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Abstract. When k > 4 and 0 6 d 6 (k− 2)/4, we consider the system of
Diophantine equations

xj
1 + . . . + xj

k = yj1 + . . . + yjk (1 6 j 6 k, j 6= k − d).

We show that in this cousin of a Vinogradov system, there is a paucity
of non-diagonal positive integral solutions. Our quantitative estimates are
particularly sharp when d = o(k1/4).

1. Introduction

Recent progress on Vinogradov’s mean value theorem has resolved the main
conjecture in the subject. Thus, writing Js,k(X) for the number of integral
solutions of the system of equations

xj1 + . . .+ xjs = yj1 + . . .+ yjs (1 6 j 6 k), (1.1)

with 1 6 xi, yi 6 X (1 6 i 6 s), it is now known that whenever ε > 0, one has

Js,k(X)� Xs+ε +X2s−k(k+1)/2 (1.2)

(see [1] or [13, 14]). Denote by Ts(X) the number of s-tuples x and y in which
1 6 xi, yi 6 X (1 6 i 6 s), and (x1, . . . , xs) is a permutation of (y1, . . . , ys).
Thus Ts(X) = s!Xs+O(Xs−1). A conjecture going beyond the main conjecture
(1.2) asserts that when 1 6 s < 1

2
k(k + 1), one should have

Js,k(X) = Ts(X) + o(Xs). (1.3)

This conclusion is essentially trivial for 1 6 s 6 k, in which circumstances one
has the definitive statement Js,k(X) = Ts(X). When s > k + 2, meanwhile,
the conclusion (1.3) is at present far beyond our grasp. This leaves the special
case s = k + 1. Here, one has the asymptotic relation

Jk+1,k(X) = Tk+1(X) +O(X
√
4k+5) (1.4)

established in joint work of the author with Vaughan [10, Theorem 1]. An
analogous conclusion is available when the equation of degree k − 1 in the
system (1.1) is removed, but in no other close relative of Vinogradov’s mean
value theorem has such a conclusion been obtained hitherto. Our purpose in
this paper is to derive estimates of strength paralleling (1.4) in systems of the
shape (1.1) in which a large degree equation is removed.
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In order to describe our conclusions, we must introduce some notation.
When k > 2 and 0 6 d < k, we denote by Ik,d(X) the number of integral
solutions of the system of equations

xj1 + . . .+ xjk = yj1 + . . .+ yjk (1 6 j 6 k, j 6= k − d), (1.5)

with 1 6 xi, yi 6 X (1 6 i 6 k). Also, when k > 3 and d > 0, we define the
exponent

γk,d = min
26r6k

(
r +

k

r
+

r∑
l=1

max{d− l + 1, 0}
)
. (1.6)

Theorem 1.1. Suppose that k > 3 and 0 6 d < k/2. Then, for each ε > 0,
one has

Ik,d(X)− Tk(X)� Xγk,d+ε.

When k is large and d is small compared to k, the conclusion of this theorem
provides strikingly powerful paucity estimates.

Corollary 1.2. Suppose that d 6
√
k. Then

Ik,d(X)− Tk(X)� X
√
4k+1+d(d+1)/2.

In particular, when d = o(k1/4), one has

Ik,d(X) = Tk(X) +O(X(2+o(1))
√
k).

Although for larger values of d our paucity estimates become weaker, they
remain non-trivial whenever d < (k − 2)/4.

Corollary 1.3. Provided that d > 1 and k > 4d+ 3, one has

Ik,d(X) = k!Xk +O(Xk−1/2).

Moreover, when 1 6 d 6 k/4, one has

Ik,d(X)− Tk(X)� X
√

4k(d+1)+(d+1)2 ,

so that whenever η is small and positive, and 1 6 d 6 η2k, then

Ik,d(X) = Tk(X) +O(X3ηk).

Previous work on this problem is confined to the two cases considered by
Hua [4, Lemmata 5.2 and 5.4]. Thus, the asymptotic formula (1.4) derived by
the author jointly with Vaughan [10, Theorem 1] is tantamount to the case
d = 0 of Theorem 1.1. Meanwhile, it follows from [10, Theorem 2] that

Ik,1(X) = Tk(X) +O(Xγk,1−1+ε),

and the error term here is slightly sharper than that provided by the case d = 1
of Theorem 1.1. The conclusion of Theorem 1.1 is new whenever d > 2. It
would be interesting to derive analogues of Theorem 1.1 in which more than
one equation is removed from the Vinogradov system (1.1), or indeed to derive
analogues in which the number of variables is increased and yet one is able
nonetheless to confirm the paucity of non-diagonal solutions. We have more
to say on such matters in §5 of this paper. For now, we confine ourselves to
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remarking that when many, or even most, lower degree equations are removed,
then approaches based on the determinant method are available. Consider,
for example, natural numbers d1, . . . , dk with 1 6 d1 < d2 < . . . < dk and
dk > 2s− 1. Also, denote by Md,s(X) the number of integral solutions of the
system of equations

x
dj
1 + . . .+ xdjs = y

dj
1 + . . .+ ydjs (1 6 j 6 k),

with 1 6 xi, yi 6 X (1 6 i 6 s). Then it follows from [7, Theorem 5.2] that
whenever d1 · · · dk > (2s− k)4s−2k, one has

Md,s(X) = s!Xs +O(Xs−1/2).

The proof of Theorem 1.1, in common with our earlier treatment in [10]
of the Vinogradov system (1.1), is based on the application of multiplicative
polynomial identities amongst variables in pursuit of parametrisations that
these days would be described as being of torsorial type. The key innovation
of [10] was to relate not merely two product polynomials, but instead r > 2
such polynomials, leading to a decomposition of the variables into (k + 1)r

parameters. Large numbers of these parameters may be determined via divisor
function estimates, and thereby one obtains powerful bounds for the difference
Jk+1,k(X) − Tk+1(X). In the present situation, the polynomial identities are
more novel, and sacrifices must be made in order to bring an analogous plan
to fruition. Nonetheless, when d < k/2, the kind of multiplicative relations of
[10] may still be derived in a useful form.

This paper is organised as follows. We begin in §2 of this paper by deriving
the polynomial identities required for our subsequent analysis. In §3 we refine
this infrastructure so that appropriate multiplicative relations are obtained
involving few auxiliary variables. A complication for us here is the problem
of bounding the number of choices for these auxiliary variables, since they
are of no advantage to us in the ensuing analysis of multiplicative relations.
In §4, we exploit the multiplicative relations by extracting common divisors
between tuples of variables, following the path laid down in our earlier work
[10] joint with Vaughan. This leads to the proof of Theorem 1.1. Finally, in
§5, we discuss the corollaries to Theorem 1.1 and consider also refinements and
potential generalisations of our main results.

Our basic parameter is X, a sufficiently large positive number. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each ε > 0. In this paper, implicit constants in Vinogradov’s
notation � and � may depend on ε, k, and s. We make frequent use of
vector notation in the form x = (x1, . . . , xr). Here, the dimension r depends
on the course of the argument. We also write (a1, . . . , as) for the greatest com-
mon divisor of the integers a1, . . . , as. Any ambiguity between ordered s-tuples
and corresponding greatest common divisors will be easily resolved by context.
Finally, as usual, we write e(z) for e2πiz.

Acknowledgements: The author’s work is supported by NSF grant DMS-
2001549 and the Focused Research Group grant DMS-1854398. The author is
grateful to the referee of this paper for their time and attention.
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2. Polynomial identities

We begin by introducing the power sum polynomials

sj(z) = zj1 + . . .+ zjk (1 6 j 6 k).

On recalling (1.5), we see that Ik,d(X) counts the number of integral solutions
of the system of equations

sj(x) = sj(y) (1 6 j 6 k, j 6= k − d)

sk−d(x) = sk−d(y) + h,

}
(2.1)

with 1 6 x,y 6 X and |h| 6 kXk−d. Our first task is to reinterpret this system
in terms of elementary symmetric polynomials, so that our first multiplicative
relations may be extracted.

The elementary symmetric polynomials σj(z) ∈ Z[z1, . . . , zk] may be defined
by means of the generating function identity

1 +
k∑
j=1

σj(z)(−t)j =
k∏
i=1

(1− tzi).

Since
k∑
i=1

log(1− tzi) = −
∞∑
j=1

sj(z)
tj

j
,

we deduce that

1 +
k∑
j=1

σj(z)(−t)j = exp

(
−
∞∑
j=1

sj(z)
tj

j

)
.

When n > 1, the formula

σn(z) = (−1)n
∑

m1+2m2+...+nmn=n
mi>0

n∏
i=1

(−si(z))mi

imimi!
(2.2)

then follows via an application of Faà di Bruno’s formula. By convention, we
put σ0(z) = 1. We refer the reader to [5, equation (2.14′)] for a self-contained
account of the relation (2.2).

Suppose now that 0 6 d < k/2, and that the integers x,y, h satisfy (2.1).
When 1 6 n < k − d, it follows from (2.2) that

σn(x) = (−1)n
∑

m1+2m2+...+nmn=n
mi>0

n∏
i=1

(−si(y))mi

imimi!
= σn(y). (2.3)

When k − d 6 n 6 k, on the other hand, we instead obtain the relation

σn(x) = (−1)n
∑

m1+2m2+...+nmn=n
mi>0

(−sk−d(y)− h)mk−d

(k − d)mk−dmk−d!

∏
16i6n
i 6=k−d

(−si(y))mi

imimi!
.
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Since d < k/2, the summation condition on m ensures that mk−d ∈ {0, 1}.
Thus, by isolating the term in which mk−d = 1, we see that

σn(x) = σn(y) + hψn(y), (2.4)

where by (2.2),

ψn(y) =
(−1)n+1

k − d
∑

m1+2m2+...+(n−k+d)mn−k+d=n−k+d
mi>0

n−k+d∏
i=1

(−si(y))mi

imimi!

=
(−1)k−d+1

k − d
σn−k+d(y).

We deduce from (2.3) and (2.4) that

k∏
i=1

(t− xi)−
k∏
i=1

(t− yi) = (−1)k
k∑

n=0

(σn(x)− σn(y))(−t)k−n

= (−1)d−1
h

k − d

d∑
m=0

σm(y)(−t)d−m. (2.5)

Define the polynomial

τd(y;w) = (−1)d−1
d∑

m=0

σm(y)(−w)d−m. (2.6)

Then we deduce from (2.5) that for 1 6 j 6 k, one has the relation

(k − d)
k∏
i=1

(yj − xi) = τd(y; yj)h. (2.7)

By comparing the relation (2.7) with j = s and j = t for two distinct indices
s and t satisfying 1 6 s < t 6 k, it is apparent that

τd(y; yt)
k∏
i=1

(ys − xi) = τd(y; ys)
k∏
i=1

(yt − xi). (2.8)

Furthermore, by applying the relations (2.3), we see that σm(y) = σm(x) for
1 6 m 6 d, and thus it is a consequence of (2.6) that

τd(y; yj) = τd(x; yj) (1 6 j 6 k). (2.9)

We therefore deduce from (2.8) that for 1 6 s < t 6 k, one has

τd(x; yt)
k∏
i=1

(ys − xi) = τd(x; ys)
k∏
i=1

(yt − xi). (2.10)

These are the multiplicative relations that provide the foundation for our anal-
ysis. One additional detail shall detain us temporarily, however, for to be useful
we must ensure that all of the factors on left and right hand sides of (2.8) and
(2.10) are non-zero.
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Suppose temporarily that there are indices l and m with 1 6 l,m 6 k for
which xl = ym. By relabelling variables, if necessary, we may suppose that
l = m = k, and then it follows from (2.1) that

xj1 + . . .+ xjk−1 = yj1 + . . .+ yjk−1 (1 6 j 6 k, j 6= k − d).

There are k − 1 equations here in k − 1 pairs of variables xi, yi, and thus it
follows from [9] that (x1, . . . , xk−1) is a permutation of (y1, . . . , yk−1). We may
therefore conclude that in the situation contemplated at the beginning of this
paragraph, the solution x,y of (2.1) is counted by Tk(X), with (x1, . . . , xk) a
permutation of (y1, . . . , yk). In particular, in any solution x,y of (2.1) counted
by Ik,d(X) − Tk(X), it follows that xl = ym for no indices l and m satisfying
1 6 l,m 6 k. In view of (2.7) and (2.9), such solutions also satisfy the
conditions

h 6= 0 and τd(y; yj) = τd(x; yj) 6= 0 (1 6 j 6 k). (2.11)

We summarise the deliberations of this section in the form of a lemma.

Lemma 2.1. Suppose that x,y is a solution of the Diophantine system (2.1)
counted by Ik,d(X)− Tk(X). Then the relations (2.8), (2.10) and (2.11) hold.

3. Reduction to efficient multiplicative relations

We seek to estimate the number Ik,d(X)− Tk(X) of solutions of the system
(2.1), with 1 6 x,y 6 X and |h| 6 kXk−d, for which (x1, . . . , xk) is not a
permutation of (y1, . . . , yk). We divide these solutions into two types according
to a parameter r with 1 < r 6 k. Let V1,r(X) denote the number of such
solutions in which there are fewer than r distinct values amongst x1, . . . , xk,
and likewise fewer than r distinct values amongst y1, . . . , yk. Also, let V2,r(X)
denote the corresponding number of solutions in which there are either at
least r distinct values amongst x1, . . . , xk, or at least r distinct values amongst
y1, . . . , yk. Then one has

Ik,d(X)− Tk(X) = V1,r(X) + V2,r(X). (3.1)

The solutions counted by V1,r(X) are easily handled via an expedient argu-
ment of circle method flavour.

Lemma 3.1. One has V1,r(X)� Xr−1.

Proof. It is convenient to introduce the exponential sum

f(α) =
∑

16x6X

e

( ∑
16j6k
j 6=k−d

αjx
j

)
.

In a typical solution x,y of (2.1) counted by V1,r(X), we may relabel in-
dices in such a manner that xj ∈ {x1, . . . , xr−1} for 1 6 j 6 k, and likewise
yj ∈ {y1, . . . , yr−1} for 1 6 j 6 k. On absorbing combinatorial factors into
the constant implicit in the notation of Vinogradov, therefore, we discern via
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orthogonality that there are integers ai, bi (1 6 i 6 r− 1), with 1 6 ai, bi 6 k,
for which one has

V1,r(X)�
∫
[0,1)k−1

(
r−1∏
i=1

f(aiα)f(−biα)

)
dα.

An application of Hölder’s inequality shows that

V1,r(X)�
r−1∏
i=1

I(ai)
1/(2r−2)I(bi)

1/(2r−2),

where we write

I(c) =

∫
[0,1)k−1

|f(cα)|2r−2 dα.

Thus, by making a change of variables, we discern that

V1,r(X)�
∫
[0,1)k−1

|f(α)|2r−2 dα.

By orthogonality, the latter mean value counts the integral solutions of the
system

xj1 + . . .+ xjr−1 = yj1 + . . .+ yjr−1 (1 6 j 6 k, j 6= k − d),

with 1 6 x,y 6 X. Since the number of equations here is k−1, and the number
of pairs of variables is r− 1 6 k− 1, it follows from [9] that (x1, . . . , xr−1) is a
permutation of (y1, . . . , yr−1), and hence we deduce that

V1,r(X)� Tr−1(X) ∼ (r − 1)!Xr−1.

This establishes the upper bound claimed in the statement of the lemma. �

We next consider the solutions x,y, h of the system (2.1) counted by V2,r(X).
Here, by taking advantage of the symmetry between x and y, and if necessary
relabelling indices, we may suppose that y1, . . . , yr are distinct. Suppose tem-
porarily that the integers yt and xi − yt have been determined for 1 6 i 6 k
and 1 6 t 6 r. It follows that yt and xi are determined for 1 6 i 6 k and
1 6 t 6 r, and hence also that the coefficients σm(x) of the polynomial τd(x;w)
are fixed for 0 6 m 6 d. The integers ys for r < s 6 k may consequently be
determined from the polynomial equations (2.10) with t = 1. Here, it is useful
to observe that with y1 and x1, . . . , xk already fixed, and all the factors on
the left and right hand side of (2.10) non-zero, the equation (2.10) becomes
a polynomial in the single variable ys. On the left hand side one has a poly-
nomial of degree k, whilst on the right hand side the polynomial has degree
d = degy(τd(x; y)) < k. Thus ys is determined by a polynomial of degree k
to which there are at most k solutions. Given fixed choices for yt and xi − yt
for 1 6 i 6 k and 1 6 t 6 r, therefore, there are O(1) possible choices for
yr+1, . . . , yk.

Let Mr(X;y) denote the number of integral solutions x of the system of
equations (2.10) (1 6 s < t 6 r), satisfying 1 6 x 6 X, wherein y =
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(y1, . . . , yr) is fixed with 1 6 y 6 X and satisfies (2.11). Then it follows from
the above discussion in combination with Lemma 2.1 that

V2,r(X)� Xr max
y

Mr(X;y), (3.2)

in which the maximum is taken over distinct y1, . . . , yr with 1 6 y 6 X.

Consider fixed values of y1, . . . , yr with 1 6 yi 6 X (1 6 i 6 r). We write
Nr(X;y) for the number of r-tuples

(τd(y1, . . . , yk; y1), . . . , τd(y1, . . . , yk; yr)), (3.3)

with 1 6 yj 6 X (r < j 6 k). It is apparent from (2.6) and (2.11) that in
each such r-tuple, one has

1 6 |τd(y; yj)| � Xd, (3.4)

and thus a trivial estimate yields the bound

Nr(X;y)� Xrd. (3.5)

On the other hand, we may consider the number of d-tuples

(σ1(y1, . . . , yk), . . . , σd(y1, . . . , yk)),

with 1 6 yj 6 X (1 6 j 6 k). Since |σm(y)| � Xm (1 6 m 6 d), the number
of such d-tuples is plainly O(Xd(d+1)/2). Recall that σ0(y) = 1. Then for each
fixed choice of this d-tuple, and for each fixed index j, it follows from (2.6)
that the value of τd(y1, . . . , yk; yj) is determined. We therefore infer that

Nr(X;y)� Xd(d+1)/2. (3.6)

These simple estimates are already sufficient for many purposes. However, by
working harder, one may obtain an estimate that is oftentimes superior to both
(3.5) and (3.6). This we establish in Lemma 3.3 below. For the time being we
choose not to interrupt our main narrative, and instead explain how bounds
for Nr(X;y) may be applied to estimate V2,r(X).

When 1 6 j 6 r, we substitute

u0j = τd(x; yj)
−1

r∏
i=1

τd(x; yi). (3.7)

Observe that there are at most Nr(X;y) distinct values for the integral r-
tuple (u01, . . . , u0r). Moreover, in any such r-tuple it follows from (3.4) that
1 6 |u0j| � Xd(r−1). There is consequently a positive integer C = C(k)
with the property that, in any solution x,y counted by Mr(X;y), one has
1 6 |u0j| 6 CXd(r−1).

Next we substitute

uij = xi − yj (1 6 i 6 k, 1 6 j 6 r).

Then from (2.10) we see that Mr(X;y) is bounded above by the number of
integral solutions of the system

k∏
i1=0

ui11 =
k∏

i2=0

ui22 = . . . =
k∏

ir=0

uirr, (3.8)
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with
y1 + ui1 = y2 + ui2 = . . . = yr + uir (1 6 i 6 k), (3.9)

1 6 |uij| 6 X (1 6 i 6 k, 1 6 j 6 r), (3.10)

and with u0j given by (3.7) for 1 6 j 6 r. Denote by W (X;y,u0) the number
of integral solutions of the system (3.8) subject to (3.9) and (3.10). Then
on recalling (3.2), we may summarise our deliberations thus far concerning
V2,r(X) as follows.

Lemma 3.2. One has

V2,r(X)� Xr max
y

(
Nr(X;y) max

u0

W (X;y,u0)

)
,

where the maximum with respect to y = (y1, . . . , yr) is taken over y1, . . . , yr
distinct with 1 6 yj 6 X (1 6 j 6 r), and the maximum over r-tuples
u0 = (u01, . . . , u0r) is taken over

1 6 |u0j| 6 CXd(r−1) (1 6 j 6 r).

Before fulfilling our commitment to establish an estimate forNr(X;y) sharper
than the pedestrian bounds already obtained, we introduce the exponent

θd,r =
r∑
l=1

max{d− l + 1, 0}. (3.11)

Lemma 3.3. Let d and r be non-negative integers and let C > 1 be fixed.
Also, let

Ad = {(a0, a1, . . . , ad) ∈ Zd+1 : |al| 6 CXd−l (0 6 l 6 d)}.
Finally, when a ∈ Ad, define

fa(t) = a0 + a1t+ . . .+ adt
d.

Suppose that y1, . . . , yr are fixed integers with 1 6 yi 6 X (1 6 i 6 r). Then
one has

card{fa(yi) : a ∈ Ad and 1 6 i 6 r} � Xθd,r .

Proof. We proceed by induction on d. Note first that when d = 0, the polyno-
mials fa(t) are necessarily constant with |a0| 6 C, and thus

card{fa(yi) : a ∈ A0 and 1 6 i 6 r} 6 (2C + 1)r � 1.

Since θ0,r = 0, the conclusion of the lemma follows for d = 0. Observe also that
when r = 0 the conclusion of the lemma is trivial, for then one has θd,0 = 0
and the set of values in question is empty.

Having established the base of the induction, we proceed under the assump-
tion that the conclusion of the lemma holds whenever d < D, for some integer
D with D > 1. In view of the discussion of the previous paragraph, we may
now restrict attention to the situation with d = D > 1 and r > 1. Since
1 6 yr 6 X and yr is fixed, we see that whenever a ∈ AD one has

|fa(yr)| 6 |a0|+ |a1|yr + . . .+ |aD|yDr 6 (D + 1)CXD. (3.12)
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Put

ga(yr, t) =
fa(yr)− fa(t)

yr − t
, (3.13)

so that

ga(yr, t) =
D∑
l=1

al(t
l−1 + tl−2yr + . . .+ yl−1r ).

Then one sees that whenever a ∈ AD, one may write

ga(yr, t) = Fb(t), (3.14)

where

Fb(t) = b0 + b1t+ . . .+ bD−1t
D−1,

and, for 0 6 l 6 D − 1, one has

|bl| 6 |al+1|+ |al+2|yr + . . .+ |aD|yD−l−1r 6 CDXD−l−1.

Put

BD−1 = {(b0, b1, . . . , bD−1) ∈ ZD : |bl| 6 CDXD−1−l (0 6 l 6 D − 1)}.

Then the inductive hypothesis for d = D − 1 implies that

card{Fb(yi) : b ∈ BD−1 and 1 6 i 6 r − 1} � XθD−1,r−1 . (3.15)

On recalling (3.13) and (3.14), we see that

fa(yi) = fa(yr)− (yr − yi)Fb(yi) (1 6 i 6 r − 1).

The values of yi (1 6 i 6 r−1) are fixed, and by (3.15) there are O(XθD−1,r−1)
possible choices for Fb(yi) (1 6 i 6 r − 1). Then for each fixed choice of
fa(yr), there are O(XθD−1,r−1) choices available for fa(yi) (1 6 i 6 r − 1). We
therefore deduce from (3.12) that

card{fa(yi) : a ∈ AD and 1 6 i 6 r} � XD ·XθD−1,r−1 .

Since, from (3.11), one has

θD−1,r−1 +D = D +
r−1∑
l=1

max{(D − 1)− l + 1, 0}

=
r∑
l=1

max{D − l + 1, 0} = θD,r,

we find that

card{fa(yi) : a ∈ AD and 1 6 i 6 r} � XθD,r .

The inductive hypothesis therefore follows for d = D and all values of r. The
conclusion of the lemma consequently follows by induction. �

On recalling (2.6), a brief perusal of (3.3) and the definition of Nr(X;y)
leads from Lemma 3.3 to the estimate Nr(X;y) � Xθd,r . We may therefore
conclude this section with the following upper bound for Ik,d(X)− Tk(X).
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Lemma 3.4. One has

Ik,d(X)− Tk(X)� Xr−1 +Xr+θd,r max
y,u0

W (X;y,u0),

where the maximum is taken over distinct y1, . . . , yr with 1 6 yj 6 X and over
1 6 |u0j| 6 CXd(r−1) (1 6 j 6 r).

Proof. It follows from Lemma 3.2 together with the bound for Nr(X;y) just
obtained that

V2,r(X)� Xr+θd,r max
y,u0

W (X;y,u0).

The conclusion of the lemma is obtained by substituting this estimate together
with that supplied by Lemma 3.1 into (3.1). �

4. Exploiting multiplicative relations

Our goal in this section is to estimate the quantity W (X;y,u0) that counts
solutions of the multiplicative equations (3.8) equipped with their ancillary
conditions (3.9) and (3.10). For this purpose, we follow closely the trail first
adopted in our work with Vaughan [10, §2].

Lemma 4.1. Suppose that y1, . . . , yr are distinct integers with 1 6 y 6 X,
and that u0j (1 6 j 6 r) are integers with 1 6 |u0j| 6 CXd(r−1). Then one
has W (X;y,u0)� Xk/r+ε.

Proof. We begin with a notational device from [10, §2]. Let I denote the set
of indices i = (i1, . . . , ir) with 0 6 im 6 k (1 6 m 6 r). Define the map
ϕ : I → [0, (k + 1)r) ∩ Z by putting

ϕ(i) =
r∑

m=1

im(k + 1)m−1.

The map ϕ is bijective, and we may define the successor i + 1 of the index i
by means of the relation

i + 1 = ϕ−1(ϕ(i) + 1).

We then define i + h inductively via the formula i + (h + 1) = (i + h) + 1.
Finally, when i ∈ I, we write J (i) for the set of indices j ∈ I having the
property that, for some h ∈ N, one has j+ h = i. Thus, the set J (i) is the set
of all precursors of i, in the natural sense.

Equipped with this notation, we now explain how systematically to extract
common factors between the variables in the system of equations (3.8). Put

α0 = (u01, u02, . . . , u0r),

noting that by hypothesis, this integer is fixed. Suppose at stage i that αj has
been defined for all j ∈ J (i). We then define

αi =

(
ui11

β
(1)
i

,
ui22

β
(2)
i

, . . . ,
uirr

β
(r)
i

)
,
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in which we write
β
(m)
i =

∏
j∈J (i)
jm=im

αj.

As is usual, the empty product is interpreted to be 1. As a means of preserving
intuition concerning the numerous variables generated in this way, we write

α̃±lm = ±
∏
j∈I
jm=l

αj (0 6 l 6 k, 1 6 m 6 r).

Then, much as in [10, §2], it follows that when 0 6 l 6 k and 1 6 m 6 r, for
some choice of the sign ±, one has ulm = α̃±lm. Note here that the ambiguity
in the sign of ulm relative to |α̃±lm| is a feature overlooked in the treatment of
[10], though the ensuing argument requires no significant modification to be
brought to play in order that the same conclusion be obtained. At worst, an
additional factor 2r(k+1) would need to be absorbed into the constants implicit
in Vinogradov’s notation.

With this notation in hand, it follows from its definition that W (X;y,u0)
is bounded above by the number Ωr(X;y,u0) of solutions of the system

y1 + α̃±i1 = y2 + α̃±i2 = . . . = yr + α̃±ir (1 6 i 6 k), (4.1)

with
1 6 |α̃±ij| 6 X (1 6 i 6 k, 1 6 j 6 r). (4.2)

Notice here that α̃±0m = u0m. Thus, it follows from a divisor function estimate
that when the integers u0m are fixed with

1 6 |u0m| 6 CXd(r−1) (1 6 m 6 r),

then there are O(Xε) possible choices for the variables αi having the property
that im = 0 for some index m with 1 6 m 6 r.

Having carefully prepared the notational infrastructure to make comparison
with [10, §§2 and 3] transparent, we may now follow the argument of the latter
mutatis mutandis. When 1 6 p 6 r, we write

Bp =
∏
i

αi, (4.3)

where the product is taken over all i ∈ I with il > ip (l 6= p), and il > 0
(1 6 l 6 r). Thus, in view of (4.2), one has

r∏
p=1

Bp 6
∏
i∈I

il>0 (16l6r)

αi 6
k∏
i=1

|α̃±i1| 6 Xk,

and so in any solution α± of (4.1) counted by Ωr(X;y,u0), there exists an
index p with 1 6 p 6 r such that

1 6 Bp 6 Xk/r. (4.4)

By relabelling variables, we consequently deduce that

Ωr(X;y,u0)� Υr(X;y,u0),
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where Υr(X;y,u0) denotes the number of integral solutions of the system

α̃±i1 − α̃±ij = Lj (1 6 i 6 k, 2 6 j 6 r), (4.5)

with Lj = yj − y1 (2 6 j 6 r), and with the integral tuples αi satisfying (4.2)
together with the inequality

1 6 B1 6 Xk/r. (4.6)

We emphasise here that, when y1, . . . , yr are distinct, then Lj 6= 0 (2 6 j 6 r).

We now proceed under the assumption that y1, . . . , yr are fixed and distinct,
whence the integers Lj (2 6 j 6 r) are fixed and non-zero. It follows just
as in the final paragraphs of [10, §2] that, when the variables αi, with i ∈ I
satisfying il > i1 (2 6 l 6 r), are fixed, then there are O(Xε) possible choices
for the tuples αi satisfying (4.2) and (4.5). Here we make use of the fact that
the variables αi, in which im = 0 for some index m with 1 6 m 6 r, may be
considered fixed with the potential loss of a factor O(Xε) in the resulting esti-
mates. By making use of standard estimates for the divisor function, however,
we find from (4.6) and the definition (4.3) that there are O(Xk/r+ε) possible
choices for the variables αi with i ∈ I satisfying il > i1 (2 6 l 6 r). We there-
fore infer that Υr(X;y,u0) � Xk/r+ε, whence Ωr(X;y,u0) � Xk/r+ε, and
finally W (X;y,u0)� Xk/r+ε. This completes the proof of the lemma. �

The proof of Theorem 1.1 is now at hand. By applying Lemma 3.4 in
combination with Lemma 4.1, we obtain the upper bound

Ik,d(X)− Tk(X)� Xr+θd,r ·Xk/r+ε.

By minimising the right hand side over 2 6 r 6 k, a comparison of (1.6)
and (3.11) now confirms that this estimate delivers the one claimed in the
statement of Theorem 1.1.

5. Corollaries and refinements

We complete our discussion of incomplete Vinogradov systems by first de-
riving the corollaries to Theorem 1.1 presented in the introduction, and then
considering refinements to the main strategy.

The proof of Corollary 1.2. Suppose that d 6
√
k and take r to be the integer

closest to
√
k. Thus d 6 r and we find from (1.6) that

γk,d 6 r + k/r + d(d+ 1)/2 <
√

4k + 1 + d(d+ 1)/2.

An application of Theorem 1.1 therefore leads us to the asymptotic formula

Ik,d(X) = Tk(X) +O(X
√
4k+1+d(d+1)/2),

confirming the first claim of the corollary. In particular, when d = o(k1/4), we
discern that

√
4k + 1 + d(d+ 1)/2 6

√
4k + 1 + o(k1/2) = (2 + o(1))

√
k,

and so the final claim of the corollary follows. �
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The proof of Corollary 1.3. Suppose that d > 1 and k > 4d + 3. In this
situation, by reference to (1.6) with r = 2, we find that

γk,d 6 2 + 1
2
k + 2d− 1 = 1

2
(k + 4d+ 2) 6 k − 1

2
.

Consequently, it follows from Theorem 1.1 that Ik,d(X)−Tk(X)� Xk−1/2, so
that the first claim of the corollary follows.

Next by considering (1.6) with r taken to be the integer closest to
√
k/(d+ 1),

we find that

γk,d 6 rd+ (r + k/r) 6 (d+ 1)
√

4k/(d+ 1) + 1.

In this instance, Theorem 1.1 supplies the asymptotic formula

Ik,d(X) = Tk(X) +O(X
√

4k(d+1)+(d+1)2),

which establishes the second claim of the corollary.

Finally, when η is small and positive, and 1 6 d 6 η2k, one finds that

γk,d 6
√

4η2k2 + η4k2 + (4 + 2η2)k + 1 < 3ηk.

The final estimate of the corollary follows, and this completes the proof. �

Some refinement is possible within the argument applied in the proof of
Theorem 1.1 for smaller values of k. Thus, an argument analogous to that
discussed in the final paragraph of [10, §2] shows that the bound 1 6 Bp 6 Xk/r

of equation (4.4) may be replaced by the corresponding bound

1 6 Bp 6 Xω(k,r),

where we write

ω(k, r) = k1−r
k−1∑
i=1

ir−1.

In order to justify this assertion, denote by I+ the set of indices i ∈ I such
that il > 0 (1 6 l 6 r), and let I∗ denote the corresponding set of indices
subject to the additional condition that for some index p with 1 6 p 6 r, one
has il > ip whenever l 6= p. Then, just as in [10, §2], one has card(I+) = kr

and card(I∗) = rψr(k), where

ψr(k) =
k−1∑
i=1

ir−1 < kr/r.

In the situation of the proof of Lemma 4.1 in §4, the variables αi with
il = 0 for some index l with 1 6 l 6 r are already determined via a divisor
function estimate. By permuting and relabelling indices il, for each fixed
index l, as necessary, the argument of the proof can be adapted to show that
W (X;y,u0) � Yr(X), where Yr(X) denotes the number of solutions α± as
before, but subject to the additional condition∏

i∈I∗
αi 6

(∏
i∈I+

αi

)card(I∗)/card(I+)

.
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Then
r∏
p=1

Bp 6
∏
i∈I∗

αi 6 (Xk)rψr(k)/kr .

Consequently, in any solution α± of (4.1) counted by Ωr(X;y;u0), there exists
an index p with 1 6 p 6 r such that

1 6 Bp 6 Xψr(k)/kr−1

= Xω(k,r).

By pursuing the same argument as in our earlier treatment, mutatis mutandis,
we now derive the upper bound

Ik,d(X)− Tk(X)� Xγ′k,d+ε,

where

γ′k,d = min
26r6k

(
r + ω(k, r) +

r∑
l=1

max{d− l + 1, 0}
)
.

We conclude from these deliberations that Theorem 1.1 and the first con-
clusion of Corollary 1.3 may be refined as follows.

Theorem 5.1. Suppose that k > 3 and 0 6 d < k/2. Then, for each ε > 0,
one has

Ik,d(X)− Tk(X)� Xγ′k,d+ε,

where

γ′k,d = min
26r6k

(
r + k1−r

k−1∑
i=1

ir−1 +
r∑
l=1

max{d− l + 1, 0}
)
.

In particular, provided that d > 1 and k > 4d+ 2, one has

Ik,d(X) = k!Xk +O(Xk−1/2).

Proof. The proof of the first conclusion has already been outlined. As for the
second, by taking r = 2 we discern that

γ′k,d 6 2 + 1
2
(k − 1) + 2d− 1.

Thus, provided that k > 4d + 1, one finds that γ′k,d 6 k − 1/2, and hence the
final conclusion of the theorem follows from the first. �

Energetic readers will find a smorgasbord of problems to investigate allied
to those examined in this paper. We mention three in order to encourage work
on these topics.

We begin by noting that the conclusions of Theorem 1.1 establish the paucity
of non-diagonal solutions in the system (1.5) when d is smaller than about k/4.
In principle, the methods employed remain useful when d < k/2. However,
when d > k/2 the analogue of the identity (2.4) that would be obtained would
contain terms involving h2, or even larger powers of h, and this precludes the
possibility of eliminating all of the terms involving h in any useful manner. A
simple test case would be the situation with d = k − 1, wherein the system
(1.5) assumes the shape

xj1 + . . .+ xjk = yj1 + . . .+ yjk (2 6 j 6 k).
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When k = 3 an affine slicing approach has been employed in [12] to resolve the
associated paucity problem. It would be interesting to address this problem
when k > 4.

The focus of this paper has been on the situation in which one slice is
removed from a Vinogradov system. When more than one slice is removed,
two or more auxiliary variables h1, h2, . . . take the place of the single variable h
in the identity (2.4), and this seems to pose serious problems for our methods.
A simple test case in this context would address the system of equations

xj1 + . . .+ xjk = yj1 + . . .+ yjk (j ∈ {1, 2, . . . , k − 2, k + 1}),

with k > 3. Here, the situation with k = 3 has been successfully addressed by
a number of authors (see [3, 8] and [6, Corollary 0.3]), but little seems to be
known for k > 4. Much more is known when the omitted slices are carefully
chosen so that the resulting systems assume a special shape. Most obviously,
one could consider systems of the shape

xtj1 + . . .+ xtjk = ytj1 + . . .+ ytjk (1 6 j 6 k − 1).

By specialising variables, one finds from [10, Theorem 1] that the number of

non-diagonal solutions of this system with 1 6 x,y 6 X is O(X t
√
4k+1), and

this is o(Tk(X)) provided only that the integer t is smaller than 1
2

√
k − 1.

Moreover, the ingenious work of Brüdern and Robert [2] shows that when
k > 4, there is a paucity of non-diagonal solutions to systems of the shape

x2j−11 + . . .+ x2j−1k = y2j−11 + . . .+ y2j−1k (1 6 j 6 k − 1),

wherein all of the even degree slices are omitted. A strategy for systems having
arbitrary exponents can be extracted from [11], though the work there misses
a paucity estimate by a factor (logX)A, for a suitable A > 0.

We remark finally that the system of equations (1.5) central to Theorem 1.1
has the property that there are k − 1 equations and k pairs of variables xi, yi.
No paucity result is available when the number of pairs of variables exceeds
k. The simplest challenge in this direction would be to establish that when
k > 3, one has

Jk+2,k(X) = Tk+2(X) + o(Xk+2).
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