
ON WARING’S PROBLEM:

BEYOND FREĬMAN’S THEOREM
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Abstract. Let ki ∈ N (i > 1) satisfy 2 6 k1 6 k2 6 . . .. Frĕıman’s theorem
shows that when j ∈ N, there exists s = s(j) ∈ N such that all large integers n

are represented in the form n = x
kj
1 + x

kj+1

2 + . . . + x
kj+s−1
s , with xi ∈ N, if and

only if
∑

k−1
i diverges. We make this theorem effective by showing that, for each

fixed j, it suffices to impose the condition
∞∑
i=j

k−1
i > 2 log kj + 4.71.

More is established when the sequence of exponents forms an arithmetic progres-
sion. Thus, for example, when k ∈ N and s > 100(k + 1)2, all large integers n are

represented in the form n = xk1 + xk+1
2 + . . . + xk+s−1

s , with xi ∈ N.

1. Introduction

Recent advances in the smooth number technology associated with Waring’s
problem (see [3]) make possible an investigation of the cognate problem to which
Frĕıman’s theorem provides a qualitative answer. Consider then natural numbers
ki (i > 1) satisfying 2 6 k1 6 k2 6 . . .. We address the problem of determining
circumstances in which, given j ∈ N, there exists a natural number s = s(j) such
that all large integers n are represented in the form

x
kj
1 + x

kj+1

2 + . . .+ x
kj+s−1
s = n,

with xi ∈ N (1 6 i 6 s). Frĕıman’s theorem, announced in 1949 (see [6]), asserts
that such holds if and only if the infinite series

∑
k−1
i diverges. Although Frĕıman

sketches a proof of this claim in [7], his argument contains a number of obscurities.
A detailed proof of this conclusion was subsequently given by Scourfield in 1960 (see
[12, Theorem 1]). We now provide an effective version of this conclusion.

Theorem 1.1. Let ki ∈ N (i > 1) satisfy 2 6 k1 6 k2 6 . . .. Suppose that s is a
natural number for which

s∑
i=3

1

ki
> 2 log k1 +

1

k2
+ 3.20032.

Then all sufficiently large natural numbers n are represented in the form

xk11 + xk22 + . . .+ xkss = n,

with xi ∈ N (1 6 i 6 s).

2020 Mathematics Subject Classification. 11P05, 11P55.
Key words and phrases. Waring’s problem, Frĕıman’s theorem, Hardy-Littlewood method.
First author supported by Deutsche Forschungsgemeinschaft Project Number 255083470. Second

author supported by NSF grants DMS-1854398 and DMS-2001549.

1
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Since the hypotheses of Theorem 1.1 impose the condition k2 > k1 > 2, one
obtains an immediate consequence of this theorem that implies Frĕıman’s theorem.

Corollary 1.2. Let ki ∈ N (i > 1) satisfy 2 6 k1 6 k2 6 . . ., and suppose that
j ∈ N. Then whenever s is a natural number for which

j+s−1∑
i=j

1

ki
> 2 log kj + 4.71, (1.1)

all sufficiently large natural numbers n are represented in the form

x
kj
1 + x

kj+1

2 + . . .+ x
kj+s−1
s = n,

with xi ∈ N (1 6 i 6 s).

By making better use of sharper Weyl exponents available for smaller exponents,
most particularly in the situation in which one or more of the ki are equal to 2,
it would not be difficult to reduce the number 4.71 occurring in the lower bound
(1.1) of the statement of Corollary 1.2. Back of the envelope computations suggest
that a number comfortably below 3.5 should be accessible. For larger values of k1,
and k2 large compared to k1, on the other hand, the conclusion of Theorem 1.1
has strength reflecting the limits of current technology. Standard heuristics from
the circle method, meanwhile, suggest that the conclusion of Corollary 1.2 should
remain valid provided only that

j+s−1∑
i=j

1

ki
> 4.

If one is prepared to accept a local solubility condition, then the assumption of
square-root cancellation for the mean values of exponential sums encountered in the
application of the circle method would reduce the lower bound 4 here to 2, while
the most optimistic heuristics would reduce this number further to 1.

We now turn to the special case of this variant of Waring’s problem involving
mixed powers in which the exponents consist of consecutive terms of an arithmetic
progression. Thus, when k and r are non-negative integers with k > 2, we consider
the representation of large positive integers n in the shape

xk1 + xk+r
2 + . . .+ xk+r(s−1)

s = n, (1.2)

with xi ∈ N (1 6 i 6 s). We denote by R(k, r) the least number s having the
property that all large integers n are represented in the form (1.2). In particular,
the important number G(k) familiar to aficionados of Waring’s problem is equal
to R(k, 0). Moreover, the pioneering work of Roth [11, Theorem 2] shows that
R(2, 1) 6 50, which is to say that all large enough integers n have a representation
in the shape

n = x2
1 + x3

2 + . . .+ x51
50,

with xi ∈ N (1 6 i 6 50).

Theorem 1.3. Let k and r be natural numbers with k > 2. Then, uniformly in k
and r one has R(k, r) 6 A(r)(k+1)r+1, where A(r) = r−125r(r+1)r+1. Meanwhile,
when r > k one has R(k, r) 6 (6k + 6)2r.
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It would appear that the only previous work concerning this problem of such
generality hitherto available in the literature is that due to Scourfield [12, Theorem
2]. The latter work shows that when k > 12, one has

R(k, r) 6 C(r)k4r+1(log k)2r,

in which C(r) is a quantity depending at most on r, but apparently growing some-
what more rapidly than exp(8r2). Meanwhile, the early work of Roth [11] showing
that R(2, 1) 6 50 has been improved by a sequence of authors over the past seven
decades (see [1, 2, 4, 5, 13, 14, 15, 16, 17, 18]). Most recently, Liu and Zhao [9] have
shown that R(2, 1) 6 13. As r increases in equation (1.2), the number of summands
required to apply available technology increases rapidly. Thus, recent work of Kuan,
Lesesvre and Xiao [8, Theorem 2] asserts that R(2, 2) 6 133.

We isolate two cases of the representation problem (1.2) for special attention.
First, in the case r = 1, we note that Ford [5, Theorems 2 and 3] has shown that
R(3, 1) 6 72, and that for large values of k one has R(k, 1) � k2 log k. A corollary
of Theorem 1.3 improves the order of magnitude of the latter bound.

Corollary 1.4. When k is an integer with k > 2, one has R(k, 1) 6 100(k + 1)2.

Thus, when k > 2 and s > 100(k+1)2, all large integers n possess a representation
in the shape

xk1 + xk+1
2 + . . .+ xk+s−1

s = n,

with xi ∈ N (1 6 i 6 s). The cognate problem in which one seeks representations
of large integers n in the shape

xk1 + x2k
2 + . . .+ xsks = n,

with xi ∈ N (1 6 i 6 s), is considerably more difficult. Here, by taking r = k in
Theorem 1.3 we obtain the following conclusion.

Corollary 1.5. Let k be an integer with k > 2. Then R(k, k) 6 (6k + 6)2k.

For comparison, the aforementioned work of Scourfield [12] would deliver a much
weaker bound of the general shape R(k, k) � exp(ck2) for a suitable c > 0. It
is worth remarking, however, that the heuristic arguments noted in the discussion
following the statement of Corollary 1.2 suggest that one should have bounds of the
shape R(k, 1)� k and R(k, k)� ek.

Our proofs of Theorems 1.1 and 1.3 are based on applications of the Hardy-
Littlewood method, and the basic infrastructure associated with this treatment is
outlined in §2. Then, in §3 we prepare a novel Weyl-type estimate for exponential
sums over smooth numbers. This eases our path in subsequent discussions and will
likely be of independent interest. We combine this estimate with an upper bound for
mean values of smooth Weyl sums in §4, making use of our recent work [3] concerning
Waring’s problem. Thereby, we obtain an acceptable upper bound for appropriate
sets of minor arcs relevant to Theorem 1.1 and the second conclusion of Theorem 1.3.
A refinement of this approach in §5 applies for the minor arc contribution needed
for the proof of the first conclusion of Theorem 1.3. The corresponding major arc
contributions are discussed in §6, the positivity of the singular series requiring some
additional discussion in §7.

In this paper the letter p is reserved to denote a prime number. We use the
standard notation ph‖n to indicate that ph|n and ph+1 - n. Also, we write ‖θ‖ for
min{|θ − n| : n ∈ Z} and e(z) for e2πiz.
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We are grateful to the referee of this paper for useful contributions. We also thank
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2. Preliminary infrastructure

The proofs of Theorems 1.1 and 1.3 make use of the Hardy-Littlewood method,
with smooth Weyl sums playing a pivotal role. We denote the set of R-smooth
integers not exceeding P by A (P,R), so that

A (P,R) = {n ∈ [1, P ] ∩ Z : p|n implies p 6 R}.

We note that the standard theory of smooth numbers shows that whenever η ∈ (0, 1),
then there is a positive number cη with the property that card(A (P,R)) ∼ cηP as
P →∞ (see for example [19, Lemma 12.1]).

Fix ki ∈ N (i > 1) with 2 6 k1 6 k2 6 . . .. Let s be a natural number, and define
θ = θs(k) by putting

θs(k) =

s∑
i=1

1

ki
. (2.1)

For now, it suffices to remark that we have in mind imposing the condition θ > 2,
although we shall later impose more onerous conditions on s. We consider a natural
number n sufficiently large in terms of s and k1, . . . , ks, and we seek a representation
of n in the form

xk11 + xk22 + . . .+ xkss = n. (2.2)

When 1 6 i 6 s, we put

Pi = n1/ki (2.3)

and observe that all positive integral solutions of the Diophantine equation (2.2)
satisfy the bound xi 6 Pi (1 6 i 6 s). Fix η to be a positive number sufficiently
small in terms of s and k1, . . . , ks, in a manner that will become clear in due course.
Our goal is to establish a lower bound for the number T (n; η) of solutions of the
equation (2.2) with xi ∈ A (Pi, P

η
i ) (1 6 i 6 s).

The smooth Weyl sums fi(α) that are key to our arguments are defined by

fi(α) =
∑

x∈A (Pi,P
η
i )

e(αxki). (2.4)

Writing

F (α) = f1(α)f2(α) · · · fs(α), (2.5)

it follows via orthogonality that

T (n; η) =

∫ 1

0
F (α)e(−nα) dα. (2.6)

We derive an asymptotic formula for T (n; η) by means of the circle method,
the successful application of which requires the introduction of a Hardy-Littlewood
dissection. Write L = log n. We take the set of major arcs K to be the union of the
intervals

K(q, a) = {α ∈ [0, 1) : |α− a/q| 6 L1/15n−1},
with 0 6 a 6 q 6 L1/15 and (a, q) = 1. The set of minor arcs complementary to
K is then k = [0, 1) \ K. Our first objective, which we complete in §§4 and 5, is to
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establish that for a suitable positive number δ, provided that s is suitably large in
terms of k, one has an upper bound of the shape∫

k
|F (α)| dα� nθ−1L−δ. (2.7)

The major arc asymptotics is then the central theme of §§6 and 7, where we confirm
the lower bound ∫

K
F (α)e(−nα) dα� nθ−1, (2.8)

again for suitably large values of s, and with n sufficiently large in terms of s, k
and η. By combining the bounds (2.7) and (2.8) within (2.6), we conclude that
T (n; η) � nθ−1, so that all large enough integers n possess a representation in the
shape (2.2). This confirms the respective conclusions of Theorems 1.1 and 1.3, the
only problem remaining being that of determining how large s must be so that the
estimates (2.7) and (2.8) hold true. Appropriate bounds on s will be determined in
§§4, 5 and 7.

3. An estimate of Weyl-type

This section concerns estimates for the exponential sums fi(α) of use on sets of
minor arcs more general than the arcs k introduced in the previous section. Consider
a natural number k > 2 and a large positive number P . We take Q to be a parameter
with 1 6 Q 6 P k/2. The major arcs M(Q) are then defined to be the union of the
sets

M(q, a;Q) = {α ∈ [0, 1) : |qα− a| 6 QP−k},
with 0 6 a 6 q 6 Q and (a, q) = 1. The complementary set of minor arcs is then
defined by putting m(Q) = [0, 1) \M(Q). Finally, we make use of the dyadically
truncated set of arcs N(Q) = M(Q) \M(Q/2). Notice that, as a consequence of

Dirichlet’s approximation theorem, one has [0, 1) = M(P k/2).

Our interest lies in estimates for the exponential sum

f(α;P,R) =
∑

x∈A (P,R)

e(αxk),

valid when R is a positive number with R 6 P η for a suitably small positive number
η, and α ∈ N(Q). In order to describe these estimates, we recall the concept of an
admissible exponent from the theory of smooth Weyl sums. A real number ∆s is
referred to as an admissible exponent (for k) if it has the property that, whenever
ε > 0 and η is a positive number sufficiently small in terms of ε, k and s, then
whenever 2 6 R 6 P η and P is sufficiently large, one has∫ 1

0
|f(α;P,R)|s dα� P s−k+∆s+ε.

Here, the underlying parameter is P and the constant implicit in Vinogradov’s no-
tation may depend on ε, η, k and s. One may confirm that for all positive numbers
s, there is no loss of generality in supposing that one has max{0, k−s/2} 6 ∆s 6 k.

In order to facilitate concision, from this point onwards we adopt the extended ε,
R notation routinely employed by scholars working with smooth Weyl sums while
applying the Hardy-Littlewood method. Thus, whenever a statement involves the
letter ε, then it is asserted that the statement holds for any positive real number
assigned to ε. Implicit constants stemming from Vinogradov or Landau symbols
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may depend on ε, as well as ambient parameters implicitly fixed such as k and s.
If a statement also involves the letter R, either implicitly or explicitly, then it is
asserted that for any ε > 0 there is a number η > 0 such that the statement holds
uniformly for 2 6 R 6 P η. Our arguments will involve only a finite number of
statements, and consequently we may pass to the smallest of the numbers η that
arise in this way, and then have all estimates in force with the same positive number
η. Notice that η may be assumed sufficiently small in terms of k, s and ε.

Associated with a family (∆s)s>0 of admissible exponents for k is the number

τ(k) = max
w∈N

k − 2∆2w

4w2
, (3.1)

an exponent which satisfies the bound τ(k) 6 1/(4k). For each positive number s,
one then has the related number

∆∗s = min
06t6s−2

(∆s−t − tτ(k)) , (3.2)

which we have described elsewhere as an admissible exponent for minor arcs (see
the preamble to [3, Theorem 5.2] for a discussion of these exponents).

We recall two consequences of our recent work [3] on Waring’s problem.

Lemma 3.1. Suppose that k > 2, s > 2 and ∆∗s is an admissible exponent for minor
arcs satisfying ∆∗s < 0. Let κ be a positive number with κ 6 k/2. Then, whenever

P κ 6 Q 6 P k/2, one has the bound∫
m(Q)
|f(α;P,R)|s dα�κ P

s−kQε−2|∆∗s |/k.

Proof. This is immediate from [3, Theorem 5.3]. �

Lemma 3.2. Suppose that s is a real number with s > 4k and ∆s is an admissible
exponent. Then whenever Q is a real number with 1 6 Q 6 P k/2, one has the
uniform bound ∫

M(Q)
|f(α;P,R)|s dα� P s−kQε+2∆s/k.

Proof. For the sake of concision, write f(α) for f(α;P,R). Suppose first that

P 1/(2k) < Q 6 P k/2. Then the conclusion of [3, Theorem 4.2] shows that when-
ever s > 2, one has ∫

M(Q)
|f(α)|s dα� P s−k+εQ2∆s/k,

and the desired conclusion is immediate.

In order to handle the range of Q with 1 6 Q 6 P 1/(2k), we turn to the bounds
made available in [21]. We take a pedestrian approach sufficient for our subsequent
application, though we note that with greater effort the condition s > 4k could
be relaxed at this point. Suppose first that α ∈ M(Q) for some real number Q
satisfying

exp((logP )1/3) 6 Q 6 P 1/(2k).

When a ∈ Z and q ∈ N satisfy (a, q) = 1 and 0 6 a 6 q 6 1
2P

k/2, the inter-

vals M(q, a; 1
2P

k/2) comprising M(1
2P

k/2) are disjoint. For α ∈ M(q, a; 1
2P

k/2) ⊆
M(1

2P
k/2), we put

Υ(α) = (q + P k|qα− a|)−1.
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Meanwhile, for α ∈ [0, 1) \M(1
2P

k/2), we put Υ(α) = 0. Note that when α ∈ N(Q)

one has Υ(α) � Q−1. Then as a consequence of [21, Lemma 7.2], much as in the
argument leading to [3, equation (6.3)], we find that when α ∈ N(Q), one has

f(α)� P (logP )3Υ(α)−ε+1/(2k) + P 1−1/(2k) � PQ2ε−1/(2k).

We remark in this context that the constraint k > 3 of [3, equation (6.3)] is unnec-
essary in present circumstances. When instead

1 6 Q 6 exp((logP )1/3),

we appeal to [21, Lemma 8.5], deducing as in the cognate argument associated with
[3, Theorem 6.1] that

f(α)� PΥ(α)−ε+1/k + P exp(−(logP )1/3)� PQ−1/(2k).

Again, the constraint k > 3 of [3] is unnecessary in present circumstances. Thus, in

view of the hypothesis s > 4k, it follows that when 1 6 Q 6 P 1/(2k) one has∫
N(Q)

|f(α)|s dα� P sQε−s/(2k)mes(M(Q))

� P sQε−s/(2k)(Q2P−k)� P s−kQε.

This again delivers the estimate asserted in the statement of the lemma, since∫
M(Q)

|f(α)|s dα 6
∞∑
l=0

2l6Q

∫
N(2−lQ)

|f(α)|s dα� P s−kQε.

This completes the proof of the lemma. �

We obtain a pointwise bound for f(α) = f(α;P,R) when α ∈ m(Q) by application
of the Sobolev-Gallagher inequality.

Lemma 3.3. Suppose that k > 2 and 0 < ρ(k) < 2τ(k)/k. Then, uniformly in

1 6 Q 6 P k/2, one has the bound

sup
α∈m(Q)

|f(α;P,R)| � PQ−ρ(k).

Proof. We consider in the first instance the situation in which P 1/(2k) 6 Q 6 P k/2.
Here, we apply Lemma 3.1 with s = u+ tk, where u = 4k and t is sufficiently large
in terms of k. The value of u here has been chosen large enough that the classical
theory of Waring’s problem is comfortably applicable. With more care one could
work with a choice for u little more than k log k. On considering the underlying
Diophantine equation, working with the value of u already chosen, it follows from
Hua’s lemma and a routine application of the circle method along the lines described
in [19, Chapter 2] that∫ 1

0
|f(α)|u dα 6

∫ 1

0

∣∣∣∣ ∑
16x6P

e(αxk)

∣∣∣∣u dα� P u−k. (3.3)

In particular, the exponent ∆s−tk = 0 is admissible for k, and thus it follows from
(3.2) that ∆∗s = −tkτ(k) is an admissible exponent for minor arcs. We therefore
infer from Lemma 3.1 that∫

m(Q)
|f(α)|s dα� P s−kQε−2tτ(k). (3.4)
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Consider next a real number α with α ∈ m(Q), and let δ be any real number with
|δ| 6 P−k. Suppose, if possible, that α+ δ ∈M(Q/2). In such circumstances, there
exist a ∈ Z and q ∈ N with (a, q) = 1, 1 6 q 6 Q/2 and |q(α + δ) − a| 6 1

2QP
−k.

Consequently, one has

|qα− a| 6 q|δ|+ 1
2QP

−k 6 QP−k,

whence α ∈ M(Q). This yields a contradiction, so we are forced to conclude that
α + δ ∈ m(Q/2). This observation allows us to estimate f(α) pointwise on m(Q)
in terms of mean values for f(α) over m(Q/2). Indeed, as a consequence of the
Sobolev-Gallagher inequality (see for example Montgomery [10, Lemma 1.1]), we
have

|f(α)|s 6 (2P−k)−1

∫
|β−α|6P−k

|f(β)|s dβ + s

∫
|β−α|6P−k

|f ′(β)f(β)s−1| dβ.

Hence, whenever α ∈ m(Q), we infer that

|f(α)|s � P kI1 + I2, (3.5)

where

I1 =

∫
m(Q/2)

|f(β)|s dβ and I2 =

∫
m(Q/2)

|f ′(β)f(β)s−1|dβ.

The bound
I1 � P s−kQε−2tτ(k) (3.6)

follows from (3.4). Meanwhile, by applying Hölder’s inequality, we see that

I2 6 I
1/u
3 I

1−1/u
4 , (3.7)

where

I3 =

∫ 1

0
|f ′(β)|u dβ and I4 =

∫
m(Q/2)

|f(β)|v dβ, (3.8)

in which

v =
s− 1

1− 1/u
.

Recall that u = 4k is even. Then since

f ′(β) = 2πi
∑

x∈A (P,R)

xke(βxk),

it follows from (3.8) by considering the underlying Diophantine equations that

I3 6 (2πP k)u
∫ 1

0
|f(β)|u dβ.

On recalling (3.3), therefore, we deduce that

I3 � (P k)uP u−k. (3.9)

Meanwhile, since s > u we have v > s, and so it follows from (3.8) via Lemma 3.1
that

I4 � P v−kQε−2|∆∗v |/k, (3.10)

where

∆∗v = −(v − u)τ(k) = −
( s− u

1− 1/u

)
τ(k) = − tkτ(k)

1− 1/u
.

On substituting (3.9) and (3.10) into (3.7), we find that

I2 � P k(P u−k)1/u(P v−k)1−1/uQε−2tτ(k) � P sQε−2tτ(k). (3.11)
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On substituting (3.6) and (3.11) into (3.5), we conclude that

|f(α)|s � P sQε−2tτ(k).

Thus, whenever α ∈ m(Q), we have f(α)� PQε−κ, where

κ =
2tτ(k)

u+ tk
.

We now take t sufficiently large in terms of k and obtain the upper bound

f(α)� PQε−2τ(k)/k.

This confirms the upper bound that we sought when P 1/(2k) 6 Q 6 P k/2.

In order to handle the range of Q with 1 6 Q < P 1/(2k), just as in the proof of
Lemma 3.2 we turn to the bounds made available in [21]. For the sake of concision
we adopt the notation of the proof of the latter lemma. Suppose first that one has
(logP )60ks 6 Q 6 P 1/(2k) and α ∈ m(Q). Then [21, Lemma 7.2] delivers the bound

f(α)� P (logP )3Υ(α)−ε+1/(2k) + P 1−τ(k)+ε

� PQ−1/(3k) � PQε−2τ(k)/k.

When instead 1 6 Q 6 (logP )60ks, we appeal to [21, Lemma 8.5], deducing that

f(α)� PΥ(α)−ε+1/k + P (logP )−60ks

� PQ−1/(2k) � PQε−2τ(k)/k.

Thus, in all circumstances, we have the estimate asserted in the statement of the
lemma, and the proof is complete. �

For the purposes of this paper, we apply a bound for τ(k) sufficient for our
applications, though falling very slightly short of the sharpest bound attainable
using current technology. In this context, it is useful to introduce the exponent
ω = ω(k), defined by

ω(k) = 1/(Dk2), where D = 4.5139506. (3.12)

Lemma 3.4. When k > 2 and 1 6 Q 6 P k/2, one has the uniform bound

sup
α∈m(Q)

|f(α;P,R)| � PQ−ω.

Proof. When k > 4, it is shown in [3, Lemma 7.1] that there is a family of admissible
exponents satisfying the property that τ(k) > (Ck)−1, where C = 9.027901 < 2D.
Thus

2

k
τ(k) >

1

Dk2
,

and the desired conclusion follows from Lemma 3.3.

When k is equal to 2 or 3, we appeal to the formula (3.1) with the crude bound
on admissible exponents available from Hua’s lemma (see [19, Lemma 2.5]). Thus,
we have the admissible exponent ∆2k = 0 since∫ 1

0
|f(α)|2k dα 6

∫ 1

0

∣∣∣∣ ∑
16x6P

e(αxk)

∣∣∣∣2k dα� P 2k−k+ε,

and hence we deduce via (3.1) that τ(2) > 1/8 and τ(3) > 3/64. Thus

2

2
τ(2) >

1

8
>

1

18
> ω(2) and

2

3
τ(3) >

1

32
>

1

40
> ω(3).
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In each of these cases, the desired conclusion again follows from Lemma 3.3. �

We finish this section with a formulation of our new minor arc estimate of sufficient
flexibility that further applications may be anticipated.

Theorem 3.5. Suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1. Then one has

f(α;P,R)� P
(
λ−1 + λP−k

)ω
,

where λ = q + P k|qα− a|.

Proof. We begin by establishing the superficially weaker assertion that, whenever
α ∈ R, c ∈ Z and t ∈ N satisfy (c, t) = 1 and |α− c/t| 6 1/t2, then

f(α)� P (t−1 + tP−k)ω. (3.13)

From this assertion, it follows via a standard transference principle (see for example
[24, Lemma 14.1]) that the conclusion of the lemma holds.

Suppose then that c and t satisfy the relations (c, t) = 1 and |α− c/t| 6 1/t2. We
apply Dirichlet’s approximation theorem. Thus, there exist b ∈ Z and r ∈ N with
(b, r) = 1 satisfying 1 6 r 6 P k/2 and |rα− b| 6 P−k/2. We now put

Q = max{r, P k|rα− b|} 6 P k/2,

so that r 6 Q and |rα − b| 6 QP−k, and either r > Q or |rα − b| > QP−k. Thus
α ∈M(Q) \M(Q/2) ⊆ m(Q/2), and it follows from Lemma 3.4 that

f(α)� PQ−ω. (3.14)

When c/t 6= b/r, it follows from the triangle inequality that

1

tr
6
∣∣∣c
t
− b

r

∣∣∣ 6 ∣∣∣α− c

t

∣∣∣+
∣∣∣α− b

r

∣∣∣ 6 1

t2
+

Q

rP k
,

whence

1 6
r

t
+
tQ

P k
.

Thus, we have either r > 1
2 t or Q > 1

2P
k/t. When instead c/t = b/r, we have b = c

and r = t, and the same conclusion holds. In either case, therefore, we find that
Q = max{r, P k|rα− b|} > 1

2 min{t, P k/t}. Thus, we infer from (3.14) that

f(α)� P
(
t−ω + (P k/t)−ω

)
� P (t−1 + tP−k)ω.

Thus the desired conclusion (3.13) follows, and the proof of the theorem is complete.
�

4. The minor arc contribution for ascending powers

We now address the representation problem (2.2) and adopt the notation of §2.
In situations wherein k2 may be substantially larger than k1, we apply a Weyl-type
estimate only for the exponential sum f1(α), estimating the remaining ones in mean.
Put

F1(α) = f1(α), G1(α) = f2(α)f3(α) · · · fs(α), (4.1)

and note that in view of (2.1), (2.3) and (2.4), one has F1(0)G1(0) � nθ. We take

Q to be a parameter with 1 6 Q 6 n1/2 and define a Hardy-Littlewood dissection



WARING’S PROBLEM 11

in accordance with that introduced in §3. Thus, the major arcs M(Q) are defined
to be the union of the sets

M(q, a;Q) = {α ∈ [0, 1) : |qα− a| 6 Qn−1},

with 0 6 a 6 q 6 Q and (a, q) = 1, and the associated set of minor arcs are defined
by setting m(Q) = [0, 1) \M(Q). Also, we put N(Q) = M(Q) \M(Q/2). Note that

N(Q) ⊆ m(Q/2). Since n = P kii for each i, these definitions align with those of §3
when considering the smooth Weyl sum fi(α).

We begin by recording a Weyl-type estimate for F1(α).

Lemma 4.1. When 1 6 Q 6 n1/2, one has the bound

sup
α∈m(Q)

|F1(α)| � F1(0)Q−1/(Dk21).

Proof. In view of (4.1), this estimate is immediate from Lemma 3.4. �

The mean value estimate that we obtain for G1(α) depends on admissible expo-
nent bounds. Here we note that, whenever v is even, the corollary to [22, Theorem
2.1] shows that the exponent ∆v is admissible for k > 4, where ∆v is the unique
positive solution of the equation

∆ve
∆v/k = ke1−v/k. (4.2)

When k is equal to 2 or 3, the admissible exponents available from Hua’s lemma show
that the real numbers ∆v defined via (4.2) are admissible. Of course, much sharper
estimates are known in these cases (see [23] for the sharpest available conclusions
when k = 3). We note that the exponent ∆s in [22] corresponds to our ∆v with
v = 2s, owing to the slightly different definition employed therein.

We next provide an upper bound for the mean value of |G1(α)| over the interme-
diate set of arcs N(Q). In this context, it is convenient to introduce the quantity

Φ1 =

s∑
i=2

1

ki
. (4.3)

Lemma 4.2. When 1 6 Q 6 n1/2, one has the bound∫
N(Q)

|G1(α)|dα� G1(0)n−1Q2Θ1 ,

where Θ1 = e1−Φ1+2/k2.

Proof. Define the exponents

ti = kiΦ1 (2 6 i 6 s). (4.4)

Then it follows from (4.3) that we have

s∑
i=2

1

ti
=

1

Φ1

s∑
i=2

1

ki
= 1,

and hence an application of Hölder’s inequality leads us from (4.1) to the bound∫
N(Q)

|G1(α)|dα 6
s∏
i=2

I
1/ti
i , (4.5)
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where

Ii =

∫
N(Q)

|fi(α)|ti dα. (4.6)

For each index i, the largest even integer not exceeding ti is larger than ti − 2,
and hence it follows from (4.2) that there is an exponent ∆ti admissible for ki with

∆ti < kie
1−(ti−2)/ki .

Since N(Q) ⊆M(Q), we find from (4.6) via Lemma 3.2 that

Ii � P ti−kii Qε+2∆ti/ki .

Thus, in view of (2.3) and (4.4), we have

Ii � P tii n
−1Q2δi (2 6 i 6 s), (4.7)

where
δi = e1−Φ1+2/ki .

On substituting (4.7) into (4.5), we conclude that∫
N(Q)

|G1(α)|dα� G1(0)n−1Q2Ω1 , (4.8)

where

Ω1 =

s∑
i=2

δi
ti
6 δ2

s∑
i=2

1

ti
= e1−Φ1+2/k2 = Θ1.

The conclusion of the lemma is therefore immediate from (4.8). �

By combining the conclusions of Lemmata 4.1 and 4.2, we obtain a minor arc
estimate sufficient for our proof of Theorem 1.1. Here and henceforth, we fix η to be
a positive number sufficiently small in terms of k1, k2, . . . , ks, and ε, in the context
of the estimates of this and the previous section relevant for the various admissible
exponents encountered. Also, we recall the notation of writing L for log n.

Lemma 4.3. Suppose that
s∑
i=2

1

ki
> 2 log k1 +

2

k2
+ 1 + log(2D). (4.9)

Then there is a positive number δ having the property that∫
k
|F (α)| dα� nθ−1L−δ.

Proof. By referring to the definition of k in §2, we see that k ⊂ m(L1/15). When

L1/15 6 Q 6 n1/2, it follows from Lemmata 4.1 and 4.2 that∫
N(Q)

|F1(α)G1(α)| dα 6
(

sup
α∈N(Q)

|F1(α)|
)∫

N(Q)
|G1(α)|dα

� F1(0)Q−1/(Dk21)G1(0)n−1Q2Θ1 .

Provided that the hypothesis (4.9) holds, it follows from (4.3) that

eΦ1 > 2e1+2/k2Dk2
1,

whence 2Θ1 < 1/(Dk2
1). Put

δ =
1

15

( 1

Dk2
1

− 2Θ1

)
.
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Then, on recalling (2.5), we may conclude thus far that∫
N(Q)

|F (α)|dα� nθ−1Q−15δ.

But k is covered by the sets N(Q) via a dyadic dissection, and we see that∫
k
|F (α)| dα 6

∞∑
l=0

2l6n1/2L−1/15

∫
N(2−ln1/2)

|F (α)|dα

� nθ−1
∞∑
l=0

2l6n1/2L−1/15

(2−ln1/2)−15δ

� nθ−1L−δ.

�

We complete this section by addressing the particular situation relevant to the
second conclusion of Theorem 1.3.

Corollary 4.4. Suppose that k and r are natural numbers with r > k > 2, and put
ki = k + r(i− 1) (1 6 i 6 s). Then, provided that s > (6k + 6)2r, there is a positive
number δ having the property that∫

k
|F (α)|dα� nθ−1L−δ.

Proof. We apply Lemma 4.3, observing that by a familiar argument one has

s∑
i=2

1

k + r(i− 1)
>

∫ s

1

dt

k + rt
=

1

r
log

(
k + rs

k + r

)
.

Thus, provided that one has

1

r
log

(
k + rs

k + r

)
> 2 log k +

2

k + r
+ 1 + log(2D), (4.10)

then the conclusion of the corollary follows from Lemma 4.3. We observe that the
hypothesis r > k ensures that

1

k + r
6

1

2k
<

1

k
− 1

2k2
< log

(
1 +

1

k

)
,

and hence e1/(k+r) < 1 + 1/k. It follows that the lower bound (4.10) is satisfied
provided that

k + rs > (2eD(k + 1)2)r(k + r).

Thus, on recalling that k 6 r, we conclude that the lower bound (4.10) holds when-
ever s > 2(2eD)r(k + 1)2r. In view of (3.12), however, a modicum of computation

confirms the bound 21+1/reD < 35 for r > 2, and hence the upper bound asserted
in the corollary holds whenever s > (6k + 6)2r, completing the proof. �
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5. An enhanced minor arc estimate

Given exponents ki (i > 1) having the property that ki is small for numerous small
indices i, one may sharpen the analysis of the minor arcs presented in the previous
section. We illustrate the underlying strategy in this section with a consideration of
the situation in which

ki = k + r(i− 1) (1 6 i 6 s),

with r small. We now put

F2(α) = f1(α)f2(α) · · · fk(α) and G2(α) = fk+1(α)fk+2(α) · · · fs(α). (5.1)

In accord with the discussion of the previous section, we have F2(0)G2(0) � nθ. In
all other respects, we adopt the notation of the previous section, with an analysis
so similar that we are able to economise on detail.

Lemma 5.1. When 1 6 Q 6 n1/2, one has the bound

sup
α∈m(Q)

|F2(α)| � F2(0)Q−1/(Dk(r+1)).

Proof. As a consequence of Lemma 3.4, it follows from (5.1) that

sup
α∈m(Q)

|F2(α)| �
k∏
i=1

PiQ
−1/(Dk2i ) = F2(0)Q−φ, (5.2)

in which we put

φ =

k∑
i=1

1

D(k + r(i− 1))2
.

However, by applying a familiar lower bound, we find that

φ >
1

D

∫ k

0

dt

(k + rt)2
=

1

Dr

(1

k
− 1

k(r + 1)

)
=

1

Dk(r + 1)
.

The conclusion of the lemma follows by substituting this estimate into (5.2). �

Our upper bound for the mean value of |G2(α)| over N(Q) is obtained through a
modification of the corresponding treatment of G1(α) in Lemma 4.2. We now put

Φ2 =

s∑
i=k+1

1

ki
. (5.3)

Lemma 5.2. When 1 6 Q 6 n1/2, one has the bound∫
N(Q)

|G2(α)|dα� G2(0)n−1Q2Θ2 ,

where Θ2 = e1−Φ2+2/(k(r+1)).

Proof. Define the exponents ti = kiΦ2 (k + 1 6 i 6 s). Then by following the
argument of the proof of Lemma 4.2 mutatis mutandis, we obtain the upper bound∫

N(Q)
|G2(α)| dα�

s∏
i=k+1

(
P tii n

−1Q2δi
)1/ti

,
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where we now write δi = e1−Φ2+2/ki . Thus we infer that∫
N(Q)

|G2(α)|dα� G2(0)n−1Q2Ω2 ,

where

Ω2 =
s∑

i=k+1

δi
ti
6 δk+1

s∑
i=k+1

1

ti
= e1−Φ2+2/(k(r+1)) = Θ2,

and this delivers the conclusion of the lemma. �

We now combine the conclusions of Lemmata 5.1 and 5.2 much as in the proof of
Lemma 4.3.

Lemma 5.3. Suppose that k and r are natural numbers with r > 1 and k > 2, and
put ki = k + r(i − 1) (1 6 i 6 s). Then, provided that s > A(r)(k + 1)r+1, where
A(r) = r−125r(r + 1)r+1, there is a positive number δ having the property that∫

k
|F (α)| dα� nθ−1L−δ.

Proof. We again have k ⊂ m(L1/15). When L1/15 6 Q 6 n1/2, we find from Lemmata
5.1 and 5.2 that∫

N(Q)
|F2(α)G2(α)|dα 6

(
sup

α∈N(Q)
|F2(α)|

)∫
N(Q)

|G2(α)| dα

� F2(0)Q−1/(Dk(r+1))G2(0)n−1Q2Θ2 . (5.4)

On recalling (5.3), we see that

Φ2 =

s∑
i=k+1

1

k + r(i− 1)
>

∫ s

k

dt

k + rt
=

1

r
log

(
k + rs

k(r + 1)

)
,

and hence

Θ2 < e1+2/(k(r+1))

(
k(r + 1)

k + rs

)1/r

.

Therefore, provided that

2e1+2/(k(r+1))

(
k(r + 1)

k + rs

)1/r

<
1

Dk(r + 1)
, (5.5)

then it follows from (5.4) that there is a positive number δ having the property that∫
N(Q)

|F2(α)G2(α)| dα� F2(0)G2(0)n−1Q−15δ. (5.6)

We now set about establishing the inequality (5.5). Observe first that since r > 1,
one has

2r

k(r + 1)2
6

1

2k
<

1

k
− 1

2k2
< log

(
1 +

1

k

)
,

and thus

e2r/(k(r+1)) < (1 + 1/k)r+1.

We consequently infer that (5.5) holds whenever

k + rs > k(r + 1)(2eDk(r + 1))r(1 + 1/k)r+1.
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On recalling (3.12), we find that 2eD < 25, and thus it follows that (5.5) holds
whenever

s > r−125r(r + 1)r+1(k + 1)r+1 = A(r)(k + 1)r+1.

Since this lower bound is one of the hypotheses of the lemma, we may henceforth
work under the assumption that the upper bound (5.6) holds.

On recalling (2.5) and (2.1), we find that (5.6) yields the bound∫
N(Q)

|F (α)|dα� nθ−1Q−15δ.

A comparison with the concluding part of the argument of the proof of Lemma 4.3,
using a dyadic dissection of k into subsets of the shape N(Q), therefore leads us from
here to the conclusion of the lemma. �

6. The major arc contribution

The goal of this section is to make progress on establishing the lower bound (2.8)
for the contribution of the major arcs to T (n; η). Throughout this section and the
next, we work under the hypothesis that

θ =
s∑
i=1

1

ki
> 2. (6.1)

The hypotheses available to us in Theorem 1.1 ensure that θ > 3, thereby confirming
(6.1) with room to spare. In the first conclusion of Theorem 1.3, meanwhile, we have
in particular s > 25r(k + 1), and thus

θ =
s∑
i=1

1

k + r(i− 1)
>

∫ s

0

dt

k + rt
=

1

r
log

(
k + rs

k

)
>

1

r
log(25r) = log 25 > 2,

and the hypothesis (6.1) again holds. On the other hand, in the second conclusion
of Theorem 1.3 one has r > k and s > (6k+ 6)2r, whence a similar argument yields

θ >
1

r
log ((6k + 6)r) = log(6k + 6) > log 18 > 2,

and (6.1) holds once again. The upshot of this discussion is that we are cleared in
all circumstances to work henceforth under the assumption that (6.1) holds.

Suppose next that α ∈ K(q, a) ⊆ K. The standard theory of smooth Weyl sums
(see [20, Lemma 5.4]) shows that there is a positive number c = c(η) such that for
1 6 i 6 s, one has

fi(α) = cq−1Si(q, a)vi(α− a/q) +O(PiL
−1/4),

wherein

Si(q, a) =

q∑
t=1

e(atki/q) and vi(β) =
1

ki

∑
m6n

m−1+1/kie(βm).

Put

J(n;X) =

∫ X/n

−X/n
v1(β)v2(β) · · · vs(β)e(−βn) dβ. (6.2)
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Also, write

S(n;X) =
∑

16q6X

q−sUn(q),

where

Un(q) =

q∑
a=1

(a,q)=1

S1(q, a)S2(q, a) · · ·Ss(q, a)e(−na/q). (6.3)

Then since K has measure O(L1/5n−1), we see that∫
K

F (α)e(−nα) dα = csJ(n;L1/15)S(n;L1/15) +O(P1P2 · · ·Psn−1L−1/20). (6.4)

We show in the next section that the singular series

S(n) =

∞∑
q=1

q−sUn(q) (6.5)

converges absolutely and uniformly for n ∈ N, and moreover that S(n) � 1 when-
ever s > 4k1 and the condition (6.1) holds. Moreover, under the latter condition we
show further that there is a positive number δ such that

S(n)−S(n;X)� X−δ. (6.6)

Next, on making use of the bound supplied by [19, Lemma 2.8], one finds that

vi(β)� Pi(1 + n‖β‖)−1/ki (1 6 i 6 s).

Hence, working under the hypothesis (6.1), we deduce from (6.2) that there is a
positive number δ such that

J(n;X) = J(n) +O(P1P2 · · ·Psn−1X−δ), (6.7)

where

J(n) =

∫ 1/2

−1/2
v1(β)v2(β) · · · vs(β)e(−βn) dβ.

A familiar approach paralleling that of [19, Theorem 2.3] shows that

J(n) =
Γ
(
1 + 1

k1

)
Γ
(
1 + 1

k2

)
· · ·Γ

(
1 + 1

ks

)
Γ
(

1
k1

+ 1
k2

+ . . .+ 1
ks

) nθ−1
(

1 +O(n−1/ks)
)
. (6.8)

Thus, on combining (6.4) with (6.6), (6.7) and (6.8), we conclude that there is a
positive number δ for which∫

K
F (α)e(−nα) dα = csΓ(θ)−1

( s∏
i=1

Γ
(

1 +
1

ki

))
S(n)nθ−1 +O(nθ−1L−δ). (6.9)

Subject to our verification in the next section that the lower bound S(n) � 1
holds uniformly in n, we conclude from (6.9) that the lower bound (2.8) holds. In
combination with the minor arc estimate (2.7), available from Lemma 4.3 under the
hypotheses of Theorem 1.1, we conclude that

T (n; η) =

∫
K

F (α)e(−nα) dα+

∫
k
F (α)e(−nα) dα� nθ−1. (6.10)

This completes the proof of Theorem 1.1. In order to establish Theorem 1.3, we
observe on the one hand that the upper bound (2.7) follows from Lemma 5.3 when
s > A(r)(k + 1)r+1. Also, when r > k and s > (6k + 6)2r, the upper bound (2.7)
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follows from Corollary 4.4. Thus, in either case, we find as before that (6.10) follows
in these respective situations, and thus the proof of Theorem 1.3 is now complete.

7. The singular series

In this section we estimate the singular series, confirming (6.6) and the bounds
1 � S(n) � 1. Our argument parallels the analogous treatment of [12], though
we introduce refinements en route. We continue working under the hypothesis (6.1)
throughout.

First, from (6.3) and [19, Theorem 4.2], we see that the bound

q−sUn(q)� q1−1/k1−1/k2−...−1/ks = q1−θ

holds uniformly in n. Thus, in view of (6.1), there is a positive number δ for
which q−sUn(q) � q−1−δ. It follows that the singular series S(n) defined in (6.5)
converges absolutely and uniformly in n, and moreover one has the bound (6.6).
Next, by following the argument underlying the proof of [19, Lemma 2.11], we see
that Un(q) is a multiplicative function of q. In view of (6.5), we may rewrite S(n)
in the form S(n) =

∏
p χp(n), where the product is over all prime numbers p, and

χp(n) =

∞∑
ν=0

p−sνUn(pν). (7.1)

By orthogonality, this Euler factor is related to the number Mn(pν) of incongruent
solutions of the congruence

xk11 + xk22 + . . .+ xkss ≡ n (mod pν),

via the relation
χp(n) = lim

ν→∞
p(1−s)νMn(pν). (7.2)

A model for the necessary argument, which is standard, may be found in the dis-
cussion associated with [19, Lemma 2.12]. The limit (7.2) is seen to exist via the
relation (7.1). In particular, the quantity χp(n) is a non-negative number satisfying

the relation χp(n) = 1 +O(p−1−δ).

We summarise our deliberations thus far in the form of a lemma.

Lemma 7.1. Suppose that (6.1) holds. Then the series (6.5) converges absolutely,
and there exists a natural number C with the property that for all integers n, one
has

S(n) > 1
2

∏
p6C

χp(n).

We have yet to obtain a lower bound for χp(n) when p 6 C, a matter to which we
now attend. Put D = (k1, k2, . . . , ks), the greatest common divisor of k1, k2, . . . , ks.
Define the non-negative integer λ by means of the relation pλ‖D. Then we have
pλ|ki for 1 6 i 6 s, and there exists an index j with 1 6 j 6 s for which pλ‖kj . We
show that for each integer n, there is a solution of the congruence

xk11 + xk22 + . . .+ xkss ≡ n (mod pλ+τ ), (7.3)

with τ = 1 for odd p, and with τ = 2 for p = 2, in each case with (xj , p) = 1.

In order to establish this last assertion, suppose temporarily that there is an
integer n having the property that (7.3) has no solution with (xj , p) = 1. It then

follows that the range of the left hand side of (7.3) modulo pλ+τ , with (xj , p) = 1,
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has at most pλ+τ − 1 elements. In the first instance we assume that p is odd. Then,
the theory of power residues shows that the monomial xkj takes (p− 1)/(p− 1, kj)

values modulo pλ+1 as x varies over 1 6 x 6 pλ+1 with (x, p) = 1. Furthermore, for
any index i we see that yki takes at least 1 + (p− 1)/(p− 1, ki) values modulo pλ+1

as y varies over 1 6 y 6 pλ+1. We now repeatedly apply the Cauchy-Davenport

theorem (see [19, Lemma 2.14]), beginning with the values of x
kj
j , and then adding

in the remaining powers step-by-step. On recalling (6.1), we find that with p - xj ,
the range of the left hand side of (7.3), modulo pλ+1, contains a number of elements
which is at least

s∑
i=1

p− 1

(p− 1, kip−λ)
> pλ(p− 1)

s∑
i=1

1

ki
> 2pλ(p− 1).

This yields a contradiction, since 2pλ(p − 1) > pλ+1. Our claim concerning the
solubility of the congruence (7.3) is consequently confirmed when p is odd.

We next consider the situation with p = 2, where τ = 2. For some index j with
1 6 j 6 s, one has 2λ‖kj . In (7.3) we take xj = 1. We can solve (7.3) with xi ∈ {0, 1}
(1 6 i 6 s and i 6= j) provided that s > 2λ+2. However, we have k1 > 2λ, and hence
the condition that s > 4k1 suffices to confirm our claim concerning the solubility of
the congruence (7.3) in the case that p = 2.

A routine argument now bounds Mn(pν) from below. We observe that since pλ‖kj ,
a number coprime to p is a kj-th power residue modulo pλ+τ if and only if it is a
kj-th power residue modulo pν , for all ν > λ + τ . Let x1, x2, . . . , xs be a solution
of (7.3), with (xj , p) = 1, and let ν be a natural number with ν > λ + τ . There

are pν−λ−τ choices for yi with yi ≡ xi (mod pλ+τ ) and 1 6 yi 6 pν . For each such
choice with 1 6 i 6 s and i 6= j, the integer

n−
s∑
i=1
i 6=j

xkii

is a kj-th power residue modulo pλ+τ , and therefore a kj-th power residue modulo pν .

Thus, we have Mn(pν) > p(s−1)(ν−λ−τ), so by (7.2) we see that χp(n) > p−(λ+τ)(s−1).

This lower bound holds for all primes p with pλ‖D and all n ∈ N provided that
s > 4k1 and (6.1) holds.

We summarise these deliberations in the following lemma.

Lemma 7.2. Suppose that s > 4k1, and (6.1) holds. Then there is a positive number
ω having the property that S(n) > ω for all n ∈ N.

This lemma completes our analysis of the singular series, and thus we have con-
firmed all of the properties that were needed to complete the analysis of §6. It is
worth noting that the condition s > 4k1 of Lemma 7.2 is automatically satisfied
whenever the hypotheses of Theorem 1.1 hold for the exponents k1, k2, . . . , ks. In
order to verify this claim, observe that

s∑
i=3

1

k3
6

s

k1

whilst

2 log k1 +
1

k2
+ 3.20032 > 2 log 2 + 3 > 4.
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Thus the hypotheses of Theorem 1.1 can be satisfied only when s > 4k1.
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