
SUBCONVEXITY AND THE HILBERT-KAMKE PROBLEM

TREVOR D. WOOLEY

Abstract. When s > k > 3 and n1, . . . , nk are large natural numbers,
denote by As,k(n) the number of solutions in non-negative integers x to the
system

xj
1 + . . . + xj

s = nj (1 6 j 6 k).

Under appropriate local solubility conditions on n, we obtain an asymptotic
formula for As,k(n) when s > k(k+1). This establishes a local-global princi-
ple in the Hilbert-Kamke problem at the convexity barrier. Our arguments
involve minor arc estimates going beyond square-root cancellation.

1. Introduction

In this memoir we consider the asymptotic formula for the number of repre-
sentations in the Hilbert-Kamke problem, our goal being to derive conclusions
at or below the classical convexity barrier. When n1, . . . , nk are positive inte-
gers, we denote by As,k(n) the number of solutions in non-negative integers x
to the system of Diophantine equations

xj1 + . . .+ xjs = nj (1 6 j 6 k). (1.1)

Motivated by his recent work on Waring’s problem (see [5]), Hilbert posed the
problem of determining suitable conditions on n that would guarantee, for an
appropriate function H(k), the non-vanishing of As,k(n) for s > H(k). This
problem was taken up, first by Kamke [6], and subsequently by Mardzhanishvili
[7] using Vinogradov’s methods. The precise nature of the local conditions on
n that must be imposed are quite complicated to describe, and we defer further
discussion on this issue until later in this section.

In order to outline the current state of play, we recall the mean value

Jt,k(X) =

∫
[0,1)k

∣∣∣∣ ∑
16x6X

e(α1x+ . . .+ αkx
k)

∣∣∣∣2t dα, (1.2)

in which e(z) denotes e2πiz. A consequence of the main conjecture in Vino-
gradov’s mean value theorem asserts that when k ∈ N and t > k(k+1)/2, then
for each ε > 0 one has

Jt,k(X)� X2t− 1
2
k(k+1)+ε, (1.3)

with the implicit constant depending at most on k, t and ε. Experts in the
Hardy-Littlewood method will perceive that, provided the upper bound (1.3)
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is known to hold for t > t0(k), then one is able to derive an asymptotic formula
for As,k(n) whenever s > 2t0(k). This formula takes the shape

As,k(n) = Js,k(n)Ss,k(n)Xs−k(k+1)/2 + o(Xs−k(k+1)/2), (1.4)

where X = max{n1, n
1/2
2 , . . . , n

1/k
k } and Js,k(n) and Ss,k(n) are respectively

the singular integral and singular series associated with this problem. For
now we defer explicit definition of these quantities, as well as discussion of
conditions ensuring that 1� Js,k(n)� 1 and 1� Ss,k(n)� 1.

Prior to 2010, in the classical version of the subject resolved by Arkhipov
[1], the upper bound (1.3) was known to hold for t > (2 + o(1))k2 log k. This
delivers (1.4) for s > (4 + o(1))k2 log k. The trivial lower bound Jt,k(X)� X t

shows that (1.3) cannot hold when t < k(k+1)/2, and hence t0(k) > k(k+1)/2.
Consequently, the application of conventional methods can at best establish
the asymptotic formula (1.4) when s > k2 + k + 1. Decisive progress toward
this convexity-limited bound was made by the author [9, Theorem 9.2] via the
efficient congruencing method, establishing (1.4) for s > 2k2 + 2k+ 1. Finally,
advances in the theory of Vinogradov’s mean value theorem (see [4, 11, 13])
show that the conjectured estimate (1.3) holds for t > k(k + 1)/2, and hence
the asymptotic formula (1.4) holds for s > k2 + k + 1.

Our goal in the present paper is to go beyond this convexity-limited conclu-
sion by confirming (1.4) for s > k2 + k. In preparation for the statement of
our new conclusion, we first introduce the generating functions

I(β;X) =

∫ X

0

e(β1γ + . . .+ βkγ
k) dγ (1.5)

and

S(q, a) =

q∑
r=1

eq(a1r + . . .+ akr
k), (1.6)

in which eq(u) denotes e2πiu/q. Then, with X = max
16j6k

n
1/j
j , we define

Js,k(n) =

∫
Rk

I(β; 1)se
(
−β1

n1

X
− . . .− βk

nk
Xk

)
dβ (1.7)

and

Ss,k(n) =
∞∑
q=1

∑
16a6q

(q,a1,...,ak)=1

q−sS(q, a)seq(−a1n1 − . . .− aknk). (1.8)

Theorem 1.1. Suppose that k > 3 and s > k2 +k. Then, whenever n1, . . . , nk
are natural numbers sufficiently large in terms of s and k, one has

As,k(n) = Js,k(n)Ss,k(n)Xs−k(k+1)/2 + o(Xs−k(k+1)/2),

in which 0 6 Js,k(n) � 1 and 0 6 Ss,k(n) � 1. If, moreover, the sys-
tem (1.1) possesses a non-singular real solution with positive coordinates, then
Js,k(n) � 1. Likewise, if the system (1.1) possesses primitive non-singular
p-adic solutions for each prime number p, then Ss,k(n)� 1.
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We remark that the singular integral Js,k(n) is known to converge absolutely
for s > 1

2
k(k+1)+1, and that the singular series Ss,k(n) is known to converge

absolutely for s > 1
2
k(k + 1) + 2 (see [1, Theorem 1] or [3, Theorem 3.7]).

The extensive theory of quadratic forms ensures that the situation with
k = 2 is simple to handle for s > 5, and indeed much can be said even when
s = 4. We remark also that two obvious local conditions are in play if one is to
have solutions to the system (1.1). First, by applying Hölder’s inequality on
the left hand side of (1.1), one sees that for solutions to exist one must have

n
j/l
l 6 nj 6 s1−j/ln

j/l
l (1 6 j 6 l 6 k).

Second, from Fermat’s theorem, for each prime p one must have nl ≡ nj (mod p)
whenever l ≡ j (mod p− 1) and 1 6 j 6 l 6 k. The latter observation plainly
impacts the p-adic solubility conditions associated with the system (1.1), a
matter rather complicated to analyse in full. Indeed p-adic solubility is not
assured in general without at least 2k − 1 variables being available. See the
excellent accounts of Arkhipov [1, 2] and [3, Chapter 8] for a comprehensive
account of such issues. However, if one is permitted to assume the existence
of non-singular primitive solutions at each local completion of Q, then one
obtains an immediate corollary to Theorem 1.1 via the methods of [1].

Corollary 1.2. Suppose the system (1.1) has non-singular primitive solutions

at each local completion of Q, and s > k(k + 1). Then As,k(n)� n
s−k(k+1)/2
1 .

We establish Theorem 1.1 by applying the Hardy-Littlewood method, utilis-
ing an estimate for the contribution of the minor arcs going beyond square-root
cancellation. This estimate is derived in §2 by adapting the author’s work on
the asymptotic formula in Waring’s problem [10], the failure of translation-
dilation invariance in the system (1.1) permitting an additional variable to be
extracted and then utilised. Familiar in the context of equations, this device is
more challenging in the absence of an immediate Diophantine interpretation,
as when deriving estimates restricted to the minor arcs in a Hardy-Littlewood
dissection. We launch our application of the circle method in earnest in §3
with the discussion of a Hardy-Littlewood dissection. Then, in §4, we con-
vert the raw subconvex minor arc estimate extracted in §3 from the work of
§2 into one more directly applicable to the proof of Theorem 1.1. Following
some pruning in §5, the proof of Theorem 1.1 is concluded in §6 with a brief
analysis of the major arc contribution. Finally, in §7, we make some remarks
concerning other cognate problems to which our methods are applicable.

Our basic parameter is X, a sufficiently large positive number. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each ε > 0. In this paper, implicit constants in Vinogradov’s
notation� and� may depend on ε, k and s. We make use of vector notation
in the form x = (x1, . . . , xr), the dimension r depending on the course of the
argument. We also write (a1, . . . , as) for the greatest common divisor of the
integers a1, . . . , as, any ambiguity between ordered s-tuples and corresponding
greatest common divisors being easily resolved by context. Finally, we write
‖θ‖ for min{|θ −m| : m ∈ Z}.



4 TREVOR D. WOOLEY

2. Mean value estimates via shifts

We begin by preparing the infrastructure required to describe our novel
mean value estimate. When k > 2, define f(α) = fk(α;X) by putting

fk(α;X) =
∑

06x6X

e(α1x+ α2x
2 + . . .+ αkx

k). (2.1)

Then, when h ∈ Zk and B ⊆ R is measurable, we introduce the mean value

Is(B;X;h) =

∫
B

∫
[0,1)k−1

fk(α;X)se(−α · h) dα, (2.2)

in which α · h = α1h1 + . . . + αkhk and dα denotes dα1 dα2 · · · dαk. Pro-
vided that we take X > max{n1, n

1/2
2 , . . . , n

1/k
k }, it follows by orthogonality

that As,k(n) = Is([0, 1);X;n). We make use of technology associated with
Vinogradov’s mean value theorem. With this in mind, when t, k ∈ N, the
parameter X is a positive real number, and B ⊆ R is measurable, we define

J∗t,k(B;X) =

∫
B

∫
[0,1)k−1

|fk(α;X)|t dα. (2.3)

Finally, we adopt the convention of writing sB for the set {sα : α ∈ B}.

Theorem 2.1. Suppose that h ∈ Zk and B ⊆ R is measurable. Then one has

Is(B;X;h)� X−1(logX)sJ∗s+1,k(B; 2X)s/(s+1)J∗s+1,k(sB;X)1/(s+1).

Proof. Our strategy is based on that underlying the proof of [10, Theorem
2.1], in which the potential for translation-invariance is exploited in order to
generate an additional variable. Write

ψ(u;θ) = θ1u+ θ2u
2 + . . .+ θku

k.

Then for every integral shift y with 0 6 y 6 X, one has

fk(α;X) =
∑

y6x6X+y

e (ψ(x− y;α)) . (2.4)

Next write
fy(α; γ) =

∑
06x62X

e (ψ(x− y;α) + γ(x− y)) (2.5)

and
K(γ) =

∑
06z6X

e(−γz).

Then we deduce from (2.4) via orthogonality that when 0 6 y 6 X, one has

fk(α;X) =

∫ 1

0

fy(α; γ)K(γ) dγ. (2.6)

We move next to substitute (2.6) into (2.2) so as to exploit the shift of
variables by y. Define

Fy(α;γ) =
s∏
i=1

fy(α; γi), K̃(γ) =
s∏
i=1

K(γi), (2.7)
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and

I(γ; y;h) =

∫
B

∫
[0,1)k−1

Fy(α;γ)e(−α · h) dα. (2.8)

Then, when 0 6 y 6 X, it follows that

Is(B;X;h) =

∫
[0,1)s
I(γ; y;h)K̃(γ) dγ. (2.9)

For the sake of concision, write dαk−1 for dα1 dα2 · · · dαk−1. Then by orthog-
onality, one finds from (2.5) and (2.7) that∫

[0,1)k−1

Fy(α;γ)e(−α · h) dαk−1 =
∑

06x62X

∆(αk,γ;h, y), (2.10)

where ∆(αk,γ;h, y) is equal to

e

( s∑
i=1

(
αk(xi − y)k + γi(xi − y)

)
− αkhk

)
,

when
s∑
i=1

(xi − y)j = hj (1 6 j 6 k − 1), (2.11)

and otherwise ∆(αk,γ;h, y) is equal to 0.

By applying the binomial theorem, one sees that whenever the system (2.11)
is satisfied for the s-tuple x, then

s∑
i=1

xji = syj +

j−1∑
l=0

(
j

l

)
hj−ly

l (1 6 j 6 k − 1),

and
s∑
i=1

xki = syk +
k−1∑
l=1

(
k

l

)
hk−ly

l +
s∑
i=1

(xi − y)k.

Adopt the convention that h0 = s and write

gy(α;h;γ) = e

(
−

k∑
j=1

αj

j∑
l=0

(
j

l

)
hj−ly

l − y
s∑
i=1

γi

)
.

Then it follows from (2.7) and (2.10) that∫
[0,1)k−1

Fy(α;γ)e(−α ·h) dαk−1 =

∫
[0,1)k−1

F0(α;γ)gy(α;h;γ) dαk−1. (2.12)

Observe next that as a consequence of (2.9), when X ∈ N, one has

(X + 1)Is(B;X;h) =
∑

06y6X

∫
[0,1)s
I(γ; y;h)K̃(γ) dγ.

Thus, from (2.8) and (2.12) we obtain the relation

Is(B;X;h)� X−1

∫
[0,1)s
|H(γ)K̃(γ)| dγ, (2.13)
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where

H(γ) =

∫
B

∫
[0,1)k−1

F0(α;γ)G(α;h;γ) dα, (2.14)

and

G(α;h;γ) =
∑

06y6X

gy(α;h;γ). (2.15)

We begin the investigation of the relation (2.13) by bounding H(γ). Thus,
by applying Hölder’s inequality on the right hand side of (2.14), we deduce
that

H(γ)� I
s/(s+1)
1 I

1/(s+1)
2 , (2.16)

where

I1 =

∫
B

∫
[0,1)k−1

|F0(α; γ)|1+1/s dα (2.17)

and

I2 =

∫
B

∫
[0,1)k−1

|G(α;h;γ)|s+1 dα. (2.18)

On recalling (2.7), an application of Hölder’s inequality to (2.17) yields

I1 6
s∏
i=1

(∫
B

∫
[0,1)k−1

|f0(α; γi)|s+1 dα

)1/s

.

Moreover, it follows from (2.1) and (2.5) via a change of variable that∫
B

∫
[0,1)k−1

|f0(α; γi)|s+1 dα =

∫
B

∫
[0,1)k−1

|fk(α; 2X)|s+1 dα.

Thus, in view of (2.3), we have I1 6 J∗s+1,k(B; 2X). Also, for suitable polyno-

mials νj(y;h) with leading term syj (1 6 j 6 k), we find from (2.15) that

G(α;h;γ) =
∑

06y6X

e

(
−
(
α1ν1(y;h) + . . .+ αkνk(y;h) + y

s∑
i=1

γi

))
.

Then it follows from (2.18) via a change of variable that

I2 =

∫
B

∫
[0,1)k−1

|fk(sα;X)|s+1 dα = s−1J∗s+1,k(sB;X).

By substituting these estimates for I1 and I2 into (2.16), we obtain the bound

H(γ)�
(
J∗s+1,k(B; 2X)

)s/(s+1) (
J∗s+1,k(sB;X)

)1/(s+1)
. (2.19)

We are almost at the end of the proof. All that remains is to recall that∫ 1

0

|K(γ)| dγ �
∫ 1

0

min{X, ‖γ‖−1} dγ � logX,

whence by (2.7), we see that∫
[0,1)s
|K̃(γ)| dγ � (logX)s.
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On substituting the latter bound with (2.19) into (2.13), we conclude that

Is(B;X;h)� X−1

(
sup

γ∈[0,1)s
|H(γ)|

)∫
[0,1)s
|K̃(γ)| dγ

� X−1J∗s+1,k(B; 2X)s/(s+1)J∗s+1,k(sB;X)1/(s+1)(logX)s.

This completes the proof of the theorem. �

We now extract from Theorem 2.1 an estimate of minor arc type. When
1 6 Q 6 X, we define a one-dimensional Hardy-Littlewood dissection as
follows. We define the set of major arcs M(Q) to be the union of the arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 QX−k},
with 0 6 a 6 q 6 Q and (a, q) = 1, and then write m(Q) = [0, 1) \M(Q) for
the corresponding set of minor arcs.

Before announcing the next lemma, we introduce a Weyl exponent relevant
to our discussion. When k is an integer with k > 2, we define the exponent
σ = σ(k) by taking

σ(k)−1 =

{
2k−1, when 2 6 k 6 5,

k(k − 1), when k > 6.

Lemma 2.2. Suppose that k > 2 and 1 6 Q 6 X. Then uniformly in
(α1, . . . , αk−1) ∈ Rk−1, one has

sup
αk∈m(Q)

|fk(α;X)| � X1+εQ−σ.

Proof. Let αk ∈ m(Q). Then by Dirichlet’s approximation theorem, there
exist a ∈ Z and q ∈ N with 0 6 a 6 q 6 Q−1Xk and (a, q) = 1 for which
|qαk − a| 6 QX−k. Since αk 6∈ M(Q), we may assume that q > Q. When
2 6 k 6 5, it now follows from Weyl’s inequality (see [8, Lemma 2.4]) that

fk(α;X)� X1+ε(q−1 +X−1 + qX−k)21−k � X1+εQ−σ(k).

On the other hand, when k > 6, we may apply Vinogradov’s methods in their
most modern incarnations to see that

fk(α;X)� X1+ε(q−1 +X−1 + qX−k)1/(k(k−1)) � X1+εQ−σ(k).

The reader may extract this last conclusion from [8, Theorem 5.2] by following
the proof of [9, Theorem 1.5], substituting the now confirmed bound (1.3) for
the version of Vinogradov’s mean value theorem utilised in the latter. �

Lemma 2.3. Suppose that h ∈ Zk and 1 6 Q 6 X. Then for s > k(k + 1),

Is(m(Q);X;h)� Xs− 1
2
k(k+1)+εQ−σ(k).

Proof. Recall the definition (1.2) and write w = k(k + 1)/2. Then, provided
that s > k(k+ 1), it follows from (2.3) via a trivial estimate for fk(α;X) that

J∗s+1,k(m(Q); 2X)� Xs−k(k+1)
(

sup
αk∈m(Q)

|fk(α; 2X)|
)
Jw,k(X).
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Since the now confirmed bound (1.3) shows that Jw,k(X)� Xw+ε, we deduce
from Lemma 2.2 that

J∗s+1,k(m(Q); 2X)� X1+εQ−σ(k) ·Xs− 1
2
k(k+1)+ε. (2.20)

We bound J∗s+1,k(sm(Q);X) in a similar manner, noting that an elementary
exercise confirms that sm(Q) ⊆ m(Q/s) (mod 1). Thus we find that

sup
αk∈sm(Q)

|fk(α;X)| � X1+εQ−σ(k),

and just as in the previous discussion, we infer that

J∗s+1,k(sm(Q);X)� X1+εQ−σ(k) ·Xs− 1
2
k(k+1)+ε. (2.21)

By substituting the estimates (2.20) and (2.21) into Theorem 2.1, we obtain

Is(m(Q);X;h)� X−1(logX)sXs+1− 1
2
k(k+1)+εQ−σ(k).

The conclusion of the lemma follows on noting our convention concerning ε. �

3. The Hardy-Littlewood dissection

In this section we explain our application of the Hardy-Littlewood method in
pursuit of the asymptotic formula delivered by Theorem 1.1. We now fix k and

X = 2 max{n1, n
1/2
2 , . . . , n

1/k
k }, and henceforth abbreviate the exponential sum

fk(α;X) introduced in (2.1) simply to f(α). When A ⊆ [0, 1)k is measurable,
we define the mean value Ts(A) = Ts(A;X;n) by

Ts(A;X;n) =

∫
A

f(α)se(−α · n) dα. (3.1)

Our application of the Hardy-Littlewood method requires some discussion
concerning the associated infrastructure. When 1 6 Z 6 X, we denote by
K(Z) the union of the arcs

K(q, a;Z) = {α ∈ [0, 1)k : |αj − aj/q| 6 ZX−j (1 6 j 6 k)},
with 1 6 q 6 Z, 0 6 aj 6 q (1 6 j 6 k) and (q, a1, . . . , ak) = 1, and we
put k(Z) = [0, 1)k \ K(Z). We have already defined a one-dimensional Hardy-
Littlewood dissection of [0, 1) into sets of arcs M = M(Q) and m = m(Q). We

now fix L = X1/(8k2) and Q = Lk, and we define a k-dimensional set of arcs
by taking N = K(Q2) and n = k(Q2). This intermediate Hardy-Littlewood
dissection can be refined to obtain a dissection into a narrower set of major
arcs P = K(L) and a corresponding set of minor arcs p = k(L). In this latter
dissection, for the sake of concision, it is useful to write P(q, a) = K(q, a;L).

We partition the set of points (α1, . . . , αk) lying in [0, 1)k into four disjoint
subsets, namely

W1 = [0, 1)k−1 ×m,

W2 =
(
[0, 1)k−1 ×M

)
∩ n

W3 =
(
[0, 1)k−1 ×M

)
∩ (N \P),

W4 = P.
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We note in this context that P ⊆ [0, 1)k−1 ×M, since whenever

|αk − ak/q| 6 LX−k and 1 6 q 6 L,

one has
|qαk − ak| 6 L2X−k < QX−k and 1 6 q < Q.

Thus W4 =
(
[0, 1)k−1 ×M

)
∩P, and it follows that [0, 1)k = W1 ∪ . . . ∪W4.

We therefore deduce via orthogonality that

As,k(n) = Ts
(
[0, 1)k

)
=

4∑
i=1

Ts(Wi). (3.2)

The work of §2 already permits us to announce a satisfactory upper bound
for the contribution of the set of arcs W1 within (3.2).

Lemma 3.1. Whenever n ∈ Zk and s > k(k + 1), one has

Ts(W1)� Xs− 1
2
k(k+1)−1/(8k3).

Proof. By substituting Q = X1/(8k) into Lemma 2.3, noting that σ(k) > 1/k2

for k > 3, the conclusion of the lemma is immediate. �

4. Another minor arc estimate

Our next task is to bound the contribution of the set of arcs W2 within (3.2).
We begin by providing a familiar estimate of Weyl type for the exponential
sum f(α) of strength sufficient for our purposes.

Lemma 4.1. One has

sup
α∈n
|f(α)| � X1−1/(6k2) and sup

α∈p
|f(α)| � X1−1/(12k3).

Proof. In order to confirm the first bound, we put τ = 1/(6k2) and δ = 1/(4k).
Since τ−1 > 4k(k−1) and δ > kτ , we find from [9, Theorem 1.6] that whenever
|f(α)| > X1−τ , there exist integers q, a1, . . . , ak such that 1 6 q 6 Xδ and
|qαj − aj| 6 Xδ−j (1 6 j 6 k). In particular, we see that q 6 Q2 and
|αj − aj/q| 6 Q2X−j (1 6 j 6 k), and hence α ∈ N (mod 1). We therefore
infer that whenever X is sufficiently large in terms of k, and α ∈ n, then one
must have |f(α)| 6 X1−τ , and the first conclusion of the lemma follows.

For the second bound we put τ = 1/(12k3) and δ = 1/(8k2). We again
have τ−1 > 4k(k − 1) and δ > kτ , and so the same argument applies mutatis
mutandis. We now find that whenever |f(α)| > X1−τ , then α ∈ P (mod 1).
Thus, when X is sufficiently large in terms of k, and α ∈ p, then one must
have |f(α)| 6 X1−τ , and the second conclusion of the lemma follows. �

In order to obtain a satisfactory bound for the contribution of W2, it suffices
to combine the Weyl estimate provided by Lemma 4.1 with the observation
that W2 has small measure.

Lemma 4.2. Whenever n ∈ Zk and s > k(k + 1), one has

Ts(W2)� Xs− 1
2
k(k+1)−1/(16k).
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Proof. We begin with an auxiliary estimate. Recall the definition (1.2) and
write v = k(k − 1)/2. Then, by orthogonality, the mean value

I(αk) =

∫
[0,1)k−1

|fk(α;X)|2v dαk−1

counts the integral solutions of the system of equations

v∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k − 1),

with 1 6 x,y 6 X, each solution being counted with the unimodular weight
e
(
αk(x

k
1 − yk1 + . . .+ xkv − ykv )

)
. By making use of the bound (1.3) (see [4, 11,

13]), we therefore find that I(αk)� Jv,k−1(X)� Xv+ε, uniformly in αk.

Observe next that since W2 =
(
[0, 1)k−1 ×M

)
∩ n, it follows from (3.1) via

the triangle inequality that

Ts(W2)�
(

sup
α∈n
|f(α)|

)s−k(k−1)
∫
M

I(αk) dαk.

Since mes(M)� Q2X−k, we conclude from Lemma 4.1 that

Ts(W2)� Xs−k(k+1)
(
X1−1/(6k2)

)2k

Xv+εmes(M)

�
(
Q2X−1/(3k)

)
Xs− 1

2
k(k+1)+ε.

Since Q2 = X1/(4k), the conclusion of the lemma is immediate. �

5. Pruning: the analysis of W3

We take an economical approach to the analysis of the term Ts(W3). We
begin by announcing a mean value estimate of major arc type.

Lemma 5.1. Suppose that u > 1
2
k(k + 1) + 2. Then one has∫

N

|f(α)|u dα�u X
u−k(k+1)/2.

Proof. This is essentially [12, Lemma 7.1]. Our definition of the major arcs
N sets the parameter Q equal to X1/(8k), whereas in the source cited the
analogous definition is tantamount to setting Q = X1/(2k). The conclusion
presented here is therefore immediate from the latter source, since our major
arcs are contained in those employed therein. �

Lemma 5.2. When n ∈ Z3 and s > k(k + 1), one has

Ts(W3)� Xs− 1
2
k(k+1)−1/(12k3).

Proof. Since W3 ⊆ N \P, we have

sup
α∈W3

|f(α)| 6 sup
α∈p
|f(α)|.
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Thus, taking u = 1
2
k(k + 1) + 3, it follows from the triangle inequality that

Ts(W3) 6 Xs−u−1
(

sup
α∈p
|f(α)|

)∫
N

|f(α)|u dα.

Hence, by employing Lemmata 4.1 and 5.1 we see that

Ts(W3)� Xs−1− 1
2
k(k+1) ·X1−1/(12k3),

and the conclusion of the lemma follows. �

6. The major arc contribution

By substituting the conclusions of Lemmata 3.1, 4.2 and 5.2 into (3.2), we
find that whenever s > k(k + 1), one has

As,k(n) = Ts(W4) + o(Xs− 1
2
k(k+1)). (6.1)

The proof of Theorem 1.1 will be completed by an analysis of Ts(W4) = Ts(P).

Recall (1.5) and (1.6). Then, when α ∈ P(q, a) ⊆ P, write

V (α; q, a) = q−1S(q, a)I(α− a/q;X).

Define the function V (α) to be V (α; q, a) when α ∈ P(q, a) ⊆ P, and to be
0 otherwise. Then, when α ∈ P(q, a) ⊆ P, we see from [8, Theorem 7.2] that

f(α)− V (α; q, a)� q +X|qα1 − a1|+ . . .+Xk|qαk − ak| � L2,

whence, uniformly for α ∈ P, we have the bound

f(α)s − V (α)s � Xs−1+1/(4k2).

Thus, since mes(P)� L2k+1X−k(k+1)/2, we deduce that∫
P

f(α)se(−α · n) dα =

∫
P

V (α)se(−α · n) dα + o(Xs− 1
2
k(k+1)). (6.2)

Next, write

Ω = [−LX−1, LX−1]× · · · × [−LX−k, LX−k].
Then one finds that ∫

P

V (α)se(−α · n) dα = S(X)J(X), (6.3)

where

J(X) =

∫
Ω

I(β;X)se(−β · n) dβ

and
S(X) =

∑
16q6L

∑
16a6q

(q,a1,...,ak)=1

q−sS(q, a)seq(−a · n).

When s > 1
2
k(k + 1) + 1, the singular integral Js,k(n) defined in (1.7) con-

verges absolutely (see [3, Theorem 1.3]), and in particular Js,k(n) � 1. Also,
by [8, Theorem 7.3], one has

I(β;X)� X(1 + |β1|X + . . .+ |βk|Xk)−1/k.
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Write hj = njX
−j (1 6 j 6 k). Then after two changes of variable, we obtain

J(X) = Xs− 1
2
k(k+1)

∫
Rk

I(β; 1)se(−β · h) dβ + o(Xs− 1
2
k(k+1))

= (Js,k(n) + o(1))Xs− 1
2
k(k+1). (6.4)

Similarly, by reference to [3, Theorem 2.4], one sees that the singular series
Ss,k(n) defined in (1.8) converges absolutely for s > 1

2
k(k + 1) + 2, and in

particular Ss,k(n) � 1. Also, it follows from [8, Theorem 7.1] that when
(q, a1, . . . , ak) = 1, one has S(q, a)� q1−1/k+ε. Thus,

S(X) = Ss,k(n) + o(1). (6.5)

By substituting (6.4) and (6.5) into (6.3), and thence into (6.2), we obtain∫
P

f(α)se(−α · n) dα = Ss,k(n)Js,k(n)Xs− 1
2
k(k+1) + o(Xs− 1

2
k(k+1)).

Thus, on recalling (3.1), we find that

Ts(W4) = Ts(P) = Ss,k(n)Js,k(n)Xs− 1
2
k(k+1) + o(Xs− 1

2
k(k+1)),

and by substituting this relation into (6.1), we conclude that

As,k(n) = Ss,k(n)Js,k(n)Xs− 1
2
k(k+1) + o(Xs− 1

2
k(k+1)).

This confirms the conclusion of Theorem 1.1.

7. Other applications

The method underlying the proof of Theorem 2.1 may be applied in many
similar situations. Thus, the system of equations (1.1) may be replaced by

l∑
i=1

xji −
l+m∑
i=l+1

xji = nj (1 6 j 6 k), (7.1)

provided that l 6= m and s = l + m > k(k + 1). The Hilbert-Kamke problem
corresponds to the situation here where m = 0. What is critical is that the
underlying system (7.1) is not translation-dilation invariant, even in the special
situation in which n = 0. Let Bl,m,k(n;X) denote the number of solutions of
the system (7.1) with 1 6 xi 6 X (1 6 i 6 s). Then provided that s > k(k+1),
methods almost identical to those of this paper establish an asymptotic formula

Bl,m,k(n;X) ∼ CXs− 1
2
k(k+1),

in which C is an appropriate product of local densities. Here, the major
innovation lies with the subconvex minor arc estimate provided by an analogue
of Theorem 2.1. The major arc analysis is handled in earlier work [1].

When l = m = k(k + 1)/2, the system (7.1) lacks translation-dilation in-
variance when (n1, . . . , nk−1) 6= 0, though a shadow of this invariance property
remains. The latter complicates any attempt to derive an analogue of Theorem
2.1. We have more to say concerning such systems in the memoir [14].
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Finally, when the coefficients ci ∈ Z \ {0} (1 6 i 6 k(k + 1)) satisfy the
condition c1 + . . .+ cs 6= 0, the methods underlying the proof of Theorem 2.1
remain in play when one examines the system

c1x
j
1 + . . .+ csx

j
s = nj (1 6 j 6 k).

Indeed, this scenario was discussed in work of the author dating from 2015
that was the subject of talks presented in Göteborg, Oxford and Strobl-am-
Wolfgangsee (see [15]).
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