (11.6). In this way, we see that there is no
loss of generality in supposing that the coefficient matrix Ω is equal to Ik.
Hence, there exist polynomials Ξj ∈ Z[t] having the property that whenever
the system (11.6) is satisfied, then

s∑
i=1

(pc)j (Ψj(yi)−Ψj(zi)) ≡ 0 (mod pB) (1 6 j 6 k),

in which Ψj(t) = tj + pcΞj(t). In particular, the system of polynomials Ψ is
pc-spaced.

The discussion of the previous paragraph shows that in any solution y, z
of the system (11.6), counted with weight (11.7), one has the additional con-
straints

s∑
i=1

(Ψj(yi)−Ψj(zi)) ≡ 0 (mod pB−kc) (1 6 j 6 k).

Define the coefficients

cy(α) = apcy+ξe(ψ(pcy + ξ;α)).
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Also, write

gc(α,β) = ρ0(c)−1
∑
y∈Z

cy(α)e(β1Ψ1(y) + . . .+ βkΨk(y)),

and define the mean value

J(α) =

∮
pB−kc

|gc(α,β)|2s dβ.

Note that ρ0(c) = ρc(ξ;a). Then, just as in the argument leading to (7.18)
above, one sees that

Ip(ξ) =

∮
pB
|gc(α; 0)|2s dα =

∮
pB
J(α) dα. (11.8)

Observe that, when written using the notation defined in (3.6), one has

J(α) = UB−kc,Ψ
s,k (c). Moreover, the system Ψ is pc-spaced and B − kc is

sufficiently large in terms of k, τ and ε. Then Corollary 3.2 yields the bound

J(α)� pBεUB−kc,H,Ψ
s,k (c),

where H = dB/ke−c. On substituting this bound into (11.8), and thence into
(11.5), we infer that∮

pB
|Fp(α)|2s dα� psc+Bερ0(a)−2

∑
ξ mod pc

ρc(ξ)
2UB−kc,H,Ψ

s,k (c). (11.9)

Temporarily, we abbreviate fH(β; η; c; Ψ) to fH(β; η). Thus, we have

fH(β; η) = ρH(η; c)−1
∑

y≡η (mod pH)

cy(α)e(β1Ψ1(y) + . . .+ βkΨk(y)),

wherein the coefficients cy(α) are 0 whenever pcy+ ξ 6 X or pcy+ ξ > X+Y .
It follows via Cauchy’s inequality, therefore, that

ρH(η; c)2|fH(β; η)|2 6
( ∑

y≡η (mod pH)
X<pcy+ξ6X+Y

1

) ∑
y≡η (mod pH)

|cy(α)|2.

Moreover, one has

ρH(η; c)2 =
∑

y≡η (mod pH)

|cy(α)|2,

so that
|fH(β; η)|2 6 1 + Y/pc+H .

We therefore infer from (3.8) that

UB−kc,H,Ψ
s,k (c)� (1 + Y/pc+H)s.

Since c+H = dB/ke, we conclude from (11.9) that∮
pB
|Fp(α)|2s dα� psc+Bε(1 + Y/pB/k)sρ0(a)−2

∑
ξ mod pc

ρc(ξ)
2

� p(2sτ+ε)B(1 + Y/pB/k)s.
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We recall that τ was chosen sufficiently small in terms of s and k. Thus, for
each positive number δ, we have∮

pB
|Fp(α)|2s dα� pBδ(1 + Y/pB/k)s,

so that the estimate (11.4) does indeed hold. This completes the proof of the
theorem. �

Corollary 11.2 is immediate from Theorem 11.1 via orthogonality.

12. Mean values of exponential sums

We now explain how Theorem 3.1 and Corollary 3.2 may be applied to
bound mean values of exponential sums. In particular, we establish Theorem
1.1 and its corollaries. Much of the necessary work is already accomplished in
the shape of Theorem 11.1.

The proof of Theorem 1.1. Let ϕj ∈ Z[t] (1 6 j 6 k) be polynomials with
non-vanishing Wronskian W (t;ϕ), and let ε > 0 be a small positive number.
Let Z denote the set of integral zeros of W (t;ϕ), and let X be sufficiently
large in terms of ϕ, s, k and ε. We note that

card(Z) 6 deg(W (t;ϕ))� 1.

We suppose that s = k(k+1)/2. Finally, when (an)n∈Z is a sequence of complex
numbers, we write

F (α;X) = ρ−1
0

∑
|n|6X

ane(ψ(n;α))

and
F0(α;X) = ρ−1

0

∑
|n|6X
n6∈Z

ane(ψ(n;α)),

where ψ(n;α) is defined as in (3.3). In the argument to come, there will be
no loss of generality in supposing that an = 0 for |n| > X.

As a consequence of Cauchy’s inequality, one has∣∣∣∣∑
|n|6X
n∈Z

ane(ψ(n;α))

∣∣∣∣2 6 card(Z)
∑
|n|6X

|an|2 6 ρ2
0 card(Z),

whence
|F (α;X)| � 1 + |F0(α;X)|.

Thus, one has
|F (α;X)|2s � 1 + |F0(α;X)|2s,

so that ∮
|F (α;X)|2s dα� 1 +

∮
|F0(α;X)|2s dα. (12.1)

In this way, we discern that it suffices to restrict attention to situations in which
the underlying variables possess non-vanishing Wronskians. By orthogonality,
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the mean value on the right hand side of (12.1) counts the number of integral
solutions of the system of equations (1.4) with |x|, |y| 6 X and xi, yi 6∈ Z, and
with each solution x,y being counted with weight

ρ−2s
0

s∏
i=1

axiayi . (12.2)

We impose a non-vanishing condition modulo p on the Wronskian in each of
these solutions, for a suitable prime number p. Given a solution x,y of (1.4)
of the type in question, the integer

Ξ(x,y) =
s∏
i=1

W (xi;ϕ)W (yi;ϕ)

is non-zero. Moreover, one has |Ξ(x,y)| 6 CXD, for some C > 0 depending
at most on s, k and the coefficients of ϕ, and D a positive integer with

D 6 2s
k∑
j=1

deg(ϕj).

Let P denote the set of prime numbers p with

(logX)2 < p 6 3(logX)2.

Thus, when X is large, it is a consequence of the prime number theorem that∏
p∈P

p > (logX)(logX)2/ log logX > CXD.

We therefore deduce that for each solution x,y of (1.4) counted by the integral
on the right hand side of (12.1), there exists p ∈ P with

s∏
i=1

W (xi;ϕ)W (yi;ϕ) 6≡ 0 (mod p).

In particular, one has∮
|F0(α;X)|2s dα 6

∑
p∈P

∮
|Fp(α;X)|2s dα,

where

Fp(α;X) = ρ−1
0

∑
W (n;ϕ) 6≡0 (mod p)

|an|e(ψ(n;α)). (12.3)

Thus, we conclude from (12.1) that∮
|F (α;X)|2s dα� 1 + (logX)2 max

p∈P

∮
|Fp(α;X)|2s dα. (12.4)

Our goal is to establish that for each fixed prime p ∈ P , one has∮
|Fp(α;X)|2s dα� Xε/2. (12.5)
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It follows by substituting this estimate into (12.4) that∮
|F (α;X)|2s dα� 1 +Xε/2(logX)2 � Xε,

whence∮ ∣∣∣∣∑
|n|6X

ane(ψ(n;α))

∣∣∣∣2s dα� Xερ2s
0 = Xε

(∑
|n|6X

|an|2
)s
. (12.6)

This establishes the first conclusion (1.2) of Theorem 1.1 in the special case
s = k(k + 1)/2. Of course, the desired conclusion for smaller values of s
follows by applying Hölder’s inequality. Meanwhile, the final conclusion (1.3)
of Theorem 1.1 follows from (1.2) by merely specialising the sequence (an) to
be (1).

We focus now on the proof of the estimate (12.5), and this involves prepara-
tion for the application of Theorem 11.1. In our application of Theorem 11.1
we take γj = 1, so that χj = ϕj (1 6 j 6 k). In view of the definition (12.3),
we may suppose that an is real with an > 0 for each n. Also, we take

B =

⌈
k logX

log p

⌉
.

Thus X 6 pB/k 6 pX.

The mean value on the left hand side of (12.5) counts the integral solutions
of the system of equations (1.4) with |x|, |y| 6 X satisfying

W (xi;ϕ)W (yi;ϕ) 6≡ 0 (mod p) (1 6 i 6 s),

and in which each solution is counted with weight (12.2). Since these weights
are now assumed to be non-negative, one sees that an upper bound for this
weighted number of solutions is given by∮

pB
|Fp(α;X)|2s dα,

for by orthogonality this mean value counts the integral solutions x,y of the
system of congruences

s∑
i=1

(ϕj(xi)− ϕj(yi)) ≡ 0 (mod pB) (1 6 j 6 k),

with x,y satisfying the same attendant conditions, and again counted with
weight (12.2).

By Theorem 11.1, one has∮
pB
|Fp(α;X)|2s dα� ρ−2s

0 pBε/(4k)

(
X

pB/k
+ 1

)s(∑
|n|6X

|an|2
)s
� pBε/(4k).

Since pBε � X(k+1)ε, we confirm the estimate (12.5). Thus we deduce from
(12.4) that one has the bound (12.6). The proof of Theorem 1.1, as previously
discussed, is now complete. �
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The proof of Corollary 1.2 involves only a computation involving the Wron-
skian.

The proof of Corollary 1.2. In order to establish Corollary 1.2, we have merely
to note that when 1 6 d1 < d2 < . . . < dk and ϕj(t) = tdj (1 6 j 6 k), then the
Wronskian W (t;ϕ) is non-zero as a polynomial. In order to see this, observe
that

W (t;ϕ) = det
(
dj(dj − 1) · · · (dj − i+ 1)tdj−i

)
16i,j6k

.

Every monomial in this determinant is an integer multiple of tD, where

D =

( k∑
j=1

dj

)
− k(k + 1)/2 =

k∑
j=1

(dj − j).

Thus W (t;ϕ) = tD det(Ω), where

Ω = (dj(dj − 1) · · · (dj − i+ 1))16i,j6k .

By taking appropriate linear combinations of the rows of the matrix Ω, one
sees that

det(Ω) = det(dij)16i,j6t = d1 · · · dk
∏

16i<j6k

(di − dj).

Thus we see that det(Ω) 6= 0, and hence W (t;ϕ) 6= 0. We therefore conclude
from Theorem 1.1 that when 0 < s 6 k(k + 1)/2, one has∮ ∣∣∣∣ ∑

16x6X

e(α1x
d1 + . . .+ αkx

dk)

∣∣∣∣2s dα� Xs+ε.

This completes the proof of Corollary 1.2. �

We address the proof of Corollary 1.4 before moving on to consider Corollary
1.3, this being logically speaking a more direct course of action.

The proof of Corollary 1.4. Write

h(α) =
∑
|n|6X

ane(nα1 + . . .+ nkαk).

When ϕj(t) = tj (1 6 j 6 k), one finds that the Wronskian determinant is
triangular, whence

W (t;ϕ) =
k∏
j=1

j! 6= 0.

Thus the conditions required to apply Theorem 1.1 hold, and one obtains the
bound ∮

|h(α)|2s dα� Xε

(∑
|n|6X

|an|2
)s

(12.7)

for 0 < s 6 k(k + 1)/2. Meanwhile, an application of Cauchy’s inequality
shows that

|h(α)|2 6 (2X + 1)
∑
|n|6X

|an|2.
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Thus, when X is large, we deduce from the special case s = k(k + 1)/2 of
(12.7) that when t > k(k + 1)/2, then∮

|h(α)|2t dα� X t−k(k+1)/2

(∑
|n|6X

|an|2
)t−k(k+1)/2 ∮

|h(α)|k(k+1) dα

� X t−k(k+1)/2+ε

(∑
|n|6X

|an|2
)t
,

and the proof of the corollary is complete. �

The proof of Corollary 1.3. For each ε > 0, the estimate

Js,k(X)� Xε(Xs +X2s−k(k+1)/2)

is immediate from the special case of Corollary 1.4 in which (an) = (1). Mean-
while, the asymptotic formula claimed in the corollary for s > k(k+1)/2 follows
from this estimate by the standard literature in Vinogradov’s mean value the-
orem, and permits the factor Xε to be omitted from this upper bound when
s > k(k + 1)/2. The asymptotic formula for Js,k(X) asserted in Corollary
1.3 is a well-known consequence of the main conjecture in Vinogradov’s mean
value theorem. We briefly outline how to apply the circle method to prove this
formula.

Write L = X1/(4k). Then, when 1 6 q 6 L, 1 6 aj 6 q (1 6 j 6 k) and
(q, a1, . . . , ak) = 1, define the major arc M(q, a) by

M(q, a) = {α ∈ [0, 1)k : |αj − aj/q| 6 LX−j (1 6 j 6 k)}.
The arcs M(q, a) are disjoint, as is easily verified. Let M denote their union,
and put m = [0, 1)k \M.

Write

f(α;X) =
∑

16x6X

e(α1x+ . . .+ αkx
k).

Also, when α ∈M(q, a) ⊆M, put

V (α; q, a) = q−1S(q, a)I(α− a/q;X),

where

S(q, a) =

q∑
r=1

e((a1r + . . .+ akr
k)/q)

and

I(β;X) =

∫ X

0

e(β1γ + . . .+ βkγ
k) dγ.

We then define the function V (α) to be V (α; q, a) when α ∈ M(q, a) ⊆ M,
and to be 0 otherwise.

The contribution of the minor arcs m is easily estimated. Thus, as in [59,
equation (7.1)] (based on [47, §9]), we find that for each ε > 0 one has

sup
α∈m
|f(α;X)| � X1−τ+ε,
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where τ−1 = 8k2. In this way, when 2s > k(k + 1), one finds that∫
m

|f(α;X)|2s dα�
(

sup
α∈m
|f(α;X)|

)2s−k(k+1)
∮
|f(α;X)|k(k+1) dα

� X2s−k(k+1)/2+2ε−(2s−k(k+1))τ .

Thus ∫
m

|f(α;X)|2s dα = o(X2s−k(k+1)/2), (12.8)

provided that we take ε sufficiently small in terms of s and k.

On the other hand, as in the proof of [59, Lemma 7.1], one finds that when
α ∈M(q, a) ⊆M, one has

f(α;X)− V (α; q, a)� L2.

Using the decomposition

zz − ww = (z − w)z + w(z − w),

it follows that
|f(α;X)|2 − |V (α; q, a)|2 � L2X.

Hence, as a consequence of the mean value theorem, one obtains the bound

|f(α;X)|2s − |V (α; q, a)|2s � (|f(α;X)|2 − |V (α; q, a)|2)X2s−2

� L2X2s−1.

Since mes(M)� L2k+1X−k(k+1)/2, we deduce that∫
M

|f(α;X)|2s dα−
∫
M

|V (α)|2s dα� (L2k+3/X)X2s−k(k+1)/2

= o(X2s−k(k+1)/2). (12.9)

By applying [2, Theorems 1.3 and 2.4] as in the argument concluding the
proof of [59, Lemma 7.1], one sees that∫

M

|V (α)|2s dα = SJ,

where, when 2s > 1
2
k(k + 1) + 1, one has

J = X2s−k(k+1)/2

∫
Rk
|I(β; 1)|2s dβ + o(X2s−k(k+1)/2), (12.10)

and, when 2s > 1
2
k(k + 1) + 2, one has

S =
∞∑
q=1

∑
16a6q

(q,a1,...,ak)=1

∣∣q−1S(q, a)
∣∣2s + o(1). (12.11)

Here, the integral on the right hand side of (12.10) is absolutely convergent,
and the sum on the right hand side of (12.11) is also absolutely convergent.
Hence, there exists a real number Cs,k > 0 for which∫

M

|V (α)|2s dα = Cs,kX
2s−k(k+1)/2 + o(X2s−k(k+1)/2),
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and we conclude from (12.8) and (12.9) that∮
|f(α;X)|2s dα =

∫
M

|f(α;X)|2s dα+

∫
m

|f(α;X)|2s dα

= Cs,kX
2s−k(k+1)/2 + o(X2s−k(k+1)/2). (12.12)

Making use of the familiar lower bound Js,k(X) � X2s−k(k+1)/2, we conclude
that when s > k(k + 1)/2, the asymptotic formula (12.12) holds for some
Cs,k > 0. This completes the proof of Corollary 1.3. �

13. A remark on Tarry’s problem

The resolution of the main conjecture in Vinogradov’s mean value theorem
provides a means of delivering a definitive result concerning Tarry’s problem.
When h, k and s are positive integers with h > 2, consider the Diophantine
system

s∑
i=1

xji1 =
s∑
i=1

xji2 = . . . =
s∑
i=1

xjih (1 6 j 6 k). (13.1)

Let W (k, h) denote the least natural number s having the property that the
simultaneous equations (13.1) possess an integral solution x with

s∑
i=1

xk+1
iu 6=

s∑
i=1

xk+1
iv (1 6 u < v 6 h).

The problem of estimating W (k, h) has been the subject of extensive inves-
tigation by E. M. Wright and L.-K. Hua (see [20], [21] and [60]). There are
numerous applications that need not detain us here. However, we note in
particular that Croot and Hart [12] have found application of these ideas in
work on the sum-product conjecture. Classically, Hua [21] was able to show
that W (k, h) 6 k2(log k + O(1)). In recent work [58, Theorem 12.1] based on
efficient congruencing, the author was able to improve this conclusion, showing
that W (k, h) 6 1

2
k(k + 1) + 1 for k sufficiently large. We now show that the

latter hypothesis on k may be dropped.

Theorem 13.1. When h and k are natural numbers with h > 2, one has
W (k, h) 6 1

2
k(k + 1) + 1.

Proof. The argument of the proof of [47, Theorem 1.3] shows that W (k, h) 6 s
whenever one can establish the bound

Js,k+1(X) = o(X2s−k(k+1)/2).

However, as a consequence of Corollary 1.3, for all natural numbers k one
has Js,k+1(X) � Xs+ε whenever 1 6 s 6 (k + 1)(k + 2)/2. Thus, with
s = 1

2
k(k + 1) + 1, one finds that

Js,k+1(X)� Xε+1+k(k+1)/2 = Xε−1 ·X2s−k(k+1)/2.

We therefore conclude that W (k, h) 6 1
2
k(k + 1) + 1, and the proof of the

theorem is complete. �
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The bound obtained in Theorem 13.1 apparently achieves the limits of this
kind of analytic argument. The best available lower bound for W (k, h) is the
trivial bound W (k, h) > k + 1, one that for large values of k seems unlikely
to represent the true state of affairs. For small values of k, however, explicit
numerical examples show that W (k, 2) = k + 1 for 2 6 k 6 9 and k = 11 (see
http://euler.free.fr/eslp/eslp.htm).

14. Analogues of Hua’s lemma, and Waring’s problem

Estimates of the shape (1.3) in Theorem 1.1, and Corollary 1.2, although ex-
hibiting diagonal behaviour, in general fail to provide sufficiently strong mean
value estimates that they may be applied directly in Diophantine applications
such as Waring’s problem. The idea of augmenting the underlying systems
with additional low degree equations offers a means of bounding larger mo-
ments at a modest cost. As far as the author is aware, this idea seems to date
from at least as far back as the work of Arkhipov and Karatsuba from the
1970’s, although we have been unable to identify a suitable reference in the
literature. In the context of recent advances made via efficient congruencing,
this idea has also been noted in conference talks (such as the author’s Turán
Conference talk in 2011). Most recently, this idea played a pivotal role in the
discussion of [6, Theorem 10] associated with an analogue of Hua’s lemma.
Bourgain reports that an analogue of the proof of the main conjecture in
Vinogradov’s mean value theorem may be applied to confirm the special case
of Corollary 1.2 above in which (d1, . . . , dk) = (1, 2, . . . , k−1, d) (see especially
[6, equation (6.5)]). In this way, he obtains the bound∫ 1

0

∣∣∣∣ ∑
16x6X

e(αxd)

∣∣∣∣r(r+1)

dα� Xr2+ε (1 6 r 6 d), (14.1)

which may be regarded as an analogue of Hua’s lemma (see [19]). In this section
we apply related ideas to obtain estimates similar in shape to those of estimate
(1.3) of Theorem 1.1 and Corollary 1.2, though for higher moments potentially
of use in Diophantine applications. These results not only generalise those of
Bourgain [6, Theorem 10] to systems of equations, but also generalise them in
the case of a single equation in addition to describing the details suppressed
in the former treatment (i.e. the proof of Corollary 1.2 in the special case
mentioned above).

Throughout this section, we suppose that ϕj ∈ Z[t] (1 6 j 6 k) is a system
of polynomials with deg(ϕj) = dj satisfying the condition

1 6 dk < dk−1 < . . . < d1. (14.2)

It is convenient to adopt the convention that d0 = +∞ and dk+1 = 0. We put

D = d1 + . . .+ dk,
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and when r ∈ N, we define

∆r,d =
k∑
i=1

max{0, di − (r − i+ 1)}. (14.3)

Finally, we define the exponential sum F (α) = F (α;ϕ) by

F (α;ϕ) =
∑

16n6X

e(ψ(n;α)),

where ψ(n;α) = α1ϕ1(n) + . . .+ αkϕk(n).

Theorem 14.1. For each r ∈ N and ε > 0, one has∫
[0,1)k
|F (α;ϕ)|r(r+1) dα� Xε

(
Xr(r+1)/2 +Xr(r+1)−D+∆r,d

)
.

We briefly extract a couple of corollaries.

Corollary 14.2. Suppose that ϕ ∈ Z[t] is a polynomial of degree d. Then for
each natural number r with 1 6 r 6 d, and for each ε > 0, one has∫ 1

0

∣∣∣∣ ∑
16n6X

e(αϕ(n))

∣∣∣∣r(r+1)

dα� Xr2+ε. (14.4)

In the case ϕ(t) = td, this conclusion is just the bound (14.1) described
by Bourgain [6, Theorem 10]. The earlier work of Arkhipov and Karatsuba
mentioned above would deliver a similar conclusion with the exponent r(r+1)
on the left hand side of (14.4) replaced by an integer s0 ∼ 4r2 log r, and the
exponent r2 on the right hand side replaced by s0 − r. In general, this bound
may be applied as a substitute for Hua’s lemma [19], which shows under the
same hypotheses as in Corollary 14.2 that∫ 1

0

∣∣∣∣ ∑
16n6X

e(αϕ(n))

∣∣∣∣2r dα� X2r−r+ε.

Corollary 14.3. For each r ∈ N and ε > 0, one has∫
[0,1)k
|F (α;ϕ)|r(r+1) dα� Xr(r+1)/2+ε, when 1 6 r 6 k,

and when 1 6 m 6 k and dm+1 +m 6 r 6 dm +m− 1, one has∫
[0,1)k
|F (α;ϕ)|r(r+1) dα� Xr2−(m−1)(2r−m)/2−dm+1−...−dk+ε.

Proof. The first conclusion is immediate from Theorem 14.1, or indeed Theo-
rem 1.1. As for the second, suppose that 1 6 m 6 k and

dm+1 +m 6 r 6 dm +m− 1.
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Then one sees that the summands in (14.3) contribute if and only if 1 6 i 6 m,
and thus

∆r,d =
m∑
i=1

(di − (r − i+ 1))

= (D − dm+1 − . . .− dk)−mr +m(m− 1)/2.

Hence, we have

r(r + 1)−D + ∆r,d = r2 − (m− 1)r +m(m− 1)/2− dm+1 − . . .− dk,
and the desired conclusion follows from Theorem 14.1. �

The proof of Theorem 14.1. When 1 6 r 6 k, the conclusion of Theorem 14.1
is immediate from the case s = r(r + 1)/2 of the bound (1.3) of Theorem 1.1.
We may therefore suppose that r > k. The hypothesis (14.2) implies that

(di+1 − (r − i))− (di − (r − i+ 1)) = di+1 − di + 1 6 0,

whence
di+1 − (r − i) 6 di − (r − i+ 1) (0 6 i 6 k).

Since d0 − (r + 1) > 0 and dk+1 − (r − k) < 0, it follows that there exists an
integer l with 0 6 l 6 k for which

dl+1 − (r − l) 6 0 and dl − (r − l + 1) > 0.

We fix any integer l with this property. One then has

di 6 r − i+ 1 (l + 1 6 i 6 k). (14.5)

Let e1, . . . , er−k denote the distinct positive integers for which

{e1, . . . , er−k} = {1, 2, . . . , r − l} \ {dl+1, . . . , dk}.
Notice that the condition (14.5) ensures that there are indeed r − k such
integers. We then define

G(α) =
∑

16n6X

e(ψ(n;α) + αk+1n
e1 + . . .+ αrn

er−k).

Finally, for the sake of concision, we write s = r(r + 1)/2.

By orthogonality, the mean value∮
|F (α;ϕ)|2s dα (14.6)

counts the integral solutions of the system of equations
s∑
i=1

(ϕj(xi)− ϕj(yi)) = 0 (1 6 j 6 k), (14.7)

with 1 6 x,y 6 X. The mean value (14.6) is therefore equal to the number
of integral solutions of the augmented system of equations (14.7) simultaneous
with

s∑
i=1

(xeli − y
el
i ) = hl (1 6 l 6 r − k),
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with 1 6 x,y 6 X and |hl| 6 sXel . The point here is that the range for the
auxiliary variables hl is sufficiently large that this new system accommodates
all possible choices for x and y satisfying (14.7) alone. Thus, by orthogonality
and an application of the triangle inequality, we find that the mean value (14.6)
is equal to∑

|h1|6sXe1

. . .
∑

|hr−k|6sXer−k

∮
|G(β)|2se(−βk+1h1 − . . .− βrhr−k) dβ

� Xe1+...+er−k

∮
|G(β)|2s dβ.

Consequently, one has∮
|F (α;ϕ)|2s dα� X(r−l)(r−l+1)/2−dl+1−...−dk

∮
|G(β)|2s dβ. (14.8)

Next we observe that the Wronskian of the system of polynomials

ϕ1(t), . . . , ϕk(t), t
e1 , . . . , ter−k (14.9)

may be rearranged so that the polynomials are of increasing degree. The
leading monomials are then non-zero integral multiples of

t, t2, . . . , tr−l, tdl , tdl−1 , . . . , td1 .

The Wronskian of the system (14.9) is consequently non-zero, and so it follows
from the estimate (1.3) of Theorem 1.1 that for s = r(r + 1)/2, one has∮

|G(β)|2s dβ � Xs+ε.

On substituting this conclusion into (14.8), we deduce that∮
|F (α;ϕ)|2s dα� XΘ+ε,

where

Θ = 1
2
(r − l)(r − l + 1)− dl+1 − . . .− dk + 1

2
r(r + 1)

= r(r + 1)− lr + 1
2
l(l − 1)−D + d1 + . . .+ dl

= r(r + 1)−D +
l∑

i=1

(di − r + i− 1).

Thus we have Θ = r(r + 1)−D + ∆r,d, where ∆r,d is defined via (14.3), and
the conclusion of the theorem follows. �

One additional idea in the current repertoire of specialists may, on occasion,
offer improvement in the bounds supplied by Theorem 14.1 and its corollaries.
In order to describe this idea, we introduce a Hardy-Littlewood dissection. Let
m = mκ denote the set of real numbers α ∈ [0, 1) satisfying the property that,
whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |qα− a| 6 (2κ)−1X1−κ, then
q > (2κ)−1X. Also, denote by Mκ the union of the intervals

Mκ(q, a) = {α ∈ [0, 1) : |qα− a| 6 (2κ)−1X1−κ},
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with 0 6 a 6 q 6 (2κ)−1X and (q, a) = 1. Thus, the unit interval [0, 1) is
the disjoint union of mκ and Mκ. A variant of the proof of [48, Theorem 1.3]
yields the following conclusion.

Theorem 14.4. Suppose that d2 6 d1 − 2. Then one has the following.

(i) When s is a natural number with 2s > d1(d1 + 1), one has∫
md1

∮
|F (α1,β;ϕ)|2s dβ dα1 � X2s−D−1+ε.

(ii) When s is a natural number with 2s > d1(d1 − 1), one has∫
Md1

∮
|F (α1,β;ϕ)|2s dβ dα1 � X2s−D+ε.

Proof. Both conclusions follow by applying the argument of the proof of [48,
Theorem 2.1], mutatis mutandis. We will be concise with the details in order
to save space. Initially, we preserve the option of pursuing either case (i) or
case (ii) of the theorem. Thus, we consider B ⊆ [0, 1), and we define the mean
value

I(B) =

∫
B

∮
|F (α1,β;ϕ)|2s dβ dα1. (14.10)

For the sake of clarity and concision, we write κ for d1. The reader should
experience no difficulty in following the argument of the proof of [48, Theorem
2.1] as far as [48, equation (12)], obtaining the bound

I(B)� X(κ−1)(κ−2)/2−(D−κ)

∫
B

∮
|H(α1,θ)|2s dθ dα1, (14.11)

where

H(α1,θ) =
∑

16n6X

e(α1ϕ1(n) + θ1n+ . . .+ θκ−2n
κ−2).

Here, we have taken integral linear combinations of equations underlying the
inner integral of (14.11) so as to reduce to the monomials nj (1 6 j 6 κ− 2).
Such manœuvring also permits us to assume that ϕ1(n) takes the shape

ϕ1(n) = Anκ +Bnκ−1,

for suitable integers A and B with A > 0. Thus, as in [48, equation (13)], we
discern that∫

B

∮
|H(α1,θ)|2s dθ dα1 =

∑
|u|6sXκ−1

∫
B

∮
|h(α1,β;X)|2se(−βκ−1u) dβ dα1,

where

h(α1,β;X) =
∑

16n6X

e(ψ(n;α1,β)),

and

ψ(n;α1,β) = α1ϕ1(n) + β1n+ . . .+ βκ−1n
κ−1.
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Write

K(γ) =
∑

16z6X

e(−γz) and K̃(γ) =
s∏
i=1

K(γi)K(−γs+i).

In addition, put

hy(α1,β; γ) =
∑

16x62X

e(ψ(x− y;α1,β) + γ(x− y))

and

Hy(α1,β;γ) =
s∏
i=1

hy(α1,β; γi)hy(−α1,−β;−γs+i). (14.12)

Then, just as in the argument leading to [48, equation (18)], one finds that∫
B

∮
|H(α1,θ)|2s dθ dα1 =

∑
|u|6sXκ−1

∮
Iu(γ, y)K̃(γ) dγ, (14.13)

where

Iu(γ, y) =

∫
B

∮
Hy(α1,β;γ)e(−βκ−1u) dβ dα1.

On noting the correction made in [53], the argument leading to [48, equation
(22)] yields the bound∑

|u|6sXκ−1

Iu(γ, y)�
∫
B

∮
|H0(α1,β;γ)|Ψy(α1, βκ−1) dβ dα1,

where

Ψy(α1, βκ−1) =

∣∣∣∣ ∑
|u|6sXκ−1

e(−(κAy −B)uα1 − uβκ−1)

∣∣∣∣.
Thus we deduce that

X−1
∑

16y6X

∑
|u|6sXκ−1

Iu(γ, y)�
∫
B

∮
|H0(α1,β;γ)|Ψ(α1, βκ−1) dβ dα1,

(14.14)
where

Ψ(α1, βκ−1) = X−1
∑

16y6X

min{Xκ−1, ‖(κAy −B)α1 + βκ−1‖−1}

6 X−1
∑

|z|6κAX+|B|

min{Xκ−1, ‖zα1 + βκ−1‖−1}.

Suppose that α1 ∈ R, and that b ∈ Z and r ∈ N satisfy (b, r) = 1 and
|α1− b/r| 6 r−2. Then, just as in [48, equation (23)], one obtains the estimate

Ψ(α1, βκ−1)� Xκ−1(X−1 + r−1 + rX−κ) log(2r). (14.15)

It is at this point that our argument diverges according to whether we are in
case (i) or case (ii). We first consider case (i), in which case we put B = mκ.
Here, by Dirichlet’s approximation theorem, given α1 ∈ mκ, one may find
b ∈ Z and r ∈ N with (b, r) = 1, |rα1−b| 6 (2κ)−1X1−κ and r 6 2κXκ−1. The
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definition of mκ ensures that r > (2κ)−1X, and hence it follows from (14.15)
that

Ψ(α1, βκ−1)� Xκ−2 logX.

From here, the argument leading from [48, equation (23)] to the conclusion of
the proof of [48, Theorem 2.1] conveys us via (14.13) and (14.14) to the bound∫

mκ

∮
|H(α1,θ)|2s dθ dα1

� Xκ−2(logX) sup
γ∈[0,1)

∮
|h0(α1,β; γ)|2s dβ dα1

∮
|K̃(γ)| dγ

� Xκ−2(logX)2s+1Js,κ(2X).

When 2s > κ(κ+ 1) = d1(d1 + 1), we find from Corollary 1.3 that

Js,κ(2X)� X2s−κ(κ+1)/2+ε,

and thus ∫
mκ

∮
|H(α1,θ)|2s dθ dα1 � X2s−κ(κ−1)/2−2+ε.

We therefore conclude from (14.11) that

I(mκ)� X2s−D−1+ε.

In view of the definition (14.10), the first case of the theorem now follows.

Our starting point for the proof of case (ii) of the theorem is again the upper
bound (14.15). By appealing to a standard transference principle (see [52,
Lemma 14.1]), one deduces that whenever b ∈ Z and r ∈ N satisfy (b, r) = 1
and |α1 − b/r| 6 r−2, then one has

Ψ(α1, βκ−1)� Xκ−1+ε(λ−1 +X−1 + λX−κ),

where λ = r + Xκ|rα1 − b|. When α ∈ Mκ(r, b) ⊆ Mκ, moreover, one has
r 6 X and Xκ|rα1 − b| 6 X, so that λ 6 2X. We therefore see that, under
such circumstances, one has

Ψ(α1, βκ−1)� Xκ−1+εΦ(α1),

where Φ(α1) is the function taking the value (q + Xκ|qα1 − a|)−1, when one
has α1 ∈Mκ(q, a) ⊆Mκ, and otherwise Φ(α1) = 0.

It follows from the above discussion that∫
Mκ

∮
|h0(α1,β; γ)|2sΨ(α1, βκ−1) dβ dα1

� Xκ−1+ε

∫
Mκ

Φ(α1)

∮
|h0(α1,β; γ)|2s dβ dα1

� Xκ−1+ε

∫
Mκ

Φ(α1)

∮
|h0(α1,β; 0)|2s dβ dα1. (14.16)

Moreover, as a consequence of [10, Lemma 2], we find that∫
Mκ

Φ(α1)

∮
|h0(α1,β; 0)|2s dβ dα1 � Xε−κ(XI1 + I2), (14.17)
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where

I1 =

∫ 1

0

∮
|h0(α1,β; 0)|2s dβ dα1

and

I2 =

∮
|h0(0,β; 0)|2s dβ.

By appealing to Corollary 1.3, one finds that whenever 2s > κ(κ− 1), one has

I1 � Js,κ(2X)� Xs+ε +X2s−κ(κ+1)/2+ε.

On the other hand, when 2s > κ(κ−1), it also follows from Corollary 1.3 that

I2 � Js,κ−1(2X)� X2s−κ(κ−1)/2+ε.

Provided that 2s > κ(κ− 1) + 2, therefore, we deduce from (14.17) that∫
Mκ

Φ(α1)

∮
|h0(α1,β; 0)|2s dβ dα1 � X2s−κ(κ+1)/2+ε,

whence (14.16) yields the estimate∫
Mκ

∮
|h0(α1,β; γ)|2sΨ(α1, βκ−1) dβ dα1 � X2s−κ(κ−1)/2−1+ε. (14.18)

On recalling (14.12), we deduce from (14.18) via Hölder’s inequality that∫
Mκ

∮
|H0(α1,β;γ)|Ψ(α1, βκ−1) dβ dα1 � X2s−κ(κ−1)/2−1+ε,

and so (14.14) yields the bound

X−1
∑

16y6X

∑
|u|6sXκ−1

Iu(γ, y)� X2s−κ(κ−1)/2−1+ε.

Consequently, much as in the treatment of the previous case, we deduce from
(14.13) that∫

Mκ

∮
|H(α1,θ)|2s dθ dα1 � X2s−κ(κ−1)/2−1+ε

∮
|K̃(γ)| dγ

� X2s−κ(κ−1)/2−1+2ε.

On substituting this estimate into (14.11), we find that

I(Mκ)� X2s−D+2ε.

In view of the definition (14.10), the conclusion of the theorem now follows in
case (ii). �

By combining the two conclusions of Theorem 14.4, we obtain a slight im-
provement on Theorem 14.1 for larger moments.

Theorem 14.5. Suppose that d2 6 d1 − 2. Put

u = d1(d1 + 1)− max
k6r6d1

d1(d1 + 1)− r(r + 1)

1 + ∆r,d

. (14.19)
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Then whenever s is a real number with 2s > max{u, d1(d1 − 1) + 2}, one has∮
|F (α;ϕ)|2s dα� X2s−D+ε.

Proof. Suppose that the maximum in the definition (14.19) occurs for the index
r, and put ∆ = ∆r,d. Then it follows from Hölder’s inequality that∫

md1

∮
|F (α1,β;ϕ)|u dβ dα1 6 T

∆/(1+∆)
1 T

1/(1+∆)
2 ,

where

T1 =

∫
md1

∮
|F (α1,β;ϕ)|d1(d1+1) dβ dα1

and

T2 =

∫ 1

0

∮
|F (α1,β;ϕ)|r(r+1) dβ dα1.

Thus, from Theorems 14.1 and 14.4(i), one finds that∫
md1

∮
|F (α1,β;ϕ)|u dβ dα1 � Xε−D (Xd1(d1+1)−1

)∆/(1+∆) (
Xr(r+1)+∆

)1/(1+∆)

� Xu−D+ε.

Meanwhile, provided that u > d1(d1 − 1) + 2, one finds from Theorem 14.4(ii)
that ∫

Md1

∮
|F (α1,β;ϕ)|u dβ dα1 � Xu−D+ε.

Combining these two estimates, we see that∮
|F (α;ϕ)|u dα� Xu−D+ε,

and the conclusion of the theorem follows. �

Three corollaries of Theorem 14.5 may be of interest. First we consider the
mean value

Is,d(X) =

∫
[0,1)d−1

∣∣∣∣ ∑
16x6X

e(αdx
d + αd−2x

d−2 + . . .+ α1x)

∣∣∣∣2s dα,

in which the argument of the exponential sum is a polynomial of degree d in
which there is no monomial of degree d− 1. Hua investigated the problem of
determining the smallest positive integer Sd having the property that whenever
2s > Sd, then

Is,d(X)� X2s−(d2−d+2)/2+ε. (14.20)

Here, since the sum of the degrees in the associated Diophantine system of
equations is

1 + 2 + . . .+ (d− 2) + d = (d2 − d+ 2)/2,

the bound Hua sought is essentially best possible for s > (d2 − d + 2)/2.
This mean value played a critical role in his approach to Vinogradov’s mean
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value theorem for small degrees (see [23, Chapter 5]). Thus, Hua obtained the
bounds

S3 6 10, S4 6 32, S5 6 86, . . . .

More recently, as a consequence of progress on Vinogradov’s mean value theo-
rem stemming from the efficient differencing method, the author obtained the
bounds Sk 6 2k2 − 2k (see [49, Theorem 11.6]) and S3 6 9 (see [51, Theorem
1.1]).

As a consequence of Theorem 14.5, we obtain new bounds for Sd for d > 4.

Corollary 14.6. When d > 3, one has Sd 6 d2.

Proof. Take d1 = d and di = d−i (2 6 i 6 d−1), and put k = d−1. We apply
Theorem 14.5 with r = d− 1. In such circumstances, we find from (14.3) that

∆r,d = d− r +
d−1∑
i=2

((d− i)− (r + 1− i)) = 1.

Thus, on putting

u = d(d+ 1)− d(d+ 1)− d(d− 1)

2
= d2,

it follows from Theorem 14.5 that the upper bound (14.20) holds whenever
2s > u. Thus Sd 6 u = d2, and the proof of the corollary is complete. �

Next we consider Waring’s problem. When s and d are natural numbers,
let Rs,d(n) denote the number of representations of the natural number n as
the sum of s dth powers of positive integers. A formal application of the circle
method suggests that for d > 3 and s > d+ 1, one should have

Rs,d(n) =
Γ(1 + 1/d)s

Γ(s/d)
Ss,d(n)ns/d−1 + o(ns/d−1), (14.21)

where

Ss,d(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ard/q)

)s
e(−na/q).

Granted appropriate congruence conditions on n, one has 1 � Ss,d(n) � nε,
so that the conjectured relation (14.21) is a legitimate asymptotic formula. Let

G̃(d) denote the least integer t with the property that, for all s > t, and all
sufficiently large natural numbers n, one has the asymptotic formula (14.21).

We numerically sharpen the conclusion G̃(d) 6 d2 − d + O(
√
d) recorded by

Bourgain [6, Theorem 11], achieving the limit of the method.

We define the integer θ = θ(d) by

θ(d) =

{
1, when 2d+ 2 > b

√
2d+ 2c2 + b

√
2d+ 2c,

2, when 2d+ 2 < b
√

2d+ 2c2 + b
√

2d+ 2c.
(14.22)
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Corollary 14.7. Let

s0 = d(d− 1) + min
06m<d

2d+m(m− 1)

m+ 1
.

Then, whenever s > s0, one has∫ 1

0

∣∣∣∣ ∑
16n6X

e(αnd)

∣∣∣∣s dα� Xs−d+ε. (14.23)

Thus, one has G̃(d) 6 bs0c+ 1, and in particular

G̃(d) 6 d2 − d+ 2b
√

2d+ 2c − θ(d).

Proof. It is apparent from Corollary 14.2 that ∆r,d = d − r (1 6 r 6 d).
Then it follows from Theorem 14.5 that the estimate (14.23) holds whenever
s > max{u, d(d− 1) + 2}, where

u = d(d+ 1)− max
06m<d

d(d+ 1)− (d−m)(d−m+ 1)

m+ 1

= d(d+ 1)− max
06m<d

2dm−m(m− 1)

m+ 1
= s0.

It is apparent that s0 > d(d − 1) + 2, and hence the conclusion (14.23) holds
whenever s > s0. Moreover, granted the estimate (14.23) in the case s = s0,

the methods of [38, Chapter 4] show that G̃(k) 6 bs0c+ 1.

All that remains to complete the proof of the corollary is the confirmation

of the final bound on G̃(d), and this we obtain by deriving an explicit bound
on s0. Take m = b

√
2d+ 2c, and define ω via the relation

√
2d+ 2 = m + ω.

Then we have 0 6 ω < 1. With this choice of m, one finds that

2d+m(m− 1)

m+ 1
=

(m+ ω)2 − 2 +m(m− 1)

m+ 1

=
2m(m+ 1)− (3− 2ω)(m+ 1) + (1− ω)2

m+ 1
,

= 2m− 3 + δ,

where

δ = 2ω +
(1− ω)2

m+ 1
. (14.24)

In all circumstances, one has

δ < 2ω + (1− ω)2/2 = (1 + ω)2/2 < 2,

whence
2d+m(m− 1)

m+ 1
< 2m− 1.

Then we may take s0 = w with w < d2 − d + 2b
√

2d+ 2c − 1, yielding the
bound

G̃(d) 6 bwc+ 1 6 d2 − d+ 2b
√

2d+ 2c − 1.
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On the other hand, provided that δ < 1, we instead obtain

2d+m(m− 1)

m+ 1
< 2m− 2.

In such circumstances, we may take s0 = w with w < d2−d+ 2b
√

2d+ 2c− 2,
delivering the bound

G̃(d) 6 bwc+ 1 6 d2 − d+ 2b
√

2d+ 2c − 2.

It follows from (14.24) that δ < 1 if and only if

(2m+ 2)ω + (1− ω)2 < m+ 1,

or equivalently

2d+ 2 = (m+ ω)2 < m2 +m.

This completes the proof of the corollary. �

We remark that it seems that no improvement in the conclusion of Corollary

14.7 is gained by taking m = d
√

2d+ 2e, so that the stated bounds on G̃(d)
are the sharpest obtainable using this circle of ideas. The formula for s0

in the statement of the corollary is equivalent to that given by Bourgain [6,
Theorem 11]. We note that, as shown in [48, Theorem 4.1], the truth of the
main conjecture in Vinogradov’s mean value theorem (Corollary 1.3 or [8])

delivers the bounds G̃(4) 6 15, G̃(5) 6 23, G̃(6) 6 34, G̃(7) 6 47, G̃(8) 6 61,

G̃(9) 6 78, G̃(10) 6 97, and so on. The conclusion of Corollary 14.7 matches
or improves on these bounds for k > 10.

We finish by briefly outlining how Theorem 14.5 may be applied to treat
systems with one large and a number of smaller degree terms with an efficiency
matching Corollary 14.7. We again make use of the definition (14.22) of the
integer θ(d).

Corollary 14.8. Suppose that

d2 6 d1 − b
√

2d1 + 2c − 1. (14.25)

Then there is a positive number τ having the property that, with

s0 = d2
1 − d1 + 2b

√
2d1 + 2c − θ(d1)− τ,

one has ∮
|F (α;ϕ)|s0 dα� Xs0−D.

Proof. Write m = b
√

2d1 + 2c. Under the hypothesis (14.25), it is apparent
that d1 > d2 + 2. Also, on taking r = d1 − m, we find that d2 − r + 1 6 0.
We therefore deduce from (14.3) that ∆r,d = d1 − r = m. Thus, just as in the
proof of Corollary 14.7, if we put

u = d1(d1 + 1)− d1(d1 + 1)− (d1 −m)(d1 −m+ 1)

m+ 1
,
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then we find that u < d1(d1 − 1) + 2m − θ. Since u > d1(d1 − 1) + 2, then
again as in the proof of Corollary 14.7, we see that when s is a real number
with 2s > u, one has ∮

|F (α;ϕ)|2s dα� X2s−D+ε.

In order to complete the proof of the corollary, we have now only to apply
the Hardy-Littlewood method. The details are standard, and so we offer only
the briefest outline of the necessary argument. Take u0 to be a real number
satisfying

u < u0 < d1(d1 − 1) + 2b
√

2d1 + 2c − θ,
and put

τ = d1(d1 − 1) + 2b
√

2d1 + 2c − θ − u0.

We then take δ = τ/(100d1). We define the set of major arcs N to be the
union of the arcs

N(q, a) = {α ∈ [0, 1)k : |αi − ai/q| 6 Xδ−di (1 6 i 6 k)},
with

0 6 a 6 q, q 6 Xδ and (q, a1, . . . , ak) = 1.

Also, we put n = [0, 1)k \ N. Then it follows from [47, Theorem 1.6] that

whenever |F (α;ϕ)| > X1−δ/d31 , then α ∈ N. Thus∫
n

|F (α;ϕ)|u0+τ dα� (X1−δ/d31)τ
∮
|F (α;ϕ)|u0 dα

� Xu0+τ−D.

Meanwhile, by applying the methods based on [2, Theorems 1.3 and 2.4], just
as in the proof of Corollary 1.3, one obtains the bound∫

N

|F (α;ϕ)|u0+τ � Xu0+τ−D.

By combining these estimates, the conclusion of the corollary follows. �

When k = 2, d1 = d and d2 = 1, the conclusion of Corollary 14.8 shows that
the estimate ∫

[0,1)2

∣∣∣∣ ∑
16n6X

e(α1n
d + α2n)

∣∣∣∣s dα� Xs−d−1 (14.26)

holds whenever s > u0, for some real number u0 with

u0 < d(d− 1) + 2b
√

2d+ 2c − θ(d),

provided at least that one has d − b
√

2d+ 2c > 2. This condition is satisfied
for d > 5, as is readily confirmed. For small values of d, the methods of Hua
[23] play a role (see also [11, Lemma 5]), for one has the bound∫

[0,1)2

∣∣∣∣ ∑
16n6X

e(α1n
d + α2n)

∣∣∣∣2j+2

dα� X2j−j+1+ε (2 6 j 6 d). (14.27)
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By applying this estimate as a substitute for Theorem 14.1 in the proof of
Theorem 14.5, we find by applying Hölder’s inequality that the estimate (14.26)
holds for s > s0(d), where

s0(4) = 15, s0(5) = 231
3
, s0(6) = 34, s0(7) = 461

2
,

s0(8) = 611
5
, s0(9) = 78, s0(10) = 966

7
.

Here, one makes use of the case j = 3 of the bound (14.27) for d 6 6, and
j = 4 for 7 6 d 6 10. Meanwhile, the work of [51, Theorem 1.1] shows that
when d = 3, then (14.26) holds whenever s > 9. We remark that, in this
special case k = 2, d1 = d and d2 = 1, very slightly weaker bounds could be
extracted from Table 1 of the paper [1] that was submitted to the arXiv just
prior to the submission of this memoir. The underlying minor arc bounds can
be seen to be morally equivalent, though the major arc treatment differs.

15. Vinogradov’s mean value theorem in number fields

The application of the Hardy-Littlewood (circle) method in number fields
is frequently complicated by the dependence of exponential sum estimates on
the degree of the ambient field extension. In Diophantine problems of all
but the lowest degrees d, existing methods for circumventing such difficulties
demand the availability of a number of variables exponentially large in terms
of d. Thus, for example, Birch [4] has shown that in any algebraic number
field, the rational solutions of a diagonal form of degree d in s variables have
the expected asymptotic density whenever s > 2d + 1. The approach of Birch
owes its success to the efficiency of Hua’s lemma with 2d variables. Indeed,
so efficient is the latter that, equipped with even a weak version of Weyl’s
inequality having poor dependence on the degree of the field extension at
hand, a satisfactory outcome can be derived with just one additional variable.
Hitherto, such efficiency has been absent from versions of Vinogradov’s mean
value theorem that might otherwise be expected to deliver superior bounds
for the number of variables (see, for example, the work of Körner [24] and
Eda [13]). Our primary goal in this section is to establish such an efficient
version of Vinogradov’s mean value theorem in number fields, thereby opening
access to sharp Diophantine applications in number fields. Indeed, we establish
the main conjecture in number fields, and this delivers an analogue of Birch’s
theorem whenever s > d2 + d+ 1.

In order to be more concrete concerning our conclusions, we require some
notation, beginning with the infrastructure for algebraic number fields. We
refer the reader to [42] for an introduction to the circle method in number
fields. We consider an algebraic extension K of degree n over Q. Let K(l)

(1 6 l 6 n1) be the real conjugate fields associated with K, and let K(m)

and K(m+n2) (n1 + 1 6 m 6 n1 + n2) be the pairs of complex conjugate fields
associated with K. Here, one has n1 + 2n2 = n. We write OK for the ring of
integers of K, and we fix a basis Ω = {ω1, . . . , ωn} for OK over Z. We then
denote by B(X) ⊂ OK the unit cube

B(X) =
{
r1ω1 + . . .+ rnωn : ri ∈ [−1

2
X1/n, 1

2
X1/n) ∩ Z (1 6 i 6 n)

}
.
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It is apparent that card(B(X)) � X.

When γ ∈ K, we denote by γ(i) the conjugates of γ, where γ(i) ∈ K(i)

(1 6 i 6 n). Then, as usual, we define the trace map Tr = TrK/Q and norm
map N = NK/Q by taking

Tr(γ) = γ(1) + . . .+ γ(n) and N(γ) = γ(1) · · · γ(n).

When γj ∈ K and θj ∈ R for 1 6 j 6 n, and

λ(θ) = θ1γ1 + . . .+ θnγn,

we define

λ(i)(θ) = θ1γ
(i)
1 + . . .+ θnγ

(i)
n (1 6 i 6 n).

The trace map on K can then be extended by defining

Tr(λ(θ)) = λ(1)(θ) + . . .+ λ(n)(θ).

The analogue of the function e(α) = e2πiα in this number field setting is then
defined by taking E(λ(θ)) = e(Tr(λ(θ))).

Next, let d−1 denote the inverse different, so that

d−1 = {η ∈ K : Tr(ηξ) ∈ Z for all ξ ∈ OK}.

There is a basis P = {ρ1, . . . , ρn} of d−1 dual to Ω having the property that

Tr(ρiωj) =

{
1, when i = j,

0, when i 6= j.
.

As a special case of the linear form λ(θ) defined above, we define α = α(θ) by

α(θ) = θ1ρ1 + . . .+ θnρn.

When such a form occurs in an n-fold integral, we use the symbol dα to denote
the n-fold differential dθ1 . . . dθn. It is convenient then to write T for [0, 1)n.
Now that we are equipped with this notation, we may record the fundamental
orthogonality relation that underpins the circle method in number fields. Thus,
when γ ∈ OK , one has∫

T
E(αγ) dα =

{
1, when γ = 0,

0, when γ ∈ OK \ {0}.
(15.1)

We may now announce the analogue of Theorem 1.1 in number fields.

Theorem 15.1. Suppose that ϕj ∈ OK [t] (1 6 j 6 k) is a system of polyno-
mials with W (t;ϕ) 6= 0. Let s be a positive real number with s 6 k(k + 1)/2.
Also, suppose that (aν)ν∈OK is a sequence of complex numbers. Then for each
ε > 0, one has∫

Tk

∣∣∣∣ ∑
ν∈B(X)

aνE(α1ϕ1(ν) + . . .+ αkϕk(ν))

∣∣∣∣2s dα� Xε

( ∑
ν∈B(X)

|aν |2
)s
.
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In particular, one has∫
Tk

∣∣∣∣ ∑
ν∈B(X)

E(α1ϕ1(ν) + . . .+ αkϕk(ν))

∣∣∣∣2s dα� Xs+ε.

Throughout this section, we adopt the convention that implicit constants in
Vinogradov’s notation � and � may depend on s, k, ϕ, K, Ω, and also the
small positive number ε. As an immediate consequence of the orthogonality
relation (15.1), one obtains the following corollary.

Corollary 15.2. When s ∈ N, denote by Ns,ϕ(X;K) the number of solutions
of the system of equations

s∑
i=1

(ϕj(xi)− ϕj(yi)) = 0 (1 6 j 6 k),

with xi, yi ∈ B(X). Then whenever W (t;ϕ) 6= 0 and s 6 k(k + 1)/2, one has

Ns,ϕ(X;K)� Xs+ε.

Finally, when k ∈ N and s > 0, we define

Js,k(X;K) =

∫
Tk

∣∣∣∣ ∑
ν∈B(X)

E(α1ν + . . .+ αkν
k)

∣∣∣∣2s dα.

Theorem 15.1 delivers an analogue of the main conjecture in Vinogradov’s
mean value theorem for algebraic number fields.

Corollary 15.3. Suppose that k ∈ N and s > 0. Then for each ε > 0, one
has

Js,k(X;K)� Xε(Xs +X2s−k(k+1)/2).

The literature concerning Vinogradov’s mean value theorem in number fields
begins with the work of Körner [24] more than half a century ago. When
[K : Q] = n and s > 1

4
nk(k + 1) + rk (r ∈ N), Körner [24, Satz 1] delivers an

estimate tantamount to

Js,k(X;K)� X2s− 1
2
k(k+1)+ηs,k(logX)r,

where ηs,k = 1
2
k(k + 1)(1 − 1/k)r. This was improved by Eda [13] (see also

[14, Lemma 4]) to the extent that the power of logX may be deleted, and the
condition on s relaxed to

s >
n

n− 1
k(k + 1) + rk − 1.

Recent work of Kozlov [25] and Sorokin [35] provides some slight improvement
in these results for the special case K = Q(

√
−1), although their estimates are

constrained to possess the same salient features. Thus, in all of this previous
work, the exponent ηs,k behaves roughly like k2e−s/k

2
. In consequence, one

must take s to be at least as large as k2(2 log k + log log k + c), for a suitable
positive constant c, in order that the quality of available estimates of Weyl type
permit sufficient control of the mean value implicit in Js,k(X;K) necessary for
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applications. Indeed, the dependence of available Weyl estimates on the degree
n of the field extension may necessitate that this constant c grow with n at
least as fast as log n. By contrast, Corollary 15.3 permits full control to be
exercised as soon as s > k(k+ 1)/2. Not only is the dependence on the degree
of the ambient field extension entirely removed, but the dependence on k is
also substantially improved.

The conclusion of Theorem 15.1 follows from an analogue of Theorem 3.1,
as we now describe. Since the details are strikingly similar to those in the
situation over Z described in §§3-12, we will economise on space by indicating
only the places in the argument where special care must be taken. We again
take k to be an integer with k > 1, and consider polynomials ϕ1, . . . , ϕk ∈
OK [t]. Throughout the argument, the ring of integers OK replaces Z. Let
p = (π) be a prime ideal of OK , and put p = N(π). We will be implicitly
working in the p-adic field completing K at the place p. We assume throughout
that p > (k!)n. The definitions of §3 must now be made, mutatis mutandis,
where throughout we emphasise that Z is replaced by OK , congruences mod ph

are replaced by congruences mod ph, and the function e(z) is replaced by E(z).
The definitions (1.9) and (3.5) must be adjusted to this new setting. First,
when F : Tk → C is integrable, we write∮

F (α) dα =

∫
Tk
F (α) dα.

Next, when B is a positive integer, we define∮
pB
F (α) dα = p−kB

∑
u1 mod pB

. . .
∑

uk mod pB

F (uπ−B). (15.2)

Some words of explanation are in order here. First, the summations on the
right hand side of (15.2) are taken over complete sets of residues modulo pB.
Next, each coordinate uiπ

−B of the argument on the right hand side of (15.2)
may be written in the shape

ui = βi1ρ1 + . . .+ βinρn,

with βij ∈ R, and we then reduce each coefficient βij modulo 1. With this
convention, we may regard uπ−B as belonging to Tk. Integrals with subscripts
pB in §§3-12 are now replaced by this newly defined integral with subscript pB,
in the obvious fashion. With this definition, one may verify that for ν ∈ OK ,
one has the orthogonality relation∮

pB
E(αν) dα =

{
1, when ν ≡ 0 (mod pB),

0, when ν 6≡ 0 (mod pB).

Equipped with these modified definitions, a version of Theorem 3.1 may now
be stated in the number field setting. We recall in advance the definitions (3.6)
and (3.8) in their modified manifestations.

Theorem 15.4. Let K be an algebraic extension of Q with [K : Q] < ∞.
Suppose that k ∈ N, and that p = (π) is a prime ideal of OK with p =
NK/Q(π) > (k!)n. Then one has λ(k(k + 1)/2, k) = 0.
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We remark that the condition p > (k!)n is imposed in order to ensure that
any factor k!, occurring in a binomial expansion en route, is necessarily non-
zero modulo p. If one were to have k! ≡ 0 (mod p), then one would have
that N(π) divides N(k!) over Z. But by the aforementioned hypothesis, one
has N(π) > (k!)n > N(k!), leading to a contradiction, and so the desired
conclusion follows.

Corollary 15.5. Let K be an algebraic extension of Q with [K : Q] < ∞.
Suppose that k ∈ N, and that p = (π) is a prime ideal of OK with p =
NK/Q(π) > (k!)n. Suppose that τ > 0 and ε > 0. Let B be sufficiently large in
terms of n, k, τ and ε. Put s = k(k + 1)/2 and H = dB/ke. Then for every
ϕ ∈ Φτ (B), and every sequence (aν) ∈ D0, one has

UB
s,k(a)� pBεUB,H

s,k (a).

The proof of Theorem 15.4 and its corollary follow just as in the correspond-
ing argument of §§3-10 above in the rational case. Given our adjustments in
notation, the argument follows verbatim, provided that the reader exercises
care in ensuring that these notational perturbations are correctly adminis-
tered. We therefore move on directly to consider the proof of Theorem 15.1.

The proof of Theorem 15.1. In all essentials, the proof of Theorem 15.1 follows
the proof of Theorem 1.1 given in §11 and §12, mutatis mutandis, and so we
shall be very brief concerning the details. Here, with the notational modifica-
tions in hand, the only parts of these sections that require further discussion
are located in §12. Let Z denote the set of zeros of W (t;ϕ) lying in OK , and
let X be sufficiently large in terms of ϕ, k, ε, K and Ω. We suppose that
s = k(k + 1)/2. We note that one again has

card(Z) 6 deg(W (t;ϕ))� 1.

Define

F (α;X) = ρ−1
0

∑
ν∈B(X)

aνE(ψ(ν;α))

and

F0(α;X) = ρ−1
0

∑
ν∈B(X)
ν 6∈Z

aνE(ψ(ν;α)).

We may suppose that the sequence (aν) satisfies the property that aν = 0
whenever ν 6∈ B(X). Our task is to cover the exponential sum F0(α;X) by
analogous exponential sums with variables constrained by appropriate non-
singularity conditions modulo p, for suitable prime ideals p = (π) in OK .

Given a solution x,y ∈ (B(X)\Z)s of the system (1.4), the algebraic integer

s∏
i=1

W (xi;ϕ)W (yi;ϕ)
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is non-zero, and has norm bounded above by CXD, for some C > 0 depending
at most on K, s and the coefficients of ϕ, and D a positive integer with

D 6 2s
k∑
j=1

deg(ϕj).

Let P denote the set of elements π ∈ OK having the property that (π) is a
prime ideal satisfying the condition

(logX)2 < N(π) 6 3(logX)2.

By the prime ideal theorem in number fields (see [28]), when X is sufficiently
large, the number of such elements is at least 1

2
(logX)2/ log logX. One there-

fore has

N

(∏
π∈P

π

)
> (logX)(logX)2/ log logX > (CXD)n.

Thus we deduce that for each solution x,y ∈ (B(X) \ Z)s of (1.4) counted by
the mean value ∮

|F0(α;X)|2s dα,

there exists π ∈ P with
s∏
i=1

W (xi;ϕ)W (yi;ϕ) 6≡ 0 (mod p),

in which we write p = (π). In particular, one has∮
|F0(α;X)|2s dα 6

∑
π∈P

∮
|Fπ(α;X)|2s dα, (15.3)

where
Fπ(α;X) = ρ−1

0

∑
ν∈B(X)

W (ν;ϕ)6≡0 (mod p)

|aν |E(ψ(ν;α)).

The argument of §12 now resumes. Let τ > 0 be sufficiently small in terms
of s and k. We take

B =

⌈
k log(pX)

log p

⌉
, c = dτBe and H = dB/ke − c,

which ensures that pX 6 N(πH+c) 6 p2X. Then we may suppose that B is
sufficiently large in terms of τ , as well as s, k and ε. By orthogonality, one has∮

|Fπ(α;X)|2s dα 6
∮
pB
|Fπ(α;X)|2s dα.

Thus, as a consequence of Corollary 15.5, just as in the argument of the proof
of Theorem 11.1 leading to (11.9), one finds that there is a pc-spaced system
Ψ and complex sequence c with |cy| = |aπcy+ξ| for which∮

pB
|Fπ(α;X)|2s dα� psc+Bερ0(a)−2

∑
ξ mod pc

ρc(ξ)
2UB−kc,H,Ψ

s,k (c).
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Notice that whenever ν, ν ′ ∈ B(X), one has ν − ν ′ ∈ B(2X), and hence
N(ν− ν ′)� X. Then since X is sufficiently large and p > (logX)2, we obtain
the implication

ν ≡ ν ′ (mod pH+c) ⇒ ν = ν ′. (15.4)

Consequently, just as in the concluding paragraph of the proof of Theorem
11.1, we find that

UB−kc,H,Ψ
s,k (c)� (1 +X/pc+H)s � 1.

Thus we deduce that∮
pB
|Fπ(α;X)|2s dα� psc+Bερ0(a)−2

∑
ξ mod pc

ρc(ξ)
2 � p(2sτ+ε)B.

Since τ was chosen sufficiently small in terms of s and k, it follows that for
each positive number δ, one has∮

|Fπ(α;X)|2s dα� Xδ,

and thus, on recalling (15.3),∮
|F (α;X)|2s dα� 1 +

∮
|F0(α;X)|2s dα

� 1 +Xδ
∑
π∈P

1� X2δ.

The conclusion of the theorem follows on recalling the definitions of F (α;X)
and the weight ρ0. �

It is difficult to resist announcing an easy consequence of Theorem 15.1 that
follows by a straightforward application of the circle method in number fields.
This supplies a Hasse principle for diagonal forms.

Theorem 15.6. Let K be an algebraic extension of Q of finite degree. Let
k, s ∈ N, and suppose that s > k2 + k + 1. Suppose also that a1, . . . , as ∈ K,
and that the equation

a1x
k
1 + . . .+ asx

k
s = 0

has non-zero solutions in every completion Kv of K. Then this equation has
a solution x ∈ Ks \ {0}.

Proof. Write

G(α;X) =
∑

ν∈B(X)

E(α1ν + . . .+ αkν
k).

Then it follows from the triangle inequality that∫
T

∣∣∣∣ ∑
ν∈B(X)

E(ανk)

∣∣∣∣2s dα =
∑

h

∫
Tk
|G(α;X)|2sE(−α1h1 − . . .− αk−1hk−1) dα

� Xk(k−1)/2Js,k(X;K),
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in which the (k − 1)-tuples h are summed over the boxes

hj ∈ 2sCB(Xj) (1 6 j 6 k − 1),

for a positive number C sufficiently large in terms of Ω and k. Thus, when
s > k(k + 1), one finds from Corollary 15.3 that∫

T

∣∣∣∣ ∑
ν∈B(X)

E(ανk)

∣∣∣∣2s dα� X2s−k+ε.

Using this estimate as a substitute for [4, Lemma 2] in the proof of [4, Theorem
3], the proof of the theorem follows via a standard application of the circle
method in algebraic number fields. �

Corollary 15.7. Let L be an algebraic extension of Q, possibly of infinite
degree. Let k, s ∈ N with k odd, and suppose that s > exp(8(log k)2). Suppose
also that a1, . . . , as ∈ L. Then the equation

a1x
k
1 + . . .+ asx

k
s = 0 (15.5)

has a solution x ∈ Ls \ {0}. When L is a totally imaginary extension of Q,
the same conclusion holds also for even k.

Proof. Since L is an algebraic extension of Q, the coefficients a1, . . . , as are
algebraic. Put K = Q(a1, . . . , as). Then K : Q is a finite algebraic extension
of Q, and it follows from [9, Theorem 1], just as in the proof of [57, Theorem
4.4], that in every completion Kv of K the equation (15.5) has a non-zero
solution. Note that when the place v is infinite, this is trivially inferred from
the hypothesis that, either k is odd, or else L is a totally imaginary extension
of Q and k is even. It therefore follows from Theorem 15.6 that the equation
(15.5) possesses a non-zero K-rational solution, and hence also a non-zero
L-rational solution. �

Corollary 15.8. Let L be a totally imaginary algebraic extension of Q, possibly
of infinite degree. Let k, s, r ∈ N with k > 3, and suppose that

s > r2k−1

exp(2k+2(log k)2).

Then, whenever Fi ∈ L[x1, . . . , xs] (1 6 i 6 r) are homogeneous of degree k,
the system of equations

Fi(x) = 0 (1 6 i 6 r)

possess a simultaneous solution x ∈ Ls \ {0}.

Proof. One may follow the argument of the proof of [46, Corollary 1.3], mutatis
mutandis, noting the proof of [57, Theorem 4.4], and substituting Corollary
15.7 into [46, Theorem 1]. �

The conclusion of this corollary provides an explicit version of a theorem
of Peck [31]. We note that [46, Corollary 1.3] establishes a similar conclusion

subject to the stronger constraint s > r2k−1
exp(2kk). We intend to explore

further applications of Theorem 15.1 in a later paper.
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16. Multidimensional analogues via restriction of scalars

The conclusions of §15 may be employed to establish a class of mean value
estimates associated with multidimensional systems. In simplest terms, what
we have in mind is that a mean value estimate of the shape given in Corollary
15.2, may be reinterpreted as a multidimensional mean value estimate over
a lower degree field extension of Q. Perhaps this is best illustrated with a
concrete example. Thus, consider the Vinogradov system of degree 3 over K =
Q(
√
−2). Theorem 15.1 shows that whenever s > 1, the number Js,3(X;K) of

solutions of the system
s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 3), (16.1)

with x,y ∈ B(X)s, satisfies

Js,3(X;K)� Xε(Xs +X2s−6).

However, for each such solution x,y, one may write

xi = ui + vi
√
−2 and yi = zi + wi

√
−2,

with u,v, z,w ∈ [−1
2
X1/2, 1

2
X1/2)s ∩ Zs. Define

φ3(x, y) = x3 − 6xy2, ψ3(x, y) = 3x2y − 2y3,

φ2(x, y) = x2 − 2y2, ψ2(x, y) = xy,

φ1(x, y) = x, ψ1(x, y) = y.

Then by expanding the expressions

(ui + vi
√
−2)j and (zi + wi

√
−2)j,

for 1 6 j 6 3, and writing the result in terms of the integral coordinate basis
{1,
√
−2}, one sees that (16.1) holds if and only if the system

s∑
i=1

(φj(ui, vi)− φj(zi, wi)) = 0,

s∑
i=1

(ψj(ui, vi)− ψj(zi, wi)) = 0,

is satisfied simultaneously for 1 6 j 6 3.

Denote by Js(Y ;ϕ,ψ) the number of integral solutions of the latter system
with 1 6 u,v, z,w 6 Y . Then from the estimate

Js,3(X;Q(
√
−2))� Xε(Xs +X2s−6),

available via Corollary 15.3, we deduce that

Js(Y ;ϕ,ψ)� Y ε(Y 2s + Y 4s−12).

This estimate delivers the main conjecture for this two dimensional system.

In order to describe this phenomenon in wider generality, we introduce
some notation. Let K be an algebraic extension of Q with [K : Q] = d.
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Let L be an algebraic extension of K with [L : K] = n, and let OL/K de-
note the ring of integers associated with the field extension L : K. Write
{ω1, . . . , ωn} for an OK-integral coordinate basis of L : K. Consider polyno-
mials ϕ1, . . . , ϕk ∈ OL/K [t] with W (t;ϕ) 6= 0. We say that the system of poly-
nomials ψlj(t1, . . . , tn) ∈ OK/Q[t] (1 6 l 6 n) is generated from ϕ by restriction
of L down to K when, for some λi1, . . . , λin ∈ K, with det(λil)16i,l6n 6= 0, one
has

ϕj(t1ω1 + . . .+ tnωn) =
n∑
i=1

ωi

n∑
l=1

λilψlj(t1, . . . , tn) (1 6 j 6 k).

We are now equipped to announce an analogue of the second conclusion of
Theorem 1.1 for certain multidimensional systems. Here, we interpret B(X) =
BK(X), as before, as a subset of OK/Q relative to a fixed coordinate basis for
OK/Q over Z.

Theorem 16.1. Let L : K : Q be a tower of algebraic field extensions with
[L : Q] < ∞ and [L : K] = n. Given a system of polynomials ϕ1, . . . , ϕk ∈
OL/K [t] with W (t;ϕ) 6= 0, suppose that

ψlj(t1, . . . , tn) ∈ OK/Q[t] (1 6 l 6 n, 1 6 j 6 k)

is generated from ϕ by restriction of L down to K. Finally, suppose that
1 6 s 6 k(k + 1)/2 and ε > 0. Then the number Js(X;ψ;K) of solutions of
the system

s∑
i=1

(ψlj(xi1, . . . , xin)− ψlj(yi1, . . . , yin)) = 0 (1 6 l 6 n, 1 6 j 6 k), (16.2)

with x,y ∈ B(X)ns, satisfies Js(X;ψ;K)� (card(B(X)))ns+ε.

Proof. The system of equations (16.2) over OK/Q is satisfied if and only if the
system

s∑
i=1

(ϕj(ui)− ϕj(vi)) = 0 (1 6 j 6 k), (16.3)

is satisfied over OL/K by

ui = xi1ω1 + . . .+ xinωn and vi = yi1ω1 + . . .+ yinωn (1 6 i 6 s).

By Corollary 15.2, when 1 6 s 6 k(k+ 1)/2 and ε > 0, the total number T of
solutions of (16.3) with

u,v ∈ {r1ω1 + . . .+ rnωn : r ∈ B(X)n}s

satisfies
T � Xns+ε � (card(B(X)))ns+ε.

The conclusion of the theorem follows. �

This theorem supplies infinitely many examples of multidimensional systems
for which the main conjecture holds. We have merely to examine systems of
polynomials generated from (t, t2, . . . , tk) by restriction of one number field
to a subfield (perhaps Q). Other multidimensional conclusions can be found
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in [29], where the authors aimed for completely general (though non-optimal)
results for arbitrary translation-dilation invariant systems in many variables.
The most recent work based on decoupling in certain two dimensional problems
may be found in [7, 17].

17. Vinogradov’s mean value theorem in function fields

One of the key messages to be extracted from this memoir is that the nested
efficient congruencing method is sufficiently robust that it may be employed
in a myriad environments with minimal adjustment. In particular, in contrast
with the l2-decoupling method of [8], we require no multilinear Kakeya esti-
mates that might be unavailable, or even inherently mysterious in nature, when
contemplated in different settings. Nested efficient congruencing is a method
likely to achieve success for analogues of Vinogradov’s mean value theorem in-
volving discrete sets of points in any Henselian field. All that one requires are
appropriate characters with which to engineer certain orthogonality relations.
One need not be constrained to non-archimedean environments, moreover,
since with additional effort involved in handling non-ultrametric inequalities,
the same arguments apply equally well in archimedean environments such as
the real or complex numbers. Indeed, the use of real short intervals under-
pinned the original approach of Vinogradov [40] (see also [22], [37, Chapter
VI], and [36] for recent developments associated with efficient congruencing).
In this section we illustrate this robustness with one final example, namely
that of function fields.

We explain the consequences of the work of §§3-12 in the most basic situation
of a function field Fq(t) of characteristic p > k, where k is the number of
equations at hand. We emphasise that this is very far from the strongest
type of result available in the function field setting, since the situation with
small characteristic p 6 k is considerably more complicated. Comprehensive
conclusions achieving the main conjecture in Vinogradov’s mean value theorem
are the subject of work in progress by the author joint with Y.-R. Liu. In this
section we avoid intruding on the latter work, and instead extract only the
results that may be obtained with essentially no effort from our analysis in
§§3-12.

We begin by recalling the infrastructure required for harmonic analysis in
the function field setting. Our coefficients come from the finite field Fq of
characteristic p having q = pl elements. Associated with the polynomial ring
O = Fq[t] defined over the field Fq is its field of fractions K = Fq(t). In
this section, we take d to be the main parameter, a sufficiently large natural
number, and we put

Od = {ν ∈ Fq[t] : deg(ν) 6 d}.

We write K∞ = Fq((1/t)) for the completion of Fq(t) at∞. One may write each
element α ∈ K∞ in the shape α =

∑
i6n ait

i for some n ∈ Z and coefficients
ai = ai(α) in Fq (i 6 n). We define ord α to be the largest integer i for
which ai(α) 6= 0. We then write 〈α〉 for qord α. In this context, we adopt the
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convention that ord 0 = −∞ and 〈0〉 = 0. Consider next the compact additive
subgroup T of K∞ defined by T = {α ∈ K∞ : 〈α〉 < 1}. Every element α
of K∞ can be written uniquely in the shape α = [α] + ‖α‖, where [α] ∈ Fq[t]
and ‖α‖ ∈ T, and we may normalise any Haar measure dα on K∞ in such a
manner that

∫
T 1 dα = 1.

We are now equipped to define an analogue of the exponential function.
There is a non-trivial additive character eq : Fq → C× defined for each a ∈ Fq
by taking eq(a) = e(tr(a)/p), where we write e(z) for e2πiz, and where tr :Fq →
Fp denotes the familiar trace map. This character induces a map e : K∞ → C×
by defining, for each element α ∈ K∞, the value of e(α) to be eq(a−1(α)). The
orthogonality relation underlying the Fourier analysis of Fq[t], established for
example in [26, Lemma 1], takes the shape∫

T
e(hα) dα =

{
0, when h ∈ Fq[t] \ {0},
1, when h = 0.

(17.1)

Theorem 17.1. Suppose that ϕj ∈ O[x] (1 6 j 6 k) is a system of polynomials
with W (x;ϕ) 6= 0. Let s be a positive real number with s 6 k(k + 1)/2. Also,
suppose that (aν)ν∈O is a sequence of complex numbers. Then provided that
ch(Fq) > k and ε > 0, one has∫

Tk

∣∣∣∣∑
ν∈Od

aνe(α1ϕ1(ν) + . . .+ αkϕk(ν))

∣∣∣∣2s dα� (qd)ε
(∑
ν∈Od

|aν |2
)s
.

In particular, one has∫
Tk

∣∣∣∣∑
ν∈Od

e(α1ϕ1(ν) + . . .+ αkϕk(ν))

∣∣∣∣2s dα� (qd)s+ε.

In this section, implicit constants in Vinogradov’s notation may depend on
s, k, ϕ, q, and also the small positive number ε. As an immediate consequence
of the orthogonality relation (17.1), one obtains the following corollary.

Corollary 17.2. When s ∈ N, denote by Ns,ϕ(d, q) the number of solutions of
the system of equations

s∑
i=1

(ϕj(xi)− ϕj(yi)) = 0 (1 6 j 6 k),

with xi, yi ∈ Od (1 6 i 6 s). Suppose that ch(Fq) > k. Then whenever
W (x;ϕ) 6= 0 and s 6 k(k + 1)/2, one has Ns,ϕ(d, q)� (qd)s+ε.

Finally, when k ∈ N and s > 0, we define

Js,k(d;Fq) =

∫
Tk

∣∣∣∣∑
ν∈Od

e(α1ν + . . .+ αkν
k)

∣∣∣∣2s dα.

Theorem 17.1 delivers an analogue of the main conjecture in Vinogradov’s
mean value theorem in function fields of large characteristic.
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Corollary 17.3. Suppose that k ∈ N and s > 0. Then whenever ch(Fq) > k
and ε > 0, one has

Js,k(d;Fq)� (qd)ε
(
(qd)s + (qd)2s−k(k+1)/2

)
.

There is an unpublished manuscript, more than a decade old, of Y.-R. Liu
and the author in the function field setting that has been quoted from time to
time, and was updated to reflect developments arising from the early efficient
congruencing methods. This was subsumed by the multidimensional work
[27], which would achieve an analogue of Corollary 17.3 for s > k(k+ 1) when
ch(Fq) > k, with sharper conclusions available for ch(Fq) 6 k. Forthcoming
work of Y.-R. Liu and the author removes the hypothesis ch(Fq) > k from an
analogue of Corollary 17.3 in which the main conjecture is proved in general
for Vinogradov’s mean value theorem in function fields. This forthcoming joint
work represents the definitive statement on the subject.

The conclusion of Theorem 17.1 follows from an analogue of Theorem 3.1, as
we now sketch. The details are again strikingly similar to those in the situation
over Z described in §§3–12, so we are skimpy on details. Once more, the
parameter k is an integer with k > 1, and we consider polynomials ϕj ∈ O[x]
(1 6 j 6 k). Throughout the argument, the ring of polynomials O replaces Z.
Let π ∈ O be a monic irreducible polynomial, and hence of positive degree.
The definitions of §3 must be made once again, mutatis mutandis, where we
replace Z by O, congruences modulo ph by congruences modulo πh, and the
function e(z) from §3 by its doppelgänger defined in this section, throughout.
The definitions (1.9) and (3.5) must again be adjusted to the present setting.
First, when F : Tk → C is integrable, we write∮

F (α) dα =

∫
Tk
F (α) dα.

Next, when B is a positive integer, we define∮
πB
F (α) dα = 〈π〉−kB

∑
u1 mod πB

. . .
∑

uk mod πB

F (uπ−B),

where the summations are taken over complete sets of residues modulo πB.
With this definition, one may verify that for ν ∈ O, one has the orthogonality
relation ∮

πB
e(αν) dα =

{
1, when ν ≡ 0 (mod πB),

0, when ν 6≡ 0 (mod πB).

These definitions permit an analogue of Theorem 3.1 to be stated in the
function field setting. We recall the definitions (3.6) and (3.8), now adjusted
to their function field manifestations.

Theorem 17.4. Let O = Fq[t]. Suppose that k ∈ N, and that π ∈ O is a
monic irreducible polynomial. Then, under the assumption that ch(Fq) > k,
one has λ(k(k + 1)/2, k) = 0.
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Corollary 17.5. Let O = Fq[t]. Suppose that k ∈ N, and that π ∈ O is a
monic irreducible polynomial. Suppose also that τ > 0 and ε > 0. Let B be
sufficiently large in terms of k, τ and ε. Put s = k(k + 1)/2 and H = dB/ke.
Finally, suppose that ch(Fq) > k. Then for every ϕ ∈ Φτ (B) and every
sequence (an) ∈ D0, one has

UB
s,k(a)� 〈π〉BεUB,H

s,k (a).

The proof of Theorem 17.4 and its corollary follow just as in the corre-
sponding argument of §§3–10 above in the rational integer case. Given our
adjustments in notation, the argument follows verbatim, provided that the
reader exercises due diligence in ensuring that these notational perturbations
are correctly construed. Perhaps it is worth noting that the restriction to situ-
ations subject to the condition ch(Fq) > k arises from the implied assumption
that W (x;ϕ) 6= 0. If the system ϕ is πc-spaced for some positive integer c
and monic irreducible polynomial π, then the determinant W (x;ϕ) is congru-
ent modulo πc to a triangular determinant with entries j! (1 6 j 6 k) along
the diagonal. When ch(Fq) 6 k, it follows that one of these diagonal entries
is zero modulo π, and hence one fails to be able to engineer a non-vanishing
Wronskian modulo π. The solution to this problem is to make use of a basis
for Taylor expansions in small positive characteristic smaller than the näıve
basis {1, x, x2, . . .} of consecutive powers. This then entails adjusting also the
definition of the Wronskian for function fields accordingly, and in this setting
the environment has changed sufficiently that other adjustments are required
in the discussion of §§3-10. This is a matter to which we return in our forth-
coming joint work with Y.-R. Liu.

Having left the reader with the mechanical reproduction of this verbatim
proof, we move on immediately to the proof of Theorem 17.1

The proof of Theorem 17.1. Our argument follows the proof of Theorem 1.1
given in §§11 and 12 with very few adjustments. We again denote by Z the
set of zeros of W (x;ϕ) lying in O. Since W (x;ϕ) is non-zero, it follows that

card(Z) 6 deg(W (x;ϕ))� 1.

We define

F (α; d) = ρ−1
0

∑
ν∈Od

aνe(ψ(ν;α))

and

F0(α; d) = ρ−1
0

∑
ν∈Od\Z

aνe(ψ(ν;α)).

We may suppose that the sequence (aν) satisfies the property that aν = 0
whenever ν 6∈ Od. Our task is to cover the exponential sum F0(α; d) by expo-
nential sums with variables constrained by non-singularity conditions modulo
π, for suitable monic irreducible polynomials π ∈ O.
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Given a solution x,y ∈ (Od \ Z)s of the system (1.4), the polynomial
s∏
i=1

W (xi;ϕ)W (yi;ϕ)

is non-zero, and has degree bounded above by C + Dd, for some C > 0 de-
pending at most on s and the coefficients of ϕ, and D a positive integer with

D 6 2s
k∑
j=1

deg(ϕj).

Let P denote the set of elements π ∈ O with π monic and irreducible, and
satisfying

(log d)2 < deg(π) 6 3(log d)2.

By the analogue of the prime number theorem over Fq[t], when d is sufficiently

large, the number of such elements is at least q2(log d)2/(log d)2. One therefore
has

deg

(∏
π∈P

π

)
=
∑
π∈P

deg(π) > q2(log d)2 > dlog d.

Thus deg
(∏

π∈P π
)
> C + Dd. Then for each solution x,y ∈ Os of (1.4)

counted by the mean value ∮
|F0(α; d)|2s dα,

there exists π ∈ P with
s∏
i=1

W (xi;ϕ)W (yi;ϕ) 6≡ 0 (mod π).

In particular, one has∮
|F0(α; d)|2s dα 6

∑
π∈P

∮
|Fπ(α; d)|2s dα, (17.2)

where

Fπ(α; d) = ρ−1
0

∑
ν∈Od\Z

|aν |e(ψ(ν;α)).

Resuming the argument of §12, we take τ > 0 to be sufficiently small in
terms of s and k, and put

B = dk(d+ 1)/deg(π)e , c = dτBe and H = dB/ke − c,
which ensures that

d+ 1 6 deg
(
πH+c

)
6 d+ 1 + deg(π).

Then we may suppose that B is sufficiently large in terms of τ , as well as s, k
and ε. By orthogonality, one has∮

|Fπ(α; d)|2s dα 6
∮
πB
|Fπ(α; d)|2s dα.
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Then, by Corollary 17.5, just as in the argument of the proof of Theorem 11.1
leading to (11.9), one sees that there is a πc-spaced system Ψ and complex
sequence c with |cy| = |aπcy+ξ| for which one has∮

πB
|Fπ(α; d)|2s dα� 〈π〉sc+Bερ0(a)−2

∑
ξ mod πc

ρc(ξ)
2UB−kc,H,Ψ

s,k (c).

Observe that when ν, ν ′ ∈ Od, then

ν ≡ ν ′ (mod πH+c) ⇒ ν = ν ′.

Thus, as in the concluding paragraph of the proof of Theorem 11.1, one infers
that

UB−kc,H,Ψ
s,k (c)� (1 + qd/〈π〉H+c)s � 1.

Then we deduce that∮
πB
|Fπ(α; d)|2s dα� 〈π〉sc+Bερ0(a)−2

∑
ξ (mod πc)

ρc(ξ)
2 � 〈π〉(2sτ+ε)B.

Recall that τ was chosen sufficiently small in terms of s and k. Then it follows
that for each positive number δ, one has∮

|Fπ(α; d)|2s dα� (qd)δ,

whence, on recalling (17.2),∮
|F (α; d)|2s dα� 1 +

∮
|F0(α; d)|2s dα

� 1 + (qd)δ
∑
π∈P

1� (qd)2δ.

The conclusion of the theorem follows on recalling the definitions of F (α; d)
and the weight ρ0. �
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