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Abstract. When k and s are natural numbers and h ∈ Zk, denote by
Js,k(X;h) the number of integral solutions of the system

s∑
i=1

(xj
i − yji ) = hj (1 6 j 6 k),

with 1 6 xi, yi 6 X. When s < k(k + 1)/2 and (h1, . . . , hk−1) 6= 0,
Brandes and Hughes have shown that Js,k(X;h) = o(Xs). In this paper we
improve on quantitative aspects of this result, and, subject to an extension
of the main conjecture in Vinogradov’s mean value theorem, we obtain an
asymptotic formula for Js,k(X;h) in the critical case s = k(k + 1)/2. The
latter requires minor arc estimates going beyond square-root cancellation.

1. Introduction

In the analysis of Diophantine systems via the Hardy-Littlewood (circle)
method, estimates are almost always limited by the convexity barrier, the
most optimistic bound anticipated for error terms being given by the square-
root of the number of choices for the variables available to the system. A
recent exception to this rule involves inhomogeneous variants of Vinogradov’s
mean value theorem. When k and s are natural numbers and h ∈ Zk, denote
by Js,k(X;h) the number of integral solutions of the system

s∑
i=1

(xji − y
j
i ) = hj (1 6 j 6 k), (1.1)

with 1 6 x,y 6 X. Then Brandes and Hughes [4, Theorem 1] have shown
that Js,k(X;h) = o(Xs) when s < k(k+1)/2 and hj 6= 0 for some index j with
j 6 k − 1. We emphasise that a consideration of diagonal solutions reveals
that Js,k(X;0) � Xs, so one must certainly have h 6= 0 in order to obtain
a subconvex estimate for Js,k(X;h). Such estimates will also be inaccessible
when s > 1

2
k(k+ 1) + 1, since an averaging argument then confirms that there

are numerous k-tuples h for which Js,k(X;h)� X2s−k(k+1)/2 � Xs+1.

Our goal in this paper is to sharpen the results of Brandes and Hughes
both quantitatively, and in the range of s accessible to such conclusions. We
seek also to establish an asymptotic formula for Js,k(X;h) in the critical case
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s = k(k + 1)/2, extending to exponents k > 3 our recent work [17] relevant to
the cubic case, on the assumption of an extended version of the main conjecture
in Vinogradov’s mean value theorem. Our conclusions vary in type according
to the regime of interest. We begin with the estimates simplest to state.

Theorem 1.1. Suppose that k > 3 and h ∈ Zk \ {0}. Let l be the smallest
index with hl 6= 0. Then, whenever l < k and s is an integer with

1 6 s 6 1
2
k(k + 1)− k(k + 1)− l(l + 1)

2(k − l)(k − l + 1)
, (1.2)

one has
Js,k(X;h)� Xs−1/2+ε. (1.3)

In particular, this estimate holds when 1 6 l 6 (k + 1)/3 and s < k(k + 1)/2.

It may be illuminating to observe that the constraint (1.2) can be rewritten
in the form

1 6 s 6 1
2
k(k + 1)− 1

2
− l

k − l + 1
.

We note that [4, Corollary 2] obtains the estimate (1.3) in the shorter range

1 6 l 6 k − 1
2
(
√

2k2 + 2k + 1− 1) ≈ 0.29289k.

The case k = 2 is omitted from the statement of Theorem 1.1 because much
stronger bounds are available in this case from the classical theory of quadratic
polynomials. Thus, for example, the reader will have no difficulty in showing
that when h 6= 0, one has Js,2(X;h)� Xs−1+ε (s = 1, 2). Analogous estimates
of similar strength to the latter may be obtained when k > 3 subject to suitable
hypotheses concerning s and the k-tuple h.

Theorem 1.2. Let k be an integer with k > 3 and h ∈ Zk \ {0}. Let l be the
smallest index having the property that hl 6= 0. Then, whenever l < k and s is
an integer with 1 6 s 6 l(l + 1)/2, one has Js,k(X;h)� Xs−1+ε.

The upper bound presented in this theorem saves a factor X1−ε beyond
square-root cancellation, improving on the factor X1/2−ε visible in (1.3). Such
a conclusion lies beyond any anticipated by Brandes and Hughes (see the
discussion concluding [4]). Moreover, as we show in Theorem 7.1, there exist
k-tuples h 6= 0 having the property that Js,k(X;h)� Xs−1, so the conclusion
of Theorem 1.2 is in some respects best possible.

Our next theorem shows that Js,k(X;h) = o (Xs) whenever s < 1
2
k(k + 1)

and (h1, . . . , hk−1) 6= 0, improving on an earlier result of [4].

Theorem 1.3. Suppose that k > 3 and h ∈ Zk \ {0}. Let l be the smallest
index having the property that hl 6= 0. Then whenever l < k and s is a natural
number satisfying s < 1

2
k(k + 1), one has

Js,k(X;h)� Xε
(
Xs−1/2 +Xs−δ(s,k,l)) ,

where

δ(s, k, l) = 1
2
(k − l)(k − l + 1)

(
k(k + 1)− 2s

k(k + 1)− l(l + 1)

)
.
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A conclusion analogous to that of Theorem 1.3 is obtained in [4, Theorem
1], though with the weaker exponent

δ(s, k, l) = 1
2
(k − l)(k − l + 1)

(
k(k + 1)− 2s

k(k + 1)

)
.

The conclusions of Theorems 1.1, 1.2 and 1.3 have nothing to say concerning
Js,k(X;h) at the critical exponent s = 1

2
k(k+1). Readers less familiar with the

nuances of Vinogradov’s mean value theorem may care to note in this context
that when s > 1

2
k(k + 1), then an application of the circle method delivers an

asymptotic formula of the shape Js,k(X;h) ∼ C(h)X2s−k(k+1)/2, where C(h) is
positive provided that h satisfies appropriate local solubility conditions. Since
the main term here is larger than the square-root of the number of available
choices for the underlying variables, this situation with s > 1

2
k(k + 1) does

not require subconvexity in its treatment. In contrast, when s = 1
2
k(k + 1),

one requires subconvex minor arc estimates in order to show that the expected
product of local densities delivers the anticipated asymptotic formula.

In recent work concerning the cubic case of the inhomogeneous Vinogradov
system, the author applied the Hardy-Littlewood method to obtain an asymp-
totic formula for J6,3(X;h) when h1 6= 0 (see [17, Theorem 1.1]). Moreover,
when h1 = 0 and h2 6= 0, an asymptotic formula for J6,3(X;h) is obtained in
[17, Theorem 1.2] provided that X is sufficiently large in terms of h2. Both
conclusions depend on minor arc estimates with better than square-root can-
cellation. When the degree k exceeds 3, such conclusions are beyond the reach
of current technology. Nonetheless, by application of conjectural mean value
estimates potentially within reach of efficient congruencing and decoupling
methods, some progress is possible.

In order to describe the asymptotic formula associated with Js,k(X;h) at the
critical point s = k(k + 1)/2, we introduce some notation. We write Bk(X;h)
for Jk(k+1)/2,k(X;h). Next, we introduce the generating functions

I(β) =

∫ 1

0

e(β1γ + . . .+ βkγ
k) dγ (1.4)

and

S(q, a) =

q∑
r=1

eq(a1r + . . .+ akr
k), (1.5)

in which we write e(z) for e2πiz and use eq(u) as shorthand for e2πiu/q. Putting
nj = hjX

−j (1 6 j 6 k), we define the singular integral

Jk(h) =

∫
Rk

|I(β)|k(k+1)e(−β · n) dβ, (1.6)

in which β ·n denotes β1n1 + . . .+ βknk. Finally, we define the singular series

Sk(h) =
∞∑
q=1

∑
16a6q

(q,a1,...ak)=1

∣∣q−1S(q, a)
∣∣k(k+1)

eq(−a · h). (1.7)
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We note that both the singular integral Jk(h) and the singular series Sk(h)
are known to converge absolutely (see [1, Theorem 1] or [2, Theorem 3.7]).

Our progress is conditional on the extended main conjecture in Vinogradov’s
mean value theorem (Conjecture 8.1). Once again, the conclusion of the next
theorem implicitly encodes a minor arc estimate beyond the convexity barrier.

Theorem 1.4. Assume the extended main conjecture in Vinogradov’s mean
value theorem. Suppose that h ∈ Zk and hl 6= 0 for some index l with 1 6 l < k.
Then provided that X is sufficiently large in terms of h, one has

Bk(X;h) = Jk(h)Sk(h)Xk(k+1)/2 + o(Xk(k+1)/2),

in which 0 6 Jk(h)� 1 and 0 6 Sk(h)� 1.

We turn now to the topic of paucity and its relation to inhomogeneous
Vinogradov systems. When the number of variables in the Vinogradov system
(1.1) is small, one may obtain estimates for Js,k(X;h) far below the convexity
barrier. That such should be possible is apparent from recent work of the au-
thor [15] concerning paucity in relatives of Vinogradov’s mean value theorem.
Consider, by way of an illustrative example, the system of equations

xj1 + . . .+ xjk = yj1 + . . .+ yjk (1 6 j 6 k, j 6= k − d), (1.8)

in which k > 4 and the non-negative integer d is fixed. Let I∗k,d(X) denote the
number of integral solutions of (1.8) with 1 6 x,y 6 X in which (x1, . . . , xk)
is not a permutation of (y1, . . . , yk). Then [15, Corollary 1.2] shows that when

d = o(k1/4), one has I∗k,d(X)� X(2+o(1))
√
k. However, should one have

k∑
i=1

(xk−di − yk−di ) = hk−d 6= 0,

then (x1, . . . , xk) cannot be a permutation of (y1, . . . , yk). Thus we conclude
that when h = (0, . . . , 0, hk−d, 0, . . . , 0), with hk−d 6= 0, then

Jk,k(X;h)� X(2+o(1))
√
k.

By elaborating on these ideas, non-trivial estimates may be obtained without
restriction on d.

Theorem 1.5. Suppose that k > 3 and h ∈ Zk \{0}. Suppose further that for
some index l with 2 6 l 6 k one has hl 6= 0, but that hj = 0 when j 6= l and
1 6 j 6 k. Then one has Jk,k(X;h)� Xk−l+1+ε.

The conclusion of this theorem yields stronger bounds than any supplied by
Theorems 1.1 and 1.2 when l > 3.

This paper is organised as follows. In §2 we adapt the author’s work on
the asymptotic formula in Waring’s problem [11] to bound Fourier coefficients
associated with the inhomogeneous Vinogradov system (1.1). This approach
has a significant advantage over the corresponding analysis of [4], which is
that the mean values of interest may be restricted to subsets of [0, 1)k, such as
sets of minor arcs of use in applications of the Hardy-Littlewood method. We
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apply this method in combination with Hölder’s inequality, relating Js,k(X;h)
to mixed mean value estimates more efficient than the simple ones considered
in [4]. These mixed mean values are examined in §3, preparing the ground
in §4 for the proof of our simplest subconvex bounds described in Theorems
1.1, 1.2 and 1.3. Preparations for the proof of Theorem 1.4 are presented in
§5, where we apply the extended main conjecture in Vinogradov’s mean value
theorem as the key input to provide subconvex minor arc estimates. The
application of the Hardy-Littlewood method itself is described in §6, where
the proof of Theorem 1.4 is completed. In §7 we explore the application of
ideas from the theory of paucity to bounds for Js,k(X;h), and in particular
we prove Theorem 1.5. Finally, in the appendix attached as §8, we discuss
the extended main conjecture in Vinogradov’s mean value theorem and its
immediate applications to generalisations of small cap estimates.

Our basic parameter is X, a sufficiently large positive number. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each ε > 0. In this paper, implicit constants in Vinogradov’s
notation � and � may depend on ε, k and s. We make liberal use of vector
notation in the form x = (x1, . . . , xr), the dimension r depending on the course
of the argument. Thus, for example, we write 1 6 x 6 X to denote that every
coordinate xi of x satisfies 1 6 xi 6 X. We also write (a1, . . . , as) for the great-
est common divisor of the integers a1, . . . , as, any ambiguity between ordered
s-tuples and corresponding greatest common divisors being easily resolved by
context. Finally, we write ‖θ‖ for min{|θ −m| : m ∈ Z}.

The author is grateful to both Igor Shparlinski and the referee for useful
comments.

2. Auxiliary mean values utilising shifts

We first establish a reasonably flexible mean value estimate by applying
ideas underlying our recent work on the Hilbert-Kamke problem, as modified
to handle the cubic case of the inhomogeneous Vinogradov system (see [16,
Theorem 2.1] and [17, Lemma 2.1]). This argument has its genesis in earlier
work of the author concerning the asymptotic formula in Waring’s problem
(see [10, Lemma 10.1] and [11, Theorem 2.1]). Define f(α;X) = fk(α;X) by

fk(α;X) =
∑

16x6X

e(α1x+ . . .+ αkx
k). (2.1)

Then, when h ∈ Zk and B ⊆ R is measurable, we put

Is(B;X;h) =

∫
B

∫
[0,1)k−1

|fk(α;X)|2se(−α · h) dα, (2.2)

in which dα denotes dα1 · · · dαk. We have been urged to emphasise that the
latter convention implies that here (and elsewhere in this paper), the integra-
tion with respect to the variable αk occurs last, and hence

Is(B;X;h) =

∫
B

(∫ 1

0

· · ·
∫ 1

0

|fk(α;X)|2se(−α · h) dα1 · · · dαk−1

)
dαk.
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Note that by orthogonality, one then has

Js,k(X;h) = Is([0, 1);X;h). (2.3)

We also make use of the generating function g(α, θ;X) = gk(α, θ;X) defined
by putting

gk(α, θ;X) =
∑

16y6X

e (yθ + ν2(y;h)α2 + . . .+ νk(y;h)αk) , (2.4)

in which

νj(y;h) =

j−1∑
i=0

(
j

i

)
hj−iy

i (1 6 j 6 k). (2.5)

Lemma 2.1. Suppose that s ∈ N, h ∈ Zk and B ⊆ R is measurable. Then

Is(B;X;h)� X−1(logX)2s sup
Γ∈[0,1)

∫
B

∫
[0,1)k−1

|fk(α; 2X)2sgk(α,Γ;X)| dα.

Proof. The argument we present here is very similar to that underlying the
proof of [17, Lemma 2.1], though there are sufficiently many differences that a
full account seems warranted. We first reformulate the mean value Is(B;X;h)
defined in (2.2) in preparation for the exploitation of a shift in the underlying
variables. Write ψ(u;θ) = θ1u+. . .+θku

k. Then, as in the analogous argument
of [17, Lemma 2.1], it follows via orthogonality that for every integral shift y
with 1 6 y 6 X, one has

fk(α;X) =

∫ 1

0

fy(α; γ)K(γ) dγ,

where

fy(α; γ) =
∑

16x62X

e (ψ(x− y;α) + γ(x− y)) (2.6)

and

K(γ) =
∑

16z6X

e(−γz).

Write

Fy(α;γ) =
s∏
i=1

fy(α; γi)fy(−α;−γs+i), (2.7)

K̃(γ) =
s∏
i=1

K(γi)K(−γs+i),

and

I(γ; y;h) =

∫
B

∫
[0,1)k−1

Fy(α;γ)e(−α · h) dα. (2.8)

Then we infer from (2.2) that

Is(B;X;h) =

∫
[0,1)2s

I(γ; y;h)K̃(γ) dγ. (2.9)
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Write dαk−1 as shorthand for dα1 · · · dαk−1. Then, by orthogonality, we
discern from (2.7) that∫

[0,1)k−1

Fy(α;γ)e(−α · h) dαk−1 =
∑

16x62X

∆(αk,γ;h, y), (2.10)

where ∆(αk,γ;h, y) is equal to

e

( s∑
i=1

(
αk
(
(xi − y)k − (xs+i − y)k

)
+ (γi(xi − y)− γs+i(xs+i − y))

)
− αkhk

)
,

when
s∑
i=1

(
(xi − y)j − (xs+i − y)j

)
= hj (1 6 j 6 k − 1), (2.11)

and otherwise ∆(αk,γ;h, y) is equal to 0.

By applying the binomial theorem within (2.11), we obtain the relations

s∑
i=1

(xji − x
j
s+i) =

j−1∑
l=0

(
j

l

)
hj−ly

l (1 6 j 6 k − 1),

and
s∑
i=1

(xki − xks+i) =
k−1∑
l=1

(
k

l

)
hk−ly

l +
s∑
i=1

(
(xi − y)k − (xs+i − y)k

)
.

Define

G(α;h;γ) =
∑

16y6X

e

(
−

k∑
j=1

αj

j−1∑
l=0

(
j

l

)
hj−ly

l − yΓ(γ)

)
, (2.12)

where

Γ(γ) =
s∑
i=1

(γi − γs+i).

Then we find from (2.7) and (2.10) that∑
16y6X

∫
[0,1)k−1

Fy(α;γ)e(−α · h) dαk−1 =

∫
[0,1)k−1

F0(α;γ)G(α;h;γ) dαk−1.

On substituting this last relation into (2.8) and thence into (2.9), we obtain

Is(B;X;h) = bXc−1
∑

16y6X

∫
[0,1)2s

I(γ; y;h)K̃(γ) dγ

� X−1

∫
[0,1)2s

|H(γ)K̃(γ)| dγ, (2.13)

where

H(γ) =

∫
B

∫
[0,1)k−1

F0(α;γ)G(α;h;γ) dα. (2.14)
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Note next from (2.1) and (2.6) that f0(α; 0) = fk(α; 2X). Thus, from the
elementary inequality |z1 · · · zn| 6 |z1|n + . . .+ |zn|n and (2.7), we deduce that

|F0(α;γ)| 6
2s∑
i=1

|f0(α; γi)|2s =
2s∑
i=1

|fk(αk, . . . , α2, α1 + γi; 2X)|2s.

Moreover, in view of (2.5), we have ν1(y;h) = h1, so that ν1(y;h) is indepen-
dent of y. Then, from (2.4), (2.5) and (2.12) we see that

|G(α;h;γ)| = |gk(α,Γ(γ);X)|.
Define

Us(B) = sup
Γ∈[0,1)

∫
B

∫
[0,1)k−1

|fk(α; 2X)2sgk(α,Γ;X)| dα,

and observe that |G(α;h;γ)| is independent of α1. Then a change of variable
leads from (2.14) to the upper bound

|H(γ)| 6
∫
B

∫
[0,1)k−1

|fk(α; 2X)2sgk(α,Γ(γ);X)| dα 6 Us(B). (2.15)

Recall next that∫ 1

0

|K(γ)| dγ �
∫ 1

0

min{X, ‖γ‖−1} dγ � logX.

Then we perceive from (2.13) and (2.15) that

Is(B;X;h)� X−1Us(B)

(∫ 1

0

|K(γ)| dγ
)2s

� X−1(logX)2sUs(B).

This completes the proof of the lemma. �

3. Mixed mean value estimates

In this section we derive mixed mean value estimates involving f(α; 2X)
and g(α,Γ;X). We apply these estimates in §4 to establish Theorems 1.1, 1.2
and 1.3. Throughout, we abbreviate gk(α, 0;X) to gk(α;X).

Lemma 3.1. Suppose that k > 3 and h ∈ Zk \ {0}. Let l be the smallest
index having the property that hl 6= 0. Then whenever l < k, and u and r are
non-negative integers with u 6 l(l + 1)/2, one has∫

[0,1)k
|gk(α;X)2rfk(α; 2X)2u| dα� Xu+ε

(
Xr +X2r−(k−l)(k−l+1)/2

)
.

Proof. Suppose that u is an integer with 0 6 u 6 l(l + 1)/2, and define

I =

∫
[0,1)k
|gk(α;X)2rfk(α; 2X)2u| dα.

Recall the definition (2.5) of the polynomial νj(y;h) (1 6 j 6 k). Then, by
orthogonality, the mean value I counts the integral solutions of the system

u∑
i=1

(xji − y
j
i ) =

r∑
m=1

(νj(wm;h)− νj(zm;h)) (1 6 j 6 k), (3.1)
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with 1 6 x,y 6 2X and 1 6 w, z 6 X. Our hypothesis that hj = 0 for
1 6 j < l ensures that

νj(wm;h)− νj(zm;h) = 0 (1 6 j 6 l),

and so we deduce from (3.1) that

u∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 l). (3.2)

Since u 6 l(l+ 1)/2, we therefore deduce from the (now proven) main conjec-
ture in Vinogradov’s mean value theorem (see [3] and [13, 14]) that the number
of choices I0 for x and y satisfies

I0 6 Ju,l(2X;0)� Xu+ε. (3.3)

Fix any choice of x and y satisfying (3.2). Then by taking appropriate
linear combinations of the equations (3.1), we find that there are integers
nj = nj(x,y;h) for which

r∑
m=1

(wjm − zjm) = nj(x,y;h) (1 6 j 6 k − l). (3.4)

For each fixed choice of x and y, denote by I1 = I1(x,y) the number of
solutions of the system (3.4) with 1 6 z,w 6 X. Then by orthogonality and
the triangle inequality, we find that

I1(x,y) =

∫
[0,1)k−l

|fk−l(α;X)|2re(−α · n) dα

6
∫

[0,1)k−l

|fk−l(α;X)|2r dα.

Thus, again applying the (now proven) main conjecture in Vinogradov’s mean
value theorem, we infer that

I1(x,y) 6 Jr,k−l(X;0)� Xε
(
Xr +X2r−(k−l)(k−l+1)/2

)
.

On recalling (3.3), we therefore conclude that

I 6 I0 max
x,y

I1(x,y)� Xu+ε
(
Xr +X2r−(k−l)(k−l+1)/2

)
.

This completes the proof of the lemma. �

As an immediate consequence of the upper bound of Lemma 3.1, we record
the following estimate in which gk(α,Γ;X) substitutes for gk(α;X).

Lemma 3.2. Suppose that k > 3 and h ∈ Zk \ {0}. Let l be the smallest
index having the property that hl 6= 0. Then whenever l < k, and u and r are
non-negative integers with u 6 l(l + 1)/2, one has

sup
Γ∈[0,1)

∫
[0,1)k
|gk(α,Γ;X)2rfk(α; 2X)2u| dα� Xu+ε

(
Xr +X2r−(k−l)(k−l+1)/2

)
.
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Proof. The mean value

Θu,r(Γ;X) =

∫
[0,1)k
|gk(α,Γ;X)2rfk(α; 2X)2u| dα

counts the integral solutions x,y, z,w of the system (3.1) with weight

e

(
−Γ

r∑
m=1

(wm − zm)

)
.

Since this weight is unimodular, we deduce via orthogonality that

sup
Γ∈[0,1)

Θu,r(Γ;X) 6
∫

[0,1)k
|gk(α;X)2rfk(α; 2X)2u| dα.

The conclusion of the lemma is now immediate from that of Lemma 3.1. �

We next prepare for the proof of Theorem 1.2. When s ∈ N, write

Ψs(Γ;X) =

∫
[0,1)k
|fk(α; 2X)2sgk(α,Γ;X)| dα. (3.5)

Lemma 3.3. Suppose that k > 3, and h ∈ Zk \ {0} satisfies the condition
that hj = 0 for j 6 k − 2, but hk−1 6= 0. Then whenever s is an integer with
1 6 s 6 k(k − 1)/2, one has

sup
Γ∈[0,1)

Ψs(Γ;X)� Xs+ε.

Proof. With the hypotheses on h available from the statement of the lemma,
it follows from (2.4) and (2.5) that

|gk(α,Γ;X)| =
∣∣∣∣ ∑
16y6X

e ((khk−1αk + Γ)y)

∣∣∣∣
� min{X, ‖khk−1αk + Γ‖−1}.

Since |gk(α,Γ;X)| is independent of α1, . . . , αk−1, we therefore perceive via
orthogonality that∫

[0,1)k−1

|fk(α; 2X)2sgk(α,Γ;X)| dαk−1 � T min{X, ‖khk−1αk + Γ‖−1}, (3.6)

where

T =

∫
[0,1)k−1

|fk(α; 2X)|2s dαk−1

counts the number of integral solutions of the system of equations
s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k − 1),

with 1 6 x,y 6 X, each solution being counted with weight

e

(
αk

s∑
i=1

(xki − yki )

)
. (3.7)
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Since the weight (3.7) is unimodular, we see that T � Js,k−1(X;0). From
the (now proven) main conjecture in Vinogradov’s mean value theorem, we
thus deduce from (3.5) and (3.6) via a change of variables that

Ψs(Γ;X)� Xs+ε

∫ 1

0

min{X, ‖khk−1αk + Γ‖−1} dαk

= Xs+ε

∫ 1

0

min{X, ‖β‖−1} dβ.

Thus we conclude that

sup
Γ∈[0,1)

Ψs(Γ;X)� Xs+ε logX � Xs+2ε,

and the proof of the lemma is complete. �

4. The simplest subconvex bounds

We now attend to the matter of converting the auxiliary estimates of §3,
using the apparatus prepared in §2, so as to establish Theorems 1.1, 1.2 and
1.3. We begin with the proof of Theorems 1.1 and 1.3. We should emphasise
here that our formulation of Lemma 2.1, which we will shortly wield in earnest,
bounds Is(B;X;h) for any measurable set B. In the proofs of Theorems
1.1, 1.2 and 1.3, we make use of this lemma only when B = [0, 1). In such
circumstances, one could do away with the elaborate arguments employed in
the proof of Lemma 2.1, making do only with simple arguments counting
solutions of Diophantine systems. Indeed, this was the approach taken in the
proof of [10, Lemma 10.1]. We will, however, need the full force of Lemma 2.1
in §5, and we express the hope that the greater flexibility of this lemma may
inspire future refinement even to the results established in the present section.

The proof of Theorems 1.1 and 1.3. We suppose that k > 3, h ∈ Zk \{0}, and
that l is the smallest index with 1 6 l 6 k having the property that hl 6= 0.
The hypotheses of Theorems 1.1 and 1.3 then permit us the assumption that
l < k. On recalling (2.3), we see that Lemma 2.1 delivers the bound

Js,k(X;h)� X−1(logX)2s sup
Γ∈[0,1)

Vs(Γ), (4.1)

where

Vs(Γ) =

∫
[0,1)k
|fk(α; 2X)2sgk(α,Γ;X)| dα. (4.2)

We pursue two different analyses of the mean value (4.2), the first of which
delivers Theorem 1.1, and the second Theorem 1.3. Write R = (k−l)(k−l+1),

u = min {sR, l(l + 1)/2} and v =
s− u/R
1− 1/R

. (4.3)

Then it follows from an application of Hölder’s inequality in (4.2) that

Vs(Γ) 6 Wu,1(Γ)1/RW
1−1/R
v,2 , (4.4)
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where

Wu,1(Γ) =

∫
[0,1)k
|gk(α,Γ;X)Rfk(α; 2X)2u| dα (4.5)

and

Wv,2 =

∫
[0,1)k
|fk(α; 2X)|2v dα. (4.6)

Since R = (k − l)(k − l + 1) is an even integer and 1 6 u 6 l(l + 1)/2, an
application of Lemma 3.2 to (4.5) reveals that

sup
Γ∈[0,1)

Wu,1(Γ)� Xu+ 1
2
R+ε. (4.7)

Moreover, by applying the (now proven) main conjecture in Vinogradov’s mean
value theorem, it follows from (4.6) that

Wv,2 � Xε(Xv +X2v−k(k+1)/2). (4.8)

We therefore deduce from (4.3) and (4.4) that

Vs(Γ)� Xε
(
Xu+R/2

)1/R (
Xv +X2v−k(k+1)/2

)1−1/R

� Xs+ 1
2

+θ+ε,

where
θ = (1− 1/R) max{0, v − k(k + 1)/2}.

By substituting this estimate for Vs(Γ) into (4.1), we conclude thus far that

Js,k(X;h)� Xs− 1
2

+θ+ε. (4.9)

One has θ = 0 when v 6 k(k + 1)/2, and by (4.3) such is the case so long as

s 6
u

R
+ 1

2
k(k + 1)(1− 1/R),

a constraint guaranteed to hold provided that the hypothesis (1.2) is in force.
The conclusion (1.3) of Theorem 1.1 therefore follows at once from (4.9) in
this situation in which θ = 0. Notice here that

1
2
k(k + 1)− k(k + 1)− l(l + 1)

2(k − l)(k − l + 1)
6 1

2
k(k + 1)− 1

if and only if 2(k − l)(k − l + 1) 6 k(k + 1) − l(l + 1), confirming that the
condition (1.2) is met for all s < k(k + 1)/2 whenever (k + 1− 3l)(k − l) 6 0.
This confirms that the estimate (1.3) does indeed hold, when s < k(k + 1)/2,
provided that 1 6 l 6 (k + 1)/3, completing the proof of Theorem 1.1.

We now turn to the proof of Theorem 1.3. Here, in view of the conclusion
of Theorem 1.1, we already have the bound Js,k(X;h) � Xs−1/2+ε when the
constraint (1.2) is in force. We may therefore suppose henceforth that

1
2
k(k + 1)− k(k + 1)− l(l + 1)

2R
< s < 1

2
k(k + 1),

whence
k(k + 1)− 2s

k(k + 1)− l(l + 1)
<

1

R
. (4.10)
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Write

u = 1
2
l(l + 1), v = 1

2
k(k + 1) and a =

k(k + 1)− 2s

2(v − u)
,

and recall the notation introduced in (4.5) and (4.6). Then since it follows
from (4.10) that 0 6 a < 1/R, an application of Hölder’s inequality in (4.2)
shows in this situation that

Vs(Γ) 6

(
sup

α∈[0,1)k
|gk(α,Γ;X)|

)1−Ra

Wu,1(Γ)aW 1−a
v,2 .

Thus, we deduce from (4.7) and (4.8) that

sup
Γ∈[0,1)

Vs(Γ)� X1−Ra+ε
(
Xu+R/2

)a
(Xv)1−a

� Xs+1− 1
2
Ra+ε.

We therefore conclude from (4.1) that in this scenario, one has

Js,k(X;h)� Xs−δ(s,k,l)+ε,

where

δ(s, k, l) = 1
2
Ra = 1

2
(k − l)(k − l + 1)

k(k + 1)− 2s

k(k + 1)− l(l + 1)
.

This completes the proof of Theorem 1.3. �

We complete this section by establishing Theorem 1.2, exploiting the fact
that when hj = 0 for 1 6 j 6 k−2 and hk−1 6= 0, then the generating function
gk(α, θ;X) is a linear exponential sum in the underlying variable y.

The proof of Theorem 1.2. We begin with a preliminary simplification. We
work under the hypotheses of the statement of Theorem 1.2, and consider the
(l + 1)-tuple h′ = (h1, . . . , hl+1), in which we may assume that hj = 0 for
1 6 j < l but hl 6= 0. By discarding the equations in (1.1) of degree exceeding
l + 1, we see that Js,k(X;h) 6 Js,l+1(X;h′). But when 1 6 s 6 l(l + 1)/2, it
follows from (2.3) by applying Lemma 2.1 with l + 1 in place of k that

Js,l+1(X;h′)� X−1(logX)2s sup
Γ∈[0,1)

∫
[0,1)l+1

|fl+1(α; 2X)2sgl+1(α,Γ;X)| dα.

Hence, by availing ourselves of Lemma 3.3 we obtain the upper bound

Js,k(X;h) 6 Js,l+1(X;h′)� Xs−1+ε.

The conclusion of Theorem 1.2 follows at once. �

5. A conditional asymptotic formula, I: minor arcs

Our goal in this section is to indicate how, equipped with mean value esti-
mates conjectured to hold that fall short of breaking the convexity barrier, one
may achieve subconvex minor arc estimates that deliver asymptotic formulae
for Js,k(X;h) when s = k(k + 1)/2. Thereby, we prove Theorem 1.4.

We begin by extracting from §8 an estimate sufficient for our purposes. Here,
in order to simplify our exposition, we introduce some notation. When A is a



14 TREVOR D. WOOLEY

fixed positive number and 0 6 j 6 k, we denote by Uj = Uj(A) the interval
Uj(A) = [−AX−j, AX−j]. Then, when 0 6 m 6 k, we write

Vm(A) = Um(A)× Um−1(A)× · · · × U1(A)× [0, 1)k−m.

In what follows, we shall refer to Conjecture 8.1 as the extended main conjecture
in Vinogradov’s mean value theorem.

Lemma 5.1. Assume the extended main conjecture in Vinogradov’s mean
value theorem. Let A be a fixed positive number. Suppose that s is a posi-
tive number and m is an integer satisfying 0 6 m 6 k. Then, if either

s > 1
4
k(k + 1) + 1 or m(m+ 1) 6 1

2
k(k + 1)− 2,

one has ∫
Vm(A)

|fk(α;X)|2s dα� Xε(Xs−m(m+1)/2 +X2s−k(k+1)/2).

Proof. It follows from the extended main conjecture in Vinogradov’s mean
value theorem that when either

s > 1
4
k(k + 1) + 1 or mes(Vm(A))� X1−k(k+1)/4,

one has ∫
Vm(A)

|fk(α;X)|2s dα� Xε(Xsmes(Vm(A)) +X2s−k(k+1)/2).

Such is immediate in the first case from Conjecture 8.1, and in the second case
from Conjecture 8.2, which as explained in §8 is a consequence of Conjecture
8.1. The upper bound presented in the lemma follows on observing that one
has mes(Vm(A))�A X

−m(m+1)/2. �

We first apply this estimate to obtain a bound for a mixed mean value.

Lemma 5.2. Assume the extended main conjecture in Vinogradov’s mean
value theorem, and suppose that k > 2 and h ∈ Zk \ {0}. Let l be the smallest
index with l 6 k for which hl 6= 0, and write v = (k − l)(k − l + 1)/2. Then,
provided that s is a natural number with s− v > 1

4
k(k + 1) + 1, one has∫

[0,1)k
|fk(α; 2X)2s−2vgk(α;X)2v| dα� Xε(Xs +X2s−k(k+1)/2). (5.1)

Proof. It follows from orthogonality that the mean value I on the left hand
side of (5.1) counts the number of integral solutions of the system of equations

s−v∑
i=1

(xji − y
j
i ) =

v∑
m=1

(νj(zm;h)− νj(tm;h)) (1 6 j 6 k), (5.2)

with 1 6 x,y 6 2X and 1 6 z, t 6 X. When 1 6 j 6 k and nj ∈ Z, denote
by ρ(n) the number of solutions of the system of equations

v∑
m=1

(νj(zm;h)− νj(tm;h)) = nj (1 6 j 6 k),
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with 1 6 z, t 6 X. Then, by orthogonality, one has

ρ(n) =

∫
[0,1)k
|gk(α;X)|2ve(−α · n) dα.

Since the hypotheses of the lemma imply that hj = 0 for 1 6 j < l, and hl 6= 0,
we find from (2.5) via the triangle inequality and a change of variables that

ρ(n) 6
∫

[0,1)k
|gk(α;X)|2v dα =

∫
[0,1)k−l

|fk−l(α;X)|2v dα. (5.3)

In order to explain the origin of the rightmost mean value in (5.3), observe
that since hj = 0 for 1 6 j < l, the polynomial νj(z;h) is non-zero only when
j > l, in which case its leading term is

(
j
l

)
hlz

j−l. Thus, the first integral in
(5.3) counts the number of integral solutions of the system of equations

v∑
m=1

(zjm − tjm) = 0 (1 6 j 6 k − l),

with 1 6 z, t 6 X. By orthogonality, the second integral in (5.3) counts
precisely these solutions, justifying the conclusion.

We thus have ρ(n) 6 Jk−l,v(X;0). Hence, by the (now confirmed) main
conjecture in Vinogradov’s mean value theorem, we deduce that ρ(n)� Xv+ε.
We now return to (5.2) and note that when 1 6 z, t 6 X, one has

v∑
m=1

(νj(zm;h)− νj(tm;h))�h X
j−l (l + 1 6 j 6 k)

and
v∑

m=1

(νj(zm;h)− νj(tm;h)) = 0 (1 6 j 6 l).

Hence, in each solution x,y, z, t counted by I, there are positive numbers Cj(h)
for which ∣∣∣∣ s−v∑

i=1

(xji − y
j
i )

∣∣∣∣ 6 Cj(h)Xj−l (l + 1 6 j 6 k) (5.4)

and
s−v∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 l). (5.5)

Let I1 denote the number of integral solutions of the system (5.4) and (5.5)
with 1 6 x,y 6 2X. Then we deduce that

I 6 I1 max
n

ρ(n)� Xv+εI1. (5.6)

Next we examine the system (5.4) and (5.5). A standard argument (see for
example [9, Lemma 2.1]) shows that

I1 �
( k∏
j=l+1

Cj(h)Xj−l
)∫

Vk−l(A)

|fk(α;X)|2s−2v dα,
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in which Vk−l(A) is defined as in the preamble to the statement of Lemma 5.1,
and A = max{Cl+1(h), . . . , Ck(h)}. Thus we deduce that

I1 �h X
v

∫
Vk−l(A)

|fk(α;X)|2s−2v dα,

whence, in view of (5.6),

I � X2v+ε

∫
Vk−l(A)

|fk(α;X)|2s−2v dα.

We now invoke Lemma 5.1 to bound the mean value on the right hand side
here. On noting that mes(Vk−l(A))� X−v, we thus deduce that

I � X2v+ε(Xs−2v +X2s−2v−k(k+1)/2)� Xε(Xs +X2s−k(k+1)/2).

This completes the proof of the lemma. �

We apply this estimate in combination with Lemma 2.1 to obtain an ac-
ceptable minor arc bound of use in our application of the Hardy-Littlewood
method. When Q is a real parameter with 1 6 Q 6 X, we define the set of
major arcs M(Q) to be the union of the arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 QX−k},

with 0 6 a 6 q 6 Q and (a, q) = 1. We then define the complementary set of
minor arcs m(Q) = [0, 1) \M(Q).

Lemma 5.3. Assume the extended main conjecture in Vinogradov’s mean
value theorem, and suppose that k > 3 and h ∈ Zk. Let s be a natural number
with s > k(k + 1)/2, and put δ = 2/(k2(k − 1)2). Then provided that hl 6= 0
for some index l with 1 6 l < k, one has

Is(m(Q);X;h)� X2s− 1
2
k(k+1)+εQ−δ.

Proof. We find from Lemma 2.1 that

Is(m(Q);X;h)� Xε−1 sup
Γ∈[0,1)

Vs(X;h), (5.7)

where

Vs(X;h) =

∫
m(Q)

∫
[0,1)k−1

|fk(α; 2X)2sgk(α,Γ;X)| dα.

Write v = (k − l)(k − l + 1)/2 and u = k(k + 1)/2, and put

ω0 = 2s− k(k + 1) + 1/v, ω1 = 1− 1/(2v) and ω2 = 1/(2v).

Then for s > k(k+1)/2, an application of Hölder’s inequality yields the bound

Vs(X;h) 6 V ω0
0 V ω1

1 V ω2
2 , (5.8)
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where

V0 = sup
α∈[0,1)k−1×m(Q)

|fk(α; 2X)|,

V1 =

∫
[0,1)k
|fk(α; 2X)|2u dα,

V2 =

∫
[0,1)k
|fk(α; 2X)2u−2gk(α,Γ;X)2v| dα.

It follows from [16, Lemma 2.2] that V0 � X1+εQ−σ, where σ = 1/(k(k−1)).
Also, from the (now confirmed) main conjecture in Vinogradov’s mean value
theorem, we have V1 � Xu+ε, whilst Lemma 5.2 delivers the conditional bound
V2 � X2v+u−2+ε by the now familiar routine. Thus we deduce from (5.8) that

Vs(X;h)� X2s+1−u+εQ−ω0σ � X2s+1− 1
2
k(k+1)+εQ−δ, (5.9)

where

δ =
1

vk(k − 1)
>

2

k2(k − 1)2
.

The proof of the lemma is completed by substituting (5.9) into (5.7). �

6. A conditional asymptotic formula, II: the endgame

Equipped now with the conditional minor arc estimate supplied by Lemma
5.3, our proof of Theorem 1.4 follows the argument applied in our previous
work [17, §§5-7] concerning the cubic case of the inhomogeneous Vinogradov
system. There are few if any complications. When A ⊆ [0, 1)k is measurable,
we define the mean value Ts(A) = Ts(A;X;h) by putting

Ts(A;X;h) =

∫
A

|fk(α;X)|2se(−α · h) dα. (6.1)

We formulate Hardy-Littlewood dissections of the unit cube [0, 1)k suitable
for our purpose. When Z is a real parameter with 1 6 Z 6 X, we define the
set of major arcs K(Z) to be the union of the arcs

K(q, a;Z) = {α ∈ [0, 1)k : |αj − aj/q| 6 ZX−j (1 6 j 6 k)},

with 1 6 q 6 Z, 0 6 aj 6 q (1 6 j 6 k) and (q, a1, . . . , ak) = 1. We then
define the complementary set of minor arcs k(Z) = [0, 1)k \ K(Z).

Recall the one-dimensional Hardy-Littlewood dissection of [0, 1) into sets of
major arcs M(Q) and minor arcs m(Q) introduced in the preamble to Lemma

5.3. We now fix L = X1/(8k2) and Q = Lk, and we define a k-dimensional set of
arcs by taking N = K(Q2) and n = k(Q2). This intermediate Hardy-Littlewood
dissection may be refined to obtain the narrow set of major arcs P = K(L)
and the corresponding set of minor arcs p = k(L). It is useful then to write
P(q, a) = K(q, a;L). One readily confirms that P ⊆ [0, 1)k−1 ×M, and hence
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the set of points (α1, . . . , αk) lying in [0, 1)k may be partitioned into the four
disjoint subsets

W1 = [0, 1)k−1 ×m,

W2 =
(
[0, 1)k−1 ×M

)
∩ n,

W3 =
(
[0, 1)k−1 ×M

)
∩ (N \P),

W4 = P.

Thus, in view of (2.3) and (6.1), one sees that

Js,k(X;h) = Ts([0, 1)k) =
4∑
i=1

Ts(Wi). (6.2)

We assume throughout the extended main conjecture in Vinogradov’s mean
value theorem. Then by substituting Q = X1/(8k) into Lemma 5.3, we deduce
that when h ∈ Zk and hl 6= 0 for some index l with 1 6 l < k, one has

Ts(W1) = Is(m(Q);X;h)� X2s− 1
2
k(k+1)−1/(4k5). (6.3)

Our definition of the sets of arcs N, n, P and p in the present memoir is
identical with that employed in [16, §§3-6]. Thus, the analysis applied in [16,
§4] may be employed without material alteration in present circumstances to
obtain the upper bound

Ts(W2)� X2s− 1
2
k(k+1)−1/(16k). (6.4)

Likewise, the analysis of [16, §5] applies, mutatis mutandis, to reveal that

Ts(W3)� X2s− 1
2
k(k+1)−1/(12k3). (6.5)

Finally, the discussion of [16, §6] provides a template for the analysis of the
major arcs in the present circumstances that may be applied almost without
modification. Recall the definitions (1.4) and (1.5), and in addition the nota-
tional device of writing nj = hjX

−j (1 6 j 6 k). Then one finds that when
2s > 1

2
k(k + 1) + 2, one has

Ts(W4) = Ts(P) = Ss,k(h)Js,k(h)X2s−k(k+1)/2 + o(X2s−k(k+1)/2), (6.6)

where

Js,k(h) =

∫
Rk

|I(β)|2se(−β · n) dβ (6.7)

and

Ss,k(h) =
∞∑
q=1

∑
16a6q

(q,a1,...,ak)=1

|q−1S(q, a)|2seq(−a · h). (6.8)

By substituting the relations (6.3) to (6.6) into (6.2), we conclude that

Js,k(X;h) = Ss,k(h)Js,k(h)X2s−k(k+1)/2 + o(X2s−k(k+1)/2).

Take s = k(k + 1)/2, and recall the notation (1.6) and (1.7). Then we obtain
the relation

Bk(X;h) = Sk(h)Jk(h)Xk(k+1)/2 + o(Xk(k+1)/2),
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confirming the principal conclusion of Theorem 1.4.

The observation that 0 6 Jk(h) � 1 and 0 6 Sk(h) � 1 follows from the
absolute convergence of Ss,k(h) and Js,k(h) when 2s > 1

2
k(k+1)+2, combined

with the standard theory of the singular series and singular integral described
in [2, Theorem 3.7]. This completes the proof of Theorem 1.4.

7. Paucity and subconvexity

Our objective in this section is, not only to establish Theorem 1.5, but
also to illustrate the role that paucity phenomena play in subconvexity results
associated with inhomogeneous Vinogradov systems. This circle of ideas is
relevant in investigations of Js,k(X;h) when s is small, which is to say, no
larger than k or thereabouts. We begin with two almost trivial observations.
The first shows that one cannot in general expect to obtain upper bounds in
which one saves more than a factor X over the convexity limited estimates
exhibiting square-root cancellation.

Theorem 7.1. Suppose that s, k ∈ N. Then

max
h∈Zk\{0}

Js,k(X;h)� Xs−1.

Proof. We fix integers a and b with a > b, say a = 2 and b = 1, and then fix
hj = aj − bj (1 6 j 6 k). Thus we have h 6= 0 and, for any (s − 1)-tuple t
with 1 6 t 6 X, the system (1.1) has the solution

x = (t1, . . . , ts−1, a), y = (t1, . . . , ts−1, b).

In this way, we see that when X ∈ N one has Js,k(X;h) > Xs−1. �

This theorem shows that the conclusion of Theorem 1.2 may be regarded
as close to best possible. Moreover, any improvement in the upper bound
Js,k(X;h) � Xs−1 must account for the special subvarieties of the complete
intersection defined by (1.1) containing subdiagonal solutions, in the appro-
priate sense. The most extreme such situation is addressed in the second of
these almost trivial conclusions.

Theorem 7.2. Suppose that s, k ∈ N and h ∈ Zk \ {0}. Suppose that hj = 0
for precisely t indices, say j ∈ {j1, . . . , jt} with 1 6 j1 < j2 < . . . < jt 6 k.
Then provided that 1 6 s 6 t, one has Js,k(X;h) = 0.

Proof. The hypothesis on h in the statement of the theorem ensures that when-
ever x and y satisfy the system (1.1), then one has

s∑
i=1

xjli =
s∑
i=1

yjli (1 6 l 6 t). (7.1)

When x,y ∈ Ns and 1 6 s 6 t, it follows from [7] that in all solutions of the
system (7.1), the s-tuple (x1, . . . , xs) is a permutation of (y1, . . . , ys). For any
such solution, we find from (1.1) that h = 0, contradicting the hypothesis from
the statement of the theorem. Thus we conclude that Js,k(X;h) = 0. �
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We now turn to the proof of Theorem 1.5. This we view as establishing the
principle that when there are few indices l for which hl 6= 0, then Jk,k(X;h)
may be expected to be very small, and indeed far smaller than would be implied
by the convexity limited bound. Our proof of this conclusion makes heavy use
of our earlier work on paucity in relatives of Vinogradov systems [15].

The proof of Theorem 1.5. We work under the hypotheses of the statement of
the theorem. Let J∗k,k(X;h) denote the number of solutions of the system (1.1)
with s = k in which xi = ym for no indices i and m with 1 6 i,m 6 t. Consider
a solution x,y of the system (1.1) with s = k counted by Jk,k(X;h) but not by
J∗k,k(X;h). By relabelling variables, we may suppose that xk = yk, and hence
we deduce from (1.1) that

Jk,k(X;h)− J∗k,k(X;h)� XJk−1,k(X;h).

However, since hj = 0 for the k − 1 indices j with j 6= l, it is apparent from
Theorem 7.2 that Jk−1,k(X;h) = 0. Thus we conclude that

Jk,k(X;h) = J∗k,k(X;h).

Consider next a solution x,y of (1.1) with s = k counted by J∗k,k(X;h).
Define the elementary symmetric polynomials σj(z) ∈ Z[z1, . . . , zk] via the
generating function identity

k∑
j=0

σj(z)tj =
k∏
i=1

(1 + tzi),

and write, further,

sj(z) = zj1 + . . .+ zjk (1 6 j 6 k).

When n > 1, a familiar formula (see [15, equation (2.2)]) delivers the relation

σn(z) = (−1)n
∑

m1+2m2+...+nmn=n
mi>0

n∏
i=1

(−si(z))mi

imimi!
.

The system of equations

sj(x) = sj(y) + hj (1 6 j 6 k),

is tantamount to (1.1) with s = k. Since hj = 0 for j 6= l, we deduce that

σn(x) = (−1)n
∑

m1+2m2+...+nmn=n
mi>0

(−sl(y)− hl)ml

lmlml!

∏
16i6n
i 6=l

(−si(y))mi

imimi!
.

We conclude that

σn(x) = σn(y) (1 6 n < l), (7.2)

and, when n > l, that there is a weighted homogeneous polynomial Ψn(h;y)
having rational coefficients and satisfying the property that

σn(x)− σn(y) = hlΨn(hl;y). (7.3)
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Here, if a monomial term of Ψn(h;y) has total degree d in terms of y and
degree e in terms of h, then one has d + le = n − l. It is evident, moreover,
that there is a non-zero integer An, with An = Ok(1), having the property
that AnΨn(h;y) has integer coefficients all of size Ok(1). In particular, in each
solution x,y of (1.1) counted by J∗k,k(X;h), we have |Ψn(hl;y)| � Xn−l.

We deduce from (7.2) and (7.3) that for the indeterminate z, one has

k∏
i=1

(z − xi)−
k∏
i=1

(z − yi) = (−1)k
k∑

n=0

(σn(x)− σn(y))(−z)k−n

= (−1)khl

k∑
n=l

Ψn(hl;y)(−z)k−n.

By substituting z = yj, we therefore infer that there is a polynomial τ(y; yj;h)
for which one has

Al . . . Ak

k∏
i=1

(yj − xi) = hlτ(y; yj;hl).

This polynomial τ(y; yj;h) has integer coefficients and is weighted homoge-
neous of total degree k − l, with each variable yi carrying weight 1, and the
variable h carrying weight l. In particular, with the choices for y, yj, hl asso-
ciated with the solution x,y counted by J∗k,k(X;h) currently under considera-

tion, we may assume that τ(y; yj;hl) is an integer of size O(Xk−l).

There are O(Xk−l) possible choices for the integer τ(y; yj;hl), and hence
also for hlτ(y; yj;hl). None of these are zero, for this would contradict the
non-vanishing of yj −xi (1 6 i, j 6 k). Then, for each of the O(Xk−l) possible
choices for N(y) = hlτ(y; yj;hl), we see that the integers yj−xi (1 6 i 6 k) are
divisors of N(y). Since N(y) = O(Xk), a standard divisor function estimate
reveals that there are O(Xε) possible choices for these divisors. Fixing any
one of these choices and one of the O(X) possible choices for yj, it follows that
x1, . . . , xk and yj are now all fixed. Next, interchanging the roles of x and y
in the argument just described, we find that

Al . . . Ak

k∏
i=1

(xj − yi) = −hlτ(x;xj;−hl).

Since x is already fixed, it follows that the integers xj − yi are all divisors of
the fixed non-zero integer N ′(x) = hlτ(x, xj;−hl). As in the situation just
discussed, there are O(Xε) possible choices for these divisors. Fixing any one
of these choices, and noting that xj is already fixed, we find that the integers
y1, . . . , yk are now also fixed. The total number of choices for x and y is
consequently O(Xk−l+1+ε). This confirms that

Jk,k(X;h) = J∗k,k(X;h)� Xk−l+1+ε

and completes the proof of the theorem. �
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8. Appendix: the extended main conjecture in Vinogradov’s
mean value theorem

The purpose of this section is to discuss an extension to the main conjec-
ture in Vinogradov’s mean value theorem previously announced in 2019 by
the author at a workshop in Oberwolfach. Since this conjecture offers nu-
merous consequences, including but not limited to Theorem 1.4, we take the
opportunity to discuss its origin, nature, and its implications relevant herein.

We begin by recalling the main conjecture in Vinogradov’s mean value the-
orem, proved in work of Bourgain, Demeter and Guth [3] and in work of the
author [13, 14]. A brief account of the history of Vinogradov’s mean value
theorem, and developments at the cusp of the proof of the main conjecture,
is offered in [12]. For the present discussion, we write Js,k(X) for Js,k(X;0),
which counts the number of integral solutions of the system of equations

s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k),

with 1 6 x,y 6 X. The main conjecture in Vinogradov’s mean value theorem
asserts that

Js,k(X)� Xs+ε +X2s−k(k+1)/2. (8.1)

In order to motivate the formulation of the extended main conjecture, we
briefly sketch how the two terms on the right hand side of (8.1) arise from
the application of the circle method. Consider a Hardy-Littlewood dissection
of the unit cube [0, 1)k into sets of major and minor arcs of the type K(Y )
and k(Y ), for a suitable parameter Y , as defined in §6. Define the generating
functions I(β) and S(q, a) as in (1.4) and (1.5), and put

I(β;X) =

∫ X

0

e(β1γ + β2γ
2 + . . .+ βkγ

k) dγ

= XI(β1X, β2X
2, . . . , βkX

k).

When α ∈ K(q, a;Y ) ⊆ K(Y ), the exponential sum fk(α;X) is closely approx-
imated by q−1S(q, a)I(α − a/q;X). Until recently, it was widely believed by
many experts in the Hardy-Littlewood method that when α ∈ [0, 1)k, there
should exist q ∈ N and a ∈ Zk with (q, a1, . . . , ak) = 1 satisfying

fk(α;X)− q−1S(q, a)I(α− a/q;X)� X1/2+ε. (8.2)

Recent work of Brandes et al. [5] shows that such a strong relation cannot be
true in full generality when α is very close to a/q. However, any failure of
this relation is expected to produce a small number of secondary terms also of
major arc type, and hence is not expected to have any material impact on the
outcome of the ensuing discussion.

Recalling the definitions (6.7) and (6.8) of Js,k(h) and Ss,k(h), one finds
that the contribution of the term q−1S(q, a)I(α − a/q;X) from (8.2) within
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the mean value Js,k(X) is at most X2s−k(k+1)/2I0, where

I0 =
∞∑
q=1

∑
16a1,...,ak6q
(q,a1,...,ak)=1

|q−1S(q, a)|2s
∫ ∞
−∞
|I(β)|2s dβ = Ss,k(0)Js,k(0).

The details of the argument here are familiar from the analysis of the major arc
contribution in an application of the circle method to the problem. We note
that the singular series Ss,k(0) converges absolutely for 2s > 1

2
k(k + 1) + 2,

and the singular integral Js,k(0) converges absolutely for 2s > 1
2
k(k + 1) + 1

(see [1, Theorem 1]). Thus, under the first of these conditions on s, we obtain

Js,k(X) =

∫
[0,1)k
|fk(α;X)|2s dα� X2s−k(k+1)/2 +

∫
[0,1)k

(X1/2+ε)2s dα,

and thereby we recover the main conjecture (8.1) established in [3, 13, 14].
For smaller values of s, the same conclusion follows by application of Hölder’s
inequality, since the term Xs+ε dominates, so (8.1) follows for all s ∈ N. As
a final comment relevant to this preliminary discussion, we remark that the
aforementioned deviations from this model suggested by work of [5] would, at
worst, inflate the above estimates by a factor of Xε for smaller values of s, and
this has no impact in our wider discusion.

The question now arises concerning what outcome is to be expected when
we integrate, not over the whole unit cube [0, 1)k, but instead over a subset V.
The same philosophy demonstrates that when s is any real number satisfying
2s > 1

2
k(k + 1) + 2, one should have the estimate∫

V

|fk(α;X)|2s dα� X2s−k(k+1)/2I0 +

∫
V

(X1/2+ε)2s dα

� X2s−k(k+1)/2 +Xs+εmes(V).

This is tantamount to the extended main conjecture in Vinogradov’s mean
value theorem.

Conjecture 8.1. Suppose that k ∈ N and V ⊆ [0, 1)k is measurable. Then
whenever s is a real number with s > 1

4
k(k + 1) + 1, one has∫

V

|fk(α;X)|2s dα� Xε
(
Xsmes(V) +X2s−k(k+1)/2

)
.

We have limited the values of s admissible in this conclusion to the range
s > 1

4
k(k + 1) + 1 in order that appropriate convergence of the singular series

Ss,k(0) and singular integral Js,k(0) be guaranteed. For larger values of s ab-
solute convergence follows from [1, Theorem 1], and an application of Hölder’s
inequality delivers similar conclusions at the cost of inflating bounds by a fac-
tor of Xε when s = 1

4
k(k+1)+1. For smaller values of s, the conjecture should

be modified to reflect a larger secondary term arising from the potential diver-
gence of these quantities. However, one may recover a cheap but useful version
of the conjecture applicable for all s provided that mes(V) is not too small.
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Conjecture 8.2. Suppose that k ∈ N and V ⊆ [0, 1)k is measurable. Then
whenever s is a positive number and

mes(V)� X1−k(k+1)/4, (8.3)

one has ∫
V

|fk(α;X)|2s dα� Xε
(
Xsmes(V) +X2s−k(k+1)/2

)
. (8.4)

To see that Conjecture 8.2 follows from Conjecture 8.1, note first that the
conclusion (8.4) of the former is immediate from the latter in the situation
wherein s > 1

4
k(k + 1) + 1. Suppose then that t is a positive number with

t < 1
4
k(k + 1) + 1, and put K = 1

2
k(k + 1) + 2. Then on assuming the validity

of Conjecture 8.1, an application of Hölder’s inequality yields∫
V

|fk(α;X)|2t dα 6

(∫
V

dα

)1−2t/K(∫
V

|fk(α;X)|K dα

)2t/K

� Xε (mes(V))1−2t/K (XK/2mes(V) +XK−k(k+1)/2
)2t/K

� Xε
(
X tmes(V) + (mes(V))1−2t/KX4t/K

)
.

The second term here is asymptotically majorised by the first provided that
(mes(V))2t/K � X4t/K−t, a condition that is satisfied when mes(V)� X2−K/2.
The conclusion (8.4) therefore follows provided that (8.3) holds.

We next consider some consequences and limitations of these conjectures.

Theorem 8.3. Assume the extended main conjecture in Vinogradov’s mean
value theorem. Consider positive numbers θ1, . . . , θk and the box

V(θ) = [−X−θ1 , X−θ1 ]× · · · × [−X−θk , X−θk ].

Then whenever s > 1
4
k(k + 1) + 1, one has∫

V(θ)

|fk(α;X)|2s dα� Xε
(
Xs−θ1−...−θk +X2s−k(k+1)/2

)
.

The same conclusion also holds without condition on s provided that

θ1 + . . .+ θk 6 1
4
k(k + 1)− 1.

Proof. The conclusions of the theorem are immediate from Conjectures 8.1 and
8.2 on observing that mes(V(θ)) � X−θ1−...−θk . �

The cap sets V = [0, 1]k−1 × [0, X−θk ] considered by Demeter, Guth and
Wang [6] are addressed by the special case θ = (0, . . . , 0, θk) of this theorem.
Indeed, the reader will find that [6, Conjecture 2.5] asserts that the conclusion
of Theorem 8.3 should hold in the special case V(θ) = [0, 1]k−1 × [0, X−θk ],
provided that 0 6 θk 6 k− 1 and k > 2. These authors proved this conjecture
when k = 3 and 0 6 θ3 6 3/2 in the special case s = 6− θ3 (see [6, Theorem
3.3]). Plainly, the (conditional) conclusion of Theorem 8.3 is decidedly more
general in scope, and Conjecture 8.1 is of even wider generality.

We remark that in the situation wherein V is restricted to the kind of
generalised cap sets that are the subject of Theorem 8.3, the major arc analysis
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implicit in the formulation of the conjecture may presumably be improved.
The absolute convergence of the singular series Ss,k(0) requires that one have
s > 1

4
k(k+1)+1 owing in part to the extra divergence arising from the sum over

a1, . . . , ak implicit in the definition (6.8). If one or more of the variables αj is
restricted in a manner ensuring that aj is limited to a much smaller range than
the interval [1, q], as is the case in cap set problems, then presumably there
is scope for improving the condition on s towards the less onerous constraint
s > 1

4
k(k + 1) + 1

2
.

We finish this appendix by noting that the conclusion of Conjecture 8.1
cannot hold as stated when s < 1

4
k(k + 1). In order to confirm this assertion,

consider the system of inequalities∣∣∣∣ s∑
i=1

(xji − y
j
i )

∣∣∣∣ 6 sXj−1 (1 6 j 6 k). (8.5)

Denote by Ω1(X) the number of solutions of the system of inequalities (8.5)
with 1 6 x,y 6 X. We observe that when 1 6 x,y 6 X1−1/k, then the system
(8.5) is satisfied whenever∣∣∣∣ s∑

i=1

(xji − y
j
i )

∣∣∣∣ 6 s(X1−1/k)jX−(k−j)/k (1 6 j 6 k − 1). (8.6)

Notice, in particular, that the inequality in (8.5) corresponding to the exponent
j = k is automatically satisfied in these circumstances. We denote by Ω2(X)
the number of solutions of (8.6) subject to this condition 1 6 x,y 6 X1−1/k.
Thus we have the lower bound Ω1(X) > Ω2(X).

Write

D =
k−1

⨉
j=1

[
− 1

2s
(X1−1/k)−jX(k−j)/k,

1

2s
(X1−1/k)−jX(k−j)/k

]
.

Then a standard argument (see for example [9, Lemma 2.1]) shows that

Ω2(X)�
(k−1∏
j=1

(X1−1/k)jX−(k−j)/k
)∫

D

|fk−1(α;X1−1/k)|2s dα. (8.7)

Next define a narrow major arc around 0 by taking τ > 0 sufficiently small in
terms of s and k, and putting

D0 =
k−1

⨉
j=1

[
−τ(X1−1/k)−j, τ(X1−1/k)−j

]
.

Standard arguments from the theory of Vinogradov’s mean value theorem (see
[8, Chapter 7]) show that for α ∈ D0 one has |fk−1(α;X1−1/k)| � X1−1/k,
whence ∫

D0

|fk−1(α;X1−1/k)|2s dα� (X1−1/k)2smes(D0)

� (X1−1/k)2s−k(k−1)/2.
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Since we may assume that D0 ⊆ D, we deduce from (8.7) that

Ω2(X)� X(k−1)(k−2)/2

∫
D0

|fk−1(α;X1−1/k)|2s dα

� X(k−1)(k−2)/2 ·X2s(1−1/k)−(k−1)2/2.

Thus, the lower bound Ω1(X) > Ω2(X) leads us to the conclusion

Ω1(X)� X2s(1−1/k)−(k−1)/2. (8.8)

On the other hand, again employing the same standard argument (see [9,
Lemma 2.1]), we find that

Ω1(X)�
( k∏
j=1

Xj−1

)∫
D1

|fk(α;X)|2s dα,

where

D1 =
k

⨉
j=1

[
− 1

2s
X1−j,

1

2s
X1−j

]
.

Thus

Ω1(X)� Xk(k−1)/2

∫
D1

|fk(α;X)|2s dα.

Assuming the validity of Conjecture 8.1 without constraint on s, it follows that

Ω1(X)� Xk(k−1)/2+ε
(
Xsmes(D1) +X2s−k(k+1)/2

)
� Xε(Xs +X2s−k).

We therefore conclude from (8.8) that

X2s(1−1/k)−(k−1)/2 � Ω1(X)� Xε(Xs +X2s−k).

This is tenable only when

2s(1− 1/k)− (k − 1)/2 6 max{s, 2s− k},
which is to say that either s 6 1

2
(k+ 1) + 1/(k− 2), or 2s > k(k+ 1)/2. Thus

we find that the upper bound asserted in Conjecture 8.1 cannot hold in general
in the absence of a condition at least as strong as s > 1

4
k(k + 1).
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