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TREVOR D. WOOLEY

Abstract. When h ∈ Z3, denote by B(X;h) the number of integral solu-
tions to the system

6∑
i=1

(xj
i − yji ) = hj (1 6 j 6 3),

with 1 6 xi, yi 6 X (1 6 i 6 6). When h1 6= 0 and appropriate local
solubility conditions on h are met, we obtain an asymptotic formula for
B(X;h), thereby establishing a subconvex local-global principle in the in-
homogeneous cubic Vinogradov system. We obtain similar conclusions also
when h1 = 0, h2 6= 0 and X is sufficiently large in terms of h2. Our argu-
ments involve minor arc estimates going beyond square-root cancellation.

1. Introduction

The application of the Hardy-Littlewood (circle) method in the asymptotic
analysis of the number of integral solutions of a Diophantine system is, with
few exceptions, limited to scenarios in which the number of variables is larger
than twice the total degree of the system. This convexity barrier arises from the
relative sizes of the putative main term, given by the product of local densities
associated with the system, and the most optimistic bound anticipated for the
error term, namely the square-root of the number of choices for the variables.
Almost all of the exceptions to this rule are inherently linear [10] or quadratic
[9, 11, 12] in nature. There is work on pairs of diagonal cubic forms of special
shape in 11 or more variables [6], and also an asymptotic formula for a special
system consisting of one diagonal cubic and two linear equations in 10 variables
[7]. Recently, the author [20] succeeded in breaking the convexity barrier for
the Hilbert-Kamke problem of degree k, establishing an asymptotic formula
for the number of solutions when the number of variables is at least k(k + 1).
We turn our attention in this memoir to a related problem in which latent
translation-dilation invariance obstructs the method of [20].

In order to describe our conclusions we must introduce some notation. Let
s be a positive number and h = (h1, h2, h3) a triple of integers. When X is a
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large real number, write

f(α;X) =
∑

16x6X

e(α1x+ α2x
2 + α3x

3), (1.1)

where e(z) denotes e2πiz. We consider the twisted mean value

Bs(X;h) =

∫
[0,1)3
|f(α;X)|2se(−α · h) dα, (1.2)

in which we write α · h for α1h1 + α2h2 + α3h3. Note that when s ∈ N, it
follows via orthogonality that the mean value Bs(X;h) counts the number of
integral solutions of the system of equations

s∑
i=1

(xji − y
j
i ) = hj (1 6 j 6 3), (1.3)

with 1 6 xi, yi 6 X (1 6 i 6 s). This is the inhomogeneous cubic Vinogradov
system of the title.

In order to describe asymptotic formulae associated with Bs(X;h), we in-
troduce the generating functions

I(β) =

∫ 1

0

e(β1γ + β2γ
2 + β3γ

3) dγ (1.4)

and

S(q, a) =

q∑
r=1

eq(a1r + a2r
2 + a3r

3), (1.5)

in which eq(u) denotes e2πiu/q. Next, put nj = hjX
−j (1 6 j 6 3), and define

Js(h) =

∫
R3

|I(β)|2se(−β · n) dβ (1.6)

and

Ss(h) =
∞∑
q=1

∑
16a1,a2,a36q
(q,a1,a2,a3)=1

∣∣q−1S(q, a)
∣∣2s eq(−a · h). (1.7)

We note that the singular integral Js(h), and singular series Ss(h), are known
to converge absolutely for s > 7/2, and s > 4, respectively (see [1, Theorem 1]
or [2, Theorem 3.7]).

Theorem 1.1. Suppose that h ∈ Z3 and h1 6= 0. Let s be a natural number
with s > 6. Then whenever X is sufficiently large in terms of s, one has

Bs(X;h) = Js(h)Ss(h)X2s−6 + o(X2s−6), (1.8)

in which 0 6 Js(h) � 1 and 0 6 Ss(h) � 1. If the system (1.3) possesses a
non-singular real solution with positive coordinates, moreover, then Js(h)� 1.
Likewise, if the system (1.3) possesses primitive non-singular p-adic solutions
for each prime p, then Ss(h)� 1.
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Theorem 1.1 delivers a conclusion tantamount to a quantitative form of
the Hasse principle for the system (1.3) at the convexity barrier when s = 6,
and in that situation applies a minor arc estimate going beyond square-root
cancellation. Thus, provided that the latter system admits appropriate non-
singular solutions in every completion of Q, one has an asymptotic formula of
the shape B6(X;h) ∼ CX6 for a suitable positive number C. When s > 7, the
conclusion of Theorem 1.1 is a routine consequence of the resolution [17] of the
cubic case of the main conjecture in Vinogradov’s mean value theorem, as the
reader may confirm by applying the methods of Arkhipov [1]. Establishing such
a conclusion when s 6 6, however, requires something of a breakthrough in
order that the familiar square-root barrier in the circle method be surmounted.

Brandes and Hughes [4] have recently investigated the inhomogeneous case of
Vinogradov’s mean value theorem of degree k in the subcritical regime. While
this work shows, inter alia, that Bs(X;h) = o(Xs) for s 6 5, their methods
fall short of providing conclusions for the critical exponent s = 6 addressed by
Theorem 1.1. We remark that quantitative aspects of their conclusions have
been sharpened in work [19] of the author.

Theorem 1.1 addresses no scenario in which h1 = 0. Although we are unable
to obtain uniform conclusions in such a situation, we do obtain asymptotic
formulae when h2 6= 0 and X is sufficiently large in terms of h2.

Theorem 1.2. Let s be a natural number with s > 6. Then the asymptotic
formula (1.8) holds when h2 6= 0 provided that X is sufficiently large in terms
of s and h2.

As a consequence of Fermat’s theorem, the system (1.3) has solutions only
when h3 ≡ h1 (mod 3) and h3 ≡ h2 ≡ h1 (mod 2). Theorems 1.1 and 1.2 offer
local-global principles incorporating such conditions. More significant is the
proof of an asymptotic formula at the convexity barrier, wherein we have 12
variables available and the sum of the degrees of the underlying equations is 6.
Hitherto, no such conclusion has been available for inhomogeneous Vinogradov
systems of degree exceeding 2. Unfortunately, our methods yield no conclusion
analogous to Theorem 1.1 for Vinogradov systems of degree exceeding 3.

With additional effort, the methods of this paper would deliver a refinement
of the asymptotic formula (1.8) in which a power of X is saved in the error
term. Thus, in the conclusions of both Theorem 1.1 and 1.2, it would be
possible to obtain the asymptotic relation

Bs(X;h) = Js(h)Ss(h)X2s−6 +O(X2s−6−δ),

for a positive value of δ. Here, in the case of Theorem 1.1, it would be per-
missible to take any value of δ with δ < 1/12. In the case of Theorem 1.2,
meanwhile, so long as one makes accommodation for an implicit constant de-
pending on h2, a modest refinement of our work would allow for any choice of
δ with δ < 1/2.

We prove Theorem 1.1 by applying the circle method, a key ingredient in
our argument being an estimate for the contribution of the minor arcs beyond
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square-root cancellation. This we achieve in §§2, 3 and 4 by adapting the au-
thor’s work on the asymptotic formula in Waring’s problem (see [15]). Ignoring
for now the restriction to minor arcs, we observe that an integral shift z, with
1 6 z 6 X, in every variable in the system (1.3) generates the related system

s∑
i=1

(u3
i − v3

i ) = h3 + 3h2z + 3h1z
2

s∑
i=1

(u2
i − v2

i ) = h2 + 2h1z

s∑
i=1

(ui − vi) = h1


(1.9)

in which 1 6 ui, vi 6 2X. There is now the potential for additional averaging
using this new variable z. Were the polynomials on the right hand side of
(1.9) to have respective degrees 3, 2 and 1, then an appropriate minor arc
estimate would follow at once via Weyl’s inequality. However, the degrees
of the polynomials are too small for such a simple treatment to apply, and
instead we must relate the system to auxiliary mixed systems. It is critical
here that available Weyl estimates for cubic polynomials are relatively strong.
Weaker estimates available for larger degrees are insufficient for our purposes.
It is vital, moreover, that in these auxiliary mixed systems the degree of the
polynomial h3 + 3h2z + 3h1z

2 be at least 2. Indeed, were h1 to be 0, the
resulting linear polynomial would offer insufficient scope for obtaining minor
arc estimates of sufficient strength for application in the proof of Theorem 1.1.

Having prepared the auxiliary lemma exploiting shifts in §2, we prepare in §3
the auxiliary mean value estimates required in §4 for the derivation of our basic
minor arc estimate breaking the classical convexity barrier. In §5 we describe
the Hardy-Littlewood dissection required in our proof of Theorem 1.1, and we
reinterpret the conclusion of §4 as a minor arc estimate in a form convenient
for the application at hand. Some pruning manoeuvres convert this bound into
two estimates more classically associated with minor arcs in §6. From here, it
remains in §7 to analyse the contribution of the major arcs, and thereby we
complete the proof of Theorem 1.1 drawing heavily on the work of Arkhipov
[1]. We devote §8 to the discussion of the scenario in which h1 = 0, and the
proof of Theorem 1.2. Here, at the cost of sacrificing uniformity with respect
to h in our conclusions, it transpires that one may make use of recent work on
small cap decouplings [8] in order to salvage a viable analysis.

Our basic parameter is X, a sufficiently large positive number. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each ε > 0. Implicit constants in Vinogradov’s notation �
and � may depend on ε. Vector notation in the form x = (x1, . . . , xr) is used
with the dimension r depending on the course of the argument. Also, we write
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(a1, . . . , as) for the greatest common divisor of the integers a1, . . . , as, ambigu-
ity between ordered s-tuples and corresponding greatest common divisors being
easily resolved by context. Finally, we write ‖θ‖ for min{|θ −m| : m ∈ Z}.

The author is grateful to the referee for useful comments.

2. An auxiliary mean value estimate via shifts

Our starting point is a method applied in the proof of [15, Theorem 2.1],
whereby the latent translation-dilation invariance of the system (1.3) is applied
to generate additional cancellation. Define f(α;X) as in (1.1). Then, when
h ∈ Z3 and B ⊆ R is measurable, we put

Is(B;X;h) =

∫
B

∫ 1

0

∫ 1

0

|f(α;X)|2se(−α · h) dα, (2.1)

in which α · h = α1h1 + α2h2 + α3h3 and dα denotes dα1 dα2 dα3. Thus, in
particular, we find from (1.2) that Is([0, 1);X;h) = Bs(X;h). We also make
use of the auxiliary generating function

g(α, θ;X) =
∑

16y6X

e
(
yθ + 2h1yα2 + (3h2y + 3h1y

2)α3

)
. (2.2)

Lemma 2.1. Suppose that s ∈ N, h ∈ Z3 and B ⊆ R is measurable. Then

Is(B;X;h)� X−1(logX)2s sup
Γ∈[0,1)

∫
B

∫ 1

0

∫ 1

0

|f(α; 2X)2sg(α,Γ;X)| dα.

Proof. For every integral shift y with 1 6 y 6 X, one has

f(α;X) =
∑

1+y6x6X+y

e
(
α3(x− y)3 + α2(x− y)2 + α1(x− y)

)
. (2.3)

Write

fy(α; γ) =
∑

16x62X

e
(
α3(x− y)3 + α2(x− y)2 + (α1 + γ)(x− y)

)
(2.4)

and

K(γ) =
∑

16z6X

e(−γz).

Then it follows from (2.3) via orthogonality that when 1 6 y 6 X, one has

f(α;X) =

∫ 1

0

fy(α; γ)K(γ) dγ. (2.5)

Next we substitute (2.5) into (2.1). Define

Fy(α;γ) =
s∏
i=1

fy(α; γi)fy(−α;−γs+i), (2.6)

K̃(γ) =
s∏
i=1

K(γi)K(−γs+i)
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and

I(γ; y;h) =

∫
B

∫ 1

0

∫ 1

0

Fy(α;γ)e(−α · h) dα. (2.7)

Then, when 1 6 y 6 X, we see that

Is(B;X;h) =

∫
[0,1)2s

I(γ; y;h)K̃(γ) dγ. (2.8)

By orthogonality, it is apparent from (2.6) that∫ 1

0

∫ 1

0

Fy(α;γ)e(−α · h) dα1 dα2 =
∑

16x62X

∆(α3,γ;h, y), (2.9)

where ∆(α3,γ;h, y) is equal to

e

( s∑
i=1

(
α3

(
(xi − y)3 − (xs+i − y)3

)
+ (γi(xi − y)− γs+i(xs+i − y))

)
− α3h3

)
,

when
s∑
i=1

(
(xi − y)j − (xs+i − y)j

)
= hj (j = 1, 2), (2.10)

and otherwise ∆(α3,γ;h, y) is equal to 0.

By applying the binomial theorem within (2.10), we obtain the relations

s∑
i=1

(xi − xs+i) = h1,

s∑
i=1

(x2
i − x2

s+i) = h2 + 2yh1,

s∑
i=1

(x3
i − x3

s+i) = 3yh2 + 3y2h1 +
s∑
i=1

(
(xi − y)3 − (xs+i − y)3

)
.

Therefore, if we define Γ = Γ(γ) by taking

Γ(γ) =
s∑
i=1

(γi − γs+i),

and then write

gy(α;h;γ) = e

(
−

3∑
j=1

αj

j−1∑
l=0

(
j

l

)
hj−ly

l − yΓ(γ)

)
,

then we deduce from (2.6) and (2.9) that∫ 1

0

∫ 1

0

Fy(α;γ)e(−α · h) dα1 dα2 =

∫ 1

0

∫ 1

0

F0(α;γ)gy(α;h;γ) dα1 dα2.

(2.11)
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Referring next to (2.8), we see that when X ∈ N one obtains the relation

Is(B;X;h) = X−1
∑

16y6X

∫
[0,1)2s

I(γ; y;h)K̃(γ) dγ.

Thus, we infer from (2.7) and (2.11) that

Is(B;X;h)� X−1

∫
[0,1)2s

|H(γ)K̃(γ)| dγ, (2.12)

where

H(γ) =

∫
B

∫ 1

0

∫ 1

0

F0(α;γ)G(α;h;γ) dα, (2.13)

and
G(α;h;γ) =

∑
16y6X

gy(α;h;γ). (2.14)

We now aim to simplify the upper bound (2.12). Observe first that by
reference to (2.6), it follows from the elementary inequality

|z1 · · · zn| 6 |z1|n + . . .+ |zn|n

that

|F0(α;γ)| 6
2s∑
i=1

|f0(α; γi)|2s =
2s∑
i=1

|f0(α3, α2, α1 + γi; 0)|2s.

Also, from (2.2) and (2.14) we have

|G(α;h;γ)| =
∣∣∣∣ ∑
16y6X

e
(
yΓ(γ) + 2h1yα2 + (3h2y + 3h1y

2)α3

)∣∣∣∣
= |g(α,Γ(γ);X)|.

Therefore, since |G(α;h;γ)| does not depend on α1, it follows from (2.13) via
a change of variable that

|H(γ)| �
∫
B

∫ 1

0

∫ 1

0

|f0(α; 0)2sg(α,Γ(γ);X)| dα. (2.15)

Define

Us(B) = sup
Γ∈[0,1)

∫
B

∫ 1

0

∫ 1

0

|f(α; 2X)2sg(α,Γ;X)| dα.

Also, recall that∫ 1

0

|K(γ)| dγ �
∫ 1

0

min{X, ‖γ‖−1} dγ � log(2X),

and note from (1.1) and (2.4) that f0(α; 0) = f(α; 2X). Then we deduce from
(2.15) that |H(γ)| 6 Us(B), and hence (2.12) yields the bound

Is(B;X;h)� X−1Us(B)

(∫ 1

0

|K(γ)| dγ
)2s

� X−1(log(2X))2sUs(B).
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This completes the proof of the lemma. �

3. Further auxiliary mean value estimates

We now prepare mean value estimates of use in bounding a minor arc con-
tribution of utility in an application of the Hardy-Littlewood method. Recall-
ing the exponential sum g(α, θ;X) defined in (2.2), and writing g(α;X) =
g(α, 0;X), these mixed mean values take the shape

Θm(X;h) =

∫
[0,1)3
|f(α; 2X)2mg(α;X)6| dα (m ∈ N). (3.1)

Lemma 3.1. When h ∈ Z3 and h1 6= 0, one has Θ1(X;h)� X4 log(2X).

Proof. By orthogonality, one has∫ 1

0

|f(α; 2X)|2 dα1 6 2X.

Then since g(α;X) is independent of α1, we deduce from (3.1) that

Θ1(X;h) 6 2X

∫
[0,1)2
|g(0, α2, α3;X)|6 dα2 dα3. (3.2)

A second application of orthogonality reveals that the integral on the right
hand side here counts the number of integral solutions T0(X) of the system

3h1

3∑
i=1

(x2
i − y2

i ) + 3h2

3∑
i=1

(xi − yi) = 0,

2h1

3∑
i=1

(xi − yi) = 0,

with 1 6 xi, yi 6 X (1 6 i 6 3). Since, by hypothesis, one has h1 6= 0, we see
that T0(X) counts the integral solutions of the Vinogradov system of equations

3∑
i=1

(xji − y
j
i ) = 0 (j = 1, 2),

with the same conditions on x and y. Thus T0(X) � X3 log(2X) (a precise
asymptotic formula can be found in [3]), and the conclusion of the lemma
follows by substituting this upper bound into (3.2). �

We next consider mean values in which the multiplicity of the generating
functions f(α; 2X) is increased by appealing to the Hardy-Littlewood method.
With this goal in mind, we introduce a Hardy-Littlewood dissection. When Q
is a real parameter with 1 6 Q 6 X, we define the set of major arcs M(Q) to
be the union of the arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 QX−3},
with 0 6 a 6 q 6 Q and (a, q) = 1. We then define the complementary set of
minor arcs m(Q) = [0, 1) \M(Q).
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We begin with a familiar auxiliary bound for f(α; 2X). In this context, it
is useful to define the function Ψ(α) for α ∈ [0, 1) by putting

Ψ(α) = (q +X3|qα− a|)−1,

when α ∈M(q, a) ⊆M(X), and otherwise by taking Ψ(α) = 0.

Lemma 3.2. One has f(α; 2X)4 � X3+ε +X4+εΨ(α3).

Proof. Suppose that α3 ∈ R, and a ∈ Z and q ∈ N satisfy (a, q) = 1 and
|α3− a/q| 6 q−2. Then from Weyl’s inequality (see [13, Lemma 2.4]), we have

|f(α; 2X)| � X1+ε(q−1 +X−1 + qX−3)1/4. (3.3)

Hence, by a standard transference principle (see [16, Lemma 14.1]), whenever
a ∈ Z and q ∈ N satisfy (a, q) = 1, one has

|f(α; 2X)| � X1+ε(λ−1 +X−1 + λX−3)1/4, (3.4)

where λ = q +X3|qα3 − a|.
When α3 ∈ [0, 1), an application of Dirichlet’s approximation theorem shows

that there exist a ∈ Z and q ∈ N with 0 6 a 6 q 6 X2, (a, q) = 1 and
|qα3−a| 6 X−2. Thus λ = q+X3|qα3−a| � X2. Note that when α3 ∈ m(X)
we must have λ > q > X, whilst for α3 ∈M(X) one has λ−1 = Ψ(α3). Then
in any case we find from (3.4) that

|f(α; 2X)|4 � X3+ε +X4+ελ−1 � X3+ε +X4+εΨ(α3),

and the conclusion of the lemma follows. �

Lemma 3.3. Suppose that h ∈ Z3 and h1 6= 0. Then one has

Θ3(X;h)� X7+ε and Θ5(X;h)� X10+ε.

Proof. By applying Lemma 3.2 to (3.1), one obtains

Θ3(X;h)� X3+εΘ1(X;h) +X4+εT1, (3.5)

where

T1 =

∫
[0,1)3

Ψ(α3)|f(α; 2X)2g(α;X)6| dα.

Moreover, as a consequence of [5, Lemma 2], we have

T1 � Xε−3(XΘ1(X;h) + T2), (3.6)

where

T2 =

∫
[0,1)2
|f(α1, α2, 0; 2X)2g(α1, α2, 0;X)6| dα1 dα2.

By orthogonality, the mean value T2 counts the integral solutions of the simul-
taneous equations

x2
1 − x2

2 = 2h1(y1 + y2 + y3 − y4 − y5 − y6),

x1 − x2 = 0,

with 1 6 x1, x2 6 2X and 1 6 yi 6 X (1 6 i 6 6). Plainly, in any such
solution one has x1 = x2, and so there are at most O(X) possible choices for
x1 and x2. Meanwhile, given y1, . . . , y5, the variable y6 is determined uniquely
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from the first of these equations, so there are O(X5) possible choices for y.
We therefore see that T2 = O(X6), and hence (3.6) delivers the bound

T1 � Xε−2Θ1(X;h) +X3+ε.

The first bound of the lemma follows by substituting this estimate into (3.5),
noting the bound Θ1(X;h)� X4+ε available from Lemma 3.1.

The second bound of the lemma is obtained by applying Lemma 3.2 to (3.1)
again, yielding

Θ5(X;h)� X3+εΘ3(X;h) +X4+εT3, (3.7)

where

T3 =

∫
[0,1)3

Ψ(α3)|f(α; 2X)6g(α;X)6| dα.

Again utilising [5, Lemma 2], we deduce that

T3 � Xε−3(XΘ3(X;h) + T4), (3.8)

where

T4 =

∫
[0,1)2
|f(α1, α2, 0; 2X)6g(α2, α2, 0;X)6| dα1 dα2.

By applying the trivial estimate |g(α1, α2, 0;X)| = O(X), we see that

T4 � X6

∫
[0,1)2
|f(α1, α2, 0; 2X)|6 dα1 dα2 � X6 ·X3+ε.

Here, applying orthogonality, we recognised that the last integral is equal to
our acquaintance T0(2X) introduced in the proof of Lemma 3.1, and shown
therein to be O(X3+ε). We thus deduce from (3.8) that

T3 � Xε−2Θ3(X;h) +X6+ε.

The second bound of the lemma follows by substituting this estimate into (3.7),
noting the first bound Θ3(X;h)� X7+ε already obtained. �

We convert the second bound of Lemma 3.3 into one suitable for later use.
In this context, it is convenient to introduce the mean value

V (Γ;X;h) =

∫
[0,1)3
|f(α; 2X)10g(α,Γ;X)6| dα.

Lemma 3.4. Suppose that h ∈ Z3 and h1 6= 0. Then one has

sup
Γ∈[0,1)

V (Γ;X;h)� X10+ε.



CUBIC VINOGRADOV SYSTEM 11

Proof. By orthogonality, the mean value V (Γ;X;h) counts the integral solu-
tions of the system

5∑
i=1

(x3
i − y3

i ) = 3h2

3∑
j=1

(uj − vj) + 3h1

3∑
j=1

(u2
j − v2

j )

5∑
i=1

(x2
i − y2

i ) = 2h1

3∑
j=1

(uj − vj)

5∑
i=1

(xi − yi) = 0,

with 1 6 xi, yi 6 2X (1 6 i 6 5) and 1 6 uj, vj 6 X (1 6 j 6 3), and with
each solution x,y,u,v being counted with weight

e(−Γ(u1 + u2 + u3 − v1 − v2 − v3)).

Since the latter weight is unimodular, we obtain an upper bound for V (Γ;X;h)
by replacing that weight with 1, or equivalently, by setting Γ to be 0. Thus,
by reference to (3.1), we conclude that

sup
Γ∈[0,1)

V (Γ;X;h) 6 V (0;X;h) = Θ5(X;h).

The conclusion of the lemma is therefore immediate from Lemma 3.3. �

4. A first minor arc bound

Before announcing our first estimate of minor arc type, we recall a standard
consequence of Weyl’s inequality. Recall the set of minor arcs m(Q) defined
in the preamble to Lemma 3.2, and suppose that α3 ∈ m(Q). By Dirichlet’s
approximation theorem, there exist a ∈ Z and q ∈ N with 0 6 a 6 q 6 Q−1X3,
(a, q) = 1 and |qα3 − a| 6 QX−3. Since α3 ∈ m(Q) one has q > Q, and thus
we deduce from Weyl’s inequality (3.3) that

sup
α3∈m(Q)

sup
(α1,α2)∈[0,1)2

|f(α; 2X)| � X1+εQ−1/4. (4.1)

Lemma 4.1. Let s be a natural number with s > 6, and put δ = 2s − 35/3.
Then whenever h ∈ Z3 and h1 6= 0, one has

Is(m(Q);X;h)� X2s−6+εQ−δ/4.

Proof. We find from Lemma 2.1 that

Is(m(Q);X;h)� Xε−1 sup
Γ∈[0,1)

Ws(Γ;X;h), (4.2)

where

Ws(Γ;X;h) =

∫
m(Q)

∫ 1

0

∫ 1

0

|f(α; 2X)2sg(α,Γ;X)| dα.
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An application of Hölder’s inequality reveals that whenever s > 6, one has

Ws(Γ;X;h) 6

(
sup

α3∈m(Q)

sup
(α1,α2)∈[0,1)2

|f(α; 2X)|
)2s−35/3

U
5/6
1 U

1/6
2 , (4.3)

in which we write

U1 =

∫
[0,1)3
|f(α; 2X)|12 dα and U2 =

∫
[0,1)3
|f(α; 2X)10g(α,Γ;X)6| dα.

The cubic case of the main conjecture in Vinogradov’s mean value theorem
established by the author [17] shows that U1 � X6+ε. Meanwhile, the bound
U2 � X10+ε is confirmed in Lemma 3.4. By substituting these bounds together
with (4.1) into (4.3), we obtain the estimate

Ws(Γ;X;h)� Xε
(
XQ−1/4

)2s−35/3 (
X6
)5/6 (

X10
)1/6 � X2s−5+εQ−δ/4.

The conclusion of the lemma follows by substituting this bound into (4.2). �

5. The Hardy-Littlewood dissection

Our application of the Hardy-Littlewood method follows the strategy pur-
sued in our recent work on the Hilbert-Kamke problem (see [20]), though
equipped in this instance with the minor arc estimate prepared in §4. We be-
gin our discussion by introducing a close relative of the mean value Is(B;X;h)
introduced in (2.1). Thus, when A ⊆ [0, 1)3 is measurable, we define the mean
value Ts(A;h) = Ts(A;X;h) by putting

Ts(A;X;h) =

∫
A

|f(α;X)|2se(−α · h) dα. (5.1)

We require an appropriate Hardy-Littlewood dissection of the unit cube
[0, 1)3 into major and minor arcs. When Z is a real parameter with 1 6 Z 6 X,
we define the set of major arcs K(Z) to be the union of the arcs

K(q, a;Z) = {α ∈ [0, 1)3 : |αj − aj/q| 6 ZX−j (1 6 j 6 3)},

with 1 6 q 6 Z, 0 6 aj 6 q (1 6 j 6 3) and (q, a1, a2, a3) = 1. We then define
the complementary set of minor arcs k(Z) = [0, 1)3 \ K(Z).

We have already defined the one-dimensional Hardy-Littlewood dissection of
[0, 1) into the sets of arcs M(Q) and m(Q). We now fix L = X1/72 and Q = L3,
and abbreviate our notation by writing M = M(Q) and m = m(Q). Next, we
define intermediate sets of 3-dimensional arcs N = K(Q2) and n = k(Q2). We
also need a narrow set of major arcs P = K(L) and a corresponding set of minor
arcs p = k(L). It is convenient, in this context, to write P(q, a) = K(q, a;L). As
is easily verified, one has P ⊆ [0, 1)2×M. Hence, the set of points (α1, α2, α3)
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lying in [0, 1)3 may be partitioned into the four disjoint subsets

W1 = [0, 1)2 ×m,

W2 =
(
[0, 1)2 ×M

)
∩ n,

W3 =
(
[0, 1)2 ×M

)
∩ (N \P),

W4 = P.

Thus, on comparing (1.2) and (5.1), we find that

Bs(X;h) = Ts([0, 1)3;X;h) =
4∑
i=1

Ts(Wi;X;h). (5.2)

Our work in §§2, 3 and 4 bounds Ts(W1;h).

Lemma 5.1. Let s be a positive integer with s > 6, and put δ = 2s − 35/3.
Then, whenever h ∈ Z3 and h1 6= 0, one has

Ts(W1;h)� X2s−6−δ/100.

Proof. By substituting Q = X1/24 into Lemma 4.1, we find that

Ts(W1;h) = Is(m(Q);X;h)� X2s−6+ε ·X−δ/96,

and the conclusion of the lemma follows at once. �

6. Further minor arc estimates

Our analysis of the sets of arcs W2 and W3 within (5.2) involves standard
tools from the theory of Vinogradov’s mean value theorem. We begin by
recording an estimate of Weyl type for the exponential sum f(α;X).

Lemma 6.1. One has

sup
α∈n
|f(α;X)| � X1−1/54 and sup

α∈p
|f(α;X)| � X1−1/324.

Proof. This is the case k = 3 of [20, Lemma 4.1]. �

Lemma 6.2. Suppose that h ∈ Z3 and 2s > 11. Then one has

Ts(W2;h)� X2s−6−1/110.

Proof. By applying the triangle inequality to (5.1), we find that

Ts(W2;h)�
(

sup
α∈n
|f(α;X)|

)2s−6
∫
M

∫ 1

0

∫ 1

0

|f(α;X)|6 dα. (6.1)

Here, by orthogonality, the inner mean value∫
[0,1)2
|f(α;X)|6 dα1 dα2

counts the integral solutions of the system of equations
3∑
i=1

(xji − y
j
i ) = 0 (j = 1, 2),
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with 1 6 xi, yi 6 X (1 6 i 6 3), and with each solution x,y being counted
with the unimodular weight

e

(
α3

3∑
i=1

(x3
i − y3

i )

)
.

Making use of the familiar bound in the quadratic case of Vinogradov’s mean
value theorem, and observing that mes(M)� Q2X−3, we thus conclude that∫

M

∫ 1

0

∫ 1

0

|f(α;X)|6 dα� X3+εmes(M)� Q2Xε. (6.2)

Substituting the bound (6.2) into (6.1), and invoking Lemma 6.1, we obtain

Ts(W2;h)� (X1−1/54)2s−6Q2Xε � X2s−6(Xε−5/54Q2).

Since Q = X1/24, the conclusion of the lemma follows at once. �

The analysis of the set of arcs W3 is accomplished via the standard literature.

Lemma 6.3. When u > 8, one has∫
N

|f(α;X)|u dα�u X
u−6.

Proof. This is essentially [18, Lemma 7.1], following by the methods of [2]. �

We may now announce our estimate for Ts(W3;h).

Lemma 6.4. Suppose that h ∈ Z3 and s > 5. Then one has

Ts(W3;h)� X2s−6−1/324.

Proof. Since W3 ⊆ N \P, we have

sup
α∈W3

|f(α;X)| 6 sup
α∈p
|f(α;X)|.

Thus, by the triangle inequality,

Ts(W3;h)� X2s−10
(

sup
α∈p
|f(α;X)|

)∫
N

|f(α;X)|9 dα.

Then as a consequence of Lemmata 6.1 and 6.3, we obtain the bound

Ts(W3;h)� X2s−10 ·X1−1/324 ·X3 � X2s−6−1/324.

This completes the proof of the lemma. �
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7. The major arc contribution

By substituting the estimates supplied by Lemmata 5.1, 6.2 and 6.4 into
(5.2), noting also that W4 = P, we find that whenever s > 6, one has

Bs(X;h) = Ts(P;h) + o(X2s−6). (7.1)

In this section we analyse the major arc contribution Ts(P;h). This is routine,
though the small number of available variables requires appropriate recourse
to the literature.

Recall the notation (1.4) and (1.5). When α ∈ P(q, a) ⊆ P, put

V (α; q, a) = q−1S(q, a)I(α− a/q;X),

where we write

I(β;X) =

∫ X

0

e(β1γ + β2γ
2 + β3γ

3) dγ = XI
(
β1X, β2X

2, β3X
3
)
.

We then define the function V (α) to be V (α; q, a) when α ∈ P(q, a) ⊆ P,
and to be zero otherwise. It now follows from [13, Theorem 7.2] that when
α ∈ P(q, a) ⊆ P, one has

f(α;X)− V (α)� q +X|qα1 − a1|+X2|qα2 − a2|+X3|qα3 − a3|
� L2.

Thus, uniformly in α ∈ P, we have

|f(α;X)|2s − |V (α)|2s � X2s−1L2.

Since mes(P)� L7X−6, we deduce from (5.1) that

Ts(P;h) =

∫
P

|V (α)|2se(−α · h) dα +O(L9X2s−7). (7.2)

Next, applying the definition of P in the familiar manner, we see that∫
P

|V (α)|2se(−α · h) dα = Ss(X;h)Js(X;h), (7.3)

where

Js(X;h) =

∫
X

|I(β;X)|2se(−β · h) dβ

and

Ss(X;h) =
∑

16q6L

∑
16a6q

(q,a1,a2,a3)=1

q−2s|S(q, a)|2seq(−a · h),

in which we write

X = [−LX−1, LX−1]× [−LX−2, LX−2]× [−LX−3, LX−3].

The singular integral (1.6) converges absolutely for s > 7/2 (see [2, Theorem
1.3] or [1, Theorem 1]), and moreover [13, Theorem 7.3] supplies the bound

I(β;X)� X(1 + |β1|X + |β2|X2 + |β3|X3)−1/3.
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Then we infer via two changes of variable that

Js(X;h) = X2s−6

∫
R3

|I(β)|2se
(
−β1

h1

X
− β2

h2

X2
− β3

h3

X3

)
dβ + o(X2s−6)

= (Js(h) + o(1))X2s−6 � X2s−6. (7.4)

Similarly, the singular series (1.7) converges absolutely for s > 4 (see [2, The-
orem 2.4] or [1, Theorem 1]), and in addition [13, Theorem 7.1] shows that
when (q, a1, a2, a3) = 1, one has S(q, a)� q2/3+ε. Thus, it follows that

Ss(X;h) = Ss(h) + o(1)� 1. (7.5)

By substituting (7.4) and (7.5) into (7.3), and thence into (7.2), we obtain

Ts(P;h) = (Ss(h) + o(1)) (Js(h) + o(1))X2s−6 + o(X2s−6)

= Ss(h)Js(h)X2s−6 + o(X2s−6).

By substituting this relation into (7.1), we conclude that

Bs(X;h) = Ss(h)Js(h)X2s−6 + o(X2s−6).

We note that the absolute convergence of the integral Js(h) and of the series
Ss(h) shows, via familiar technology from the circle method, that

0 6 Js(h)� 1 and 0 6 Ss(h)� 1.

This standard technology also shows that the singular series may be written
in the form

Ss(h) =
∏
p

$p(s,h),

where for each prime number p, the p-adic density $p(s,h) is defined by

$p(s,h) =
∞∑
h=0

∑
16a6ph

(p,a1,a2,a3)=1

p−2sh|S(ph, a)|2seph(−a · h).

The positivity of Js(h) and Ss(h) corresponds to the existence of non-singular
real and p-adic solutions to the system (1.3). Granted the existence of primitive
such solutions, the standard theory shows that Js(h) � 1 and Ss(h) � 1.
This confirms the conclusion of Theorem 1.1.

8. Non-uniform conclusions: the proof of Theorem 1.2

In our proof of Theorem 1.2, we abandon the uniformity in h implicit in the
error term of Theorem 1.1, though now we require only that h2 6= 0. The case
h1 6= 0 having already been handled in Theorem 1.1, we assume that h1 = 0
and h2 6= 0. In such circumstances, it now follows from (2.2) that

g(α;X) =
∑

16y6X

e(3h2yα3).

We begin by deriving an analogue of Lemma 3.3.
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Lemma 8.1. Suppose that h ∈ Z3 and h1 = 0, h2 6= 0. Then one has∫
[0,1)3
|f(α; 2X)10g(α;X)2| dα�h2 X

6+ε. (8.1)

Proof. By orthogonality, the mean value in (8.1) counts the integral solutions
of the system of equations

5∑
i=1

(x3
i − y3

i ) = 3h2(z1 − z2),

5∑
i=1

(x2
i − y2

i ) = 0, (8.2)

5∑
i=1

(xi − yi) = 0,

with 1 6 xi, yi 6 2X (1 6 i 6 5) and 1 6 z1, z2 6 X. Thus, we find that∫
[0,1)3
|f(α; 2X)10g(α;X)2| dα� XU1, (8.3)

where U1 counts the number of integral solutions of the system∣∣∣∣ 5∑
i=1

(x3
i − y3

i )

∣∣∣∣ < 3|h2|X,

5∑
i=1

(x2
i − y2

i ) = 0,

5∑
i=1

(xi − yi) = 0,

with 1 6 xi, yi 6 2X (1 6 i 6 5).

A standard argument (see [14, Lemma 2.1]) shows from here that

U1 � |h2|X
∫ 1/X

−1/X

∫ 1

0

∫ 1

0

|f(α; 2X)|10 dα.

As a direct consequence of [8, Theorem 3.3], however, we have the bound∫ 1/X

−1/X

∫ 1

0

∫ 1

0

|f(α; 2X)|10 dα� X4+ε. (8.4)

Thus we deduce that U1 � |h2|X5+ε, and the upper bound of the lemma
follows at once from (8.3). �

By substituting the estimate (8.1) within the argument of the proof of
Lemma 3.4, we readily deduce the bound contained in the following lemma.
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Lemma 8.2. Suppose that h ∈ Z3 and h1 = 0, h2 6= 0. Then one has

sup
Γ∈[0,1)

∫
[0,1)3
|f(α; 2X)10g(α,Γ;X)2| dα�h2 X

6+ε.

Proof. We may proceed as in the proof of Lemma 3.4, adopting the notation
therein. Thus, the mean value∫

[0,1)3
|f(α; 2X)10g(α,Γ;X)2| dα

counts the integral solutions of the system (8.2) with each solution x,y, z
being counted with weight e (−Γ(z1 − z2)). Since this weight is unimodular, it
follows via orthogonality that

sup
Γ∈[0,1)

∫
[0,1)3
|f(α; 2X)10g(α,Γ;X)2| dα 6

∫
[0,1)3
|f(α; 2X)10g(α;X)2| dα.

The conclusion of the lemma therefore follows at once from Lemma 8.1. �

In the interests of concision, we extract from Lemma 8.2 the estimate

sup
Γ∈[0,1)

∫
[0,1)3
|f(α; 2X)10g(α,Γ;X)6| dα�h2 X

10+ε (8.5)

by means of the trivial bound |g(α,Γ;X)| = O(X). Equipped with this as
a direct substitute for the estimate delivered by Lemma 3.4, we see that no
modification whatsoever is required in the discussion of §§4 to 7 in order to
deliver the asymptotic formula (1.8) provided that s > 6, and X is sufficiently
large in terms of h2. This completes the proof of Theorem 1.2. The reason
that the latter condition concerning h2 must be imposed is simply that the
minor arc bound

Is(m(Q);X;h)�h2 X
2s−6+εQ−δ/4

derived in the analogue of Lemma 4.1 must now have dependence on h2 in the
implicit constant, as a consequence of this same dependence in (8.5). It would
not be difficult to ensure that the asymptotic formula (1.8) remains valid, with
an acceptable error term, for values of h2 satisfying |h2| 6 X1/2, or indeed a
little larger still. However, in order to permit values of h2 having absolute value
nearly as large as X2, in order to accommodate the most general situation,
one would need to obtain sharp variants of the cap estimate (8.4). We shall
have more to say on such matters in a future communication.
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