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Abstract. Fix k, s, n ∈ N, and consider non-zero integers c1, . . . , cs, not all of
the same sign. Provided that s > k(k + 1), we establish a Hasse principle for the
existence of lines having integral coordinates lying on the affine diagonal hypersur-
face defined by the equation c1x

k
1 + . . .+csx

k
s = n. This conclusion surmounts the

conventional convexity barrier tantamount to the square-root cancellation limit
for this problem.

1. Introduction

The investigation of rational linear spaces on algebraic varieties was pursued by
Brauer [6] and Birch [2] as a key step in their inductive strategies for establishing the
existence of rational points on complete intersections. This initial work in the middle
of the last century has more recently evolved, in contributions of Parsell [11, 12] and
Brandes [4], to encompass quantitative considerations. In this paper, we also inves-
tigate the abundance of rational lines, but now on affine diagonal hypersurfaces. By
applying the Hardy-Littlewood (circle) method, we derive a certain Hasse principle
for the existence of lines having integral coordinates lying on the hypersurface. A
notable feature of our application is that it goes beyond the convexity limit of the
circle method, by which we mean the square-root barrier that ordinarily restricts
the method to problems in which the number of available variables exceeds twice
the inherent degree.

In order to describe our conclusions more precisely, we must introduce some no-
tation. We fix natural numbers k > 2 and s, and we consider the affine hypersurface
defined by the diagonal equation

c1x
k
1 + . . .+ csx

k
s = n, (1.1)

in which ci ∈ Z\{0} (1 6 i 6 s) and n ∈ Z\{0} are fixed. We assume, in particular,
that the coefficients ci are neither all positive nor all negative. For each exponent k,
a conventional application of the circle method confirms the existence of a positive
number s0(k) having the property that the solutions of the equation (1.1) satisfy the
weak approximation property provided only that s > s0(k). Indeed, it follows from
the work and methods of earlier scholars that when 2 6 k 6 15 one has s0(k) 6 t0(k),
where t0(k) is defined according to Table 1 below (see [9, 10, 13, 14, 16, 17, 22] for
the necessary ideas). Meanwhile, recent work of the author with Brüdern [9] may be
routinely applied to confirm that s0(k) 6 dk(log k+ 4.20032)e. Moreover, subject to
real and p-adic solubility hypotheses, it follows under the same conditions that the
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equation (1.1) possesses an abundance of integral solutions in which, for each r > 1,
there is no r-tuple (i1, i2, . . . , ir) of indices with 1 6 i1 < i2 < . . . < ir 6 s for which

ci1x
k
i1 + ci2x

k
i2 + . . .+ cirx

k
ir = 0.

Henceforth, we refer to the latter as the condition that there be no vanishing sub-
sums, and we note in particular that it implies that no variable xi is equal to 0.

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t0(k) 4 7 12 17 24 31 39 47 55 63 72 81 89 97

Table 1. Upper bounds for s0(k) when 2 6 k 6 15.

Our interest in this paper lies with the existence of linear solution spaces of the
equation (1.1) of the shape x = y+ tz, with y ∈ (Z\{0})s and z ∈ Zs \{0}. Subject
to local solubility conditions and the hypothesis s > s0(k), it follows from the above
discussion that there exists an s-tuple y ∈ (Z \ {0})s satisfying the equation

c1y
k
1 + . . .+ csy

k
s = n. (1.2)

With this solution fixed, we denote by Ns,k(B;y) the number of integral s-tuples
z ∈ Zs ∩ [−B,B]s for which the equation

c1(y1 + tz1)k + . . .+ cs(ys + tzs)
k = n (1.3)

holds identically as a polynomial in t. By expanding the powers in (1.3) via the
binomial theorem, and recalling (1.2), one sees that the condition on these s-tuples
is equivalent to insisting that z satisfy the system of equations

s∑
i=1

ciy
k−j
i zji = 0 (1 6 j 6 k). (1.4)

We choose in this paper to focus on the situation with k > 3. The situation with
k = 1 is a matter for linear algebra, while that with k = 2 is accessible to the
theory of quadratic forms. Indeed, by eliminating a variable between the linear and
quadratic equations in (1.4), one sees that the problem of determining Ns,2(B;y) is
equivalent to the classical problem of counting integral solutions of a homogeneous
quadratic equation in s− 1 variables subject to a congruence condition, and this is
well-understood for all s.

Theorem 1.1. Let s and k be natural numbers with k > 3 and s > k(k+1). Also, let
c1, . . . , cs and n be fixed non-zero integers, with c1, . . . , cs neither all positive nor all
negative. Suppose that y1, . . . , ys are non-zero integers satisfying the equation (1.2).
Then, provided that the system (1.4) has non-singular real and p-adic solutions for
every prime number p, there is a positive number Cs,k(y) for which

Ns,k(B;y) = Cs,k(y)Bs−k(k+1)/2 + o(Bs−k(k+1)/2). (1.5)

Some remarks are in order concerning the nature of the conclusion provided by
Theorem 1.1. First, since s0(k) 6 k(k + 1) for all natural numbers k, the discus-
sion above ensures that there are plenty of solutions y ∈ (Z \ {0})s satisfying the
equation (1.2) whenever local solubility conditions permit such a conclusion. Here,
it is apparent that obstructions to p-adic solubility may be present when the bulk of
the coefficients ci are divisible by p, and yet n is not. However, one may regard the
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first important hypothesis of this theorem as being essentially harmless. Next, as
we demonstrate in §7, the existence of non-singular real and p-adic solutions of the
system (1.4) follows in two simple circumstances occurring generically. First, should
the solution y ∈ (Z \ {0})s of the equation (1.2) satisfy the condition that there be
no vanishing subsums, then any solution z 6= 0 of the system (1.4) over R or Qp is
automatically non-singular. Secondly, subject only to the condition that y1, . . . , ys
are non-zero integers satisying the equation (1.2), any solution z of the system (1.4)
over R or Qp is non-singular whenever zi 6= 0 for 1 6 i 6 s.

Finally, as the reader will have anticipated, one may interpret the coefficient
Cs,k(y) appearing in the asymptotic formula (1.5) as a product of local densities,
the description of which requires some preparation. When p is a prime number
and h ∈ N, write Mp(h) for the number of solutions z of the system (1.4) with

z ∈ (Z/phZ)s. Also, when η > 0, denote by M∞(η) the volume of the subset of
[−1, 1]s defined by the inequalities∣∣∣∣ s∑

i=1

ciy
k−j
i zji

∣∣∣∣ < η (1 6 j 6 k).

Then the limits

σ∞ = lim
η→0+

(2η)−kM∞(η) and σp = lim
h→∞

ph(k−s)Mp(h),

when they exist, respectively define the real and p-adic densities of solutions of the
system (1.4). We show in §5 that, under the hypotheses of the statement of Theorem
1.1, both limits exist, and one has Cs,k(y) = σ∞

∏
p σp, where the product is taken

over all prime numbers p. Furthermore, one has 1� Cs,k(y)� 1.

The conclusion of Theorem 1.1 shows, subject to natural local solubility condi-
tions and the constraint s > k(k + 1), that there is an abundance of affine lines
having integral coefficients passing through each eligible integral point of the hyper-
surface determined by the equation (1.1). In the situation wherein s = k(k + 1),
the conclusion of Theorem 1.1 surmounts the convexity barrier in the circle method,
since the number of variables is precisely twice the sum of the degrees of the polyno-
mials defining the system of equations (1.4). This subconvexity conclusion is made
more apparent by a consideration of the associated exponential sums. When k > 3
and X is a large real number, define f(α) = fk(α;X) by putting

fk(α;X) =
∑
|x|6X

e(α1x+ α2x
2 + . . .+ αkx

k), (1.6)

where, as usual, we write e(z) = e2πiz. We introduce a Hardy-Littlewood dissection

to facilitate discussion. Write L = X1/(8k2). Then, when

1 6 q 6 L, 0 6 a 6 q and (q,a) = 1,

we define the major arc P(q,a) by

P(q,a) = {α ∈ [0, 1)k : |αj − aj/q| 6 LX−j (1 6 j 6 k)}.

Here and throughout this paper, we facilitate concision by adopting the use of ex-
tended vector notation. Thus, we write 0 6 a 6 q to denote that 0 6 aj 6 q for
1 6 j 6 k, and we write (q,a) for the greatest common divisor (q, a1, . . . , ak) of q
and a1, . . . , ak. The arcs P(q,a) are disjoint, as is easily verified. Let P denote their
union, and put p = [0, 1)k \P.
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We illustrate the subconvexity estimates available through the approach under-
lying the proof of Theorem 1.1 with the following conclusion.

Theorem 1.2. Let k and s be natural numbers with k > 3. Suppose that c1, . . . , cs
are non-zero integers satisfying the property that

c1 + . . .+ cs 6= 0. (1.7)

Then, whenever 1 6 s < k(k + 1), one has∫
[0,1)k

fk(c1α;X) · · · fk(csα;X) dα� X(s−1)/2+ε. (1.8)

When s = k(k + 1), meanwhile, one has∫
p
fk(c1α;X) · · · fk(csα;X) dα� X(s−δ)/2+ε, (1.9)

where δ = 1/(4k3), and when s > k(k + 1) one has∫
p
fk(c1α;X) · · · fk(csα;X) dα� Xs−1

2k(k+1)−1
2 δ+ε. (1.10)

Given the trivial estimate |fk(α;X)| 6 2X+1, the bounds (1.8) and (1.9) plainly
go beyond those that would result from square-root cancellation, and consequently
constitute subconvexity estimates in the sense described in our work joint with
Brüdern [7]. We remark in this context that, with greater effort, it would be possible
to establish the estimate (1.9) with a larger value of δ. In this paper we have elected
to opt for a more concise account yielding reasonable qualitative results, rather than
seek the strongest quantitative results that might be accessible.

We briefly offer a sketch of the strategy underlying the proof of Theorem 1.1,
restricting attention to the simpler situation that is the focus of Theorem 1.2. Here,
by orthogonality, the mean value

Υ =

∫
[0,1)k

s∏
i=1

fk(ciα;X) dα

on the left hand side of (1.8) counts the number of integral solutions of the system
of equations

s∑
i=1

cix
j
i = 0 (1 6 j 6 k), (1.11)

with |xi| 6 X (1 6 i 6 s). For each such solution x, and for every integer y with
1 6 y 6 X, it follows from the binomial theorem that

s∑
i=1

ci(xi + y)j = −c0y
j (1 6 j 6 k),

where we write c0 = −(c1 + . . .+ cs). We note that our hypothesis (1.7) concerning
the coefficients ci ensures that one has c0 6= 0. We therefore see that for each integer
y with |y| 6 X, the number of integral solutions of the system (1.11) counted by Υ
is bounded above by the number of integral solutions of

c0y
j +

s∑
i=1

ciz
j
i = 0 (1 6 j 6 k),
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with |zi| 6 2X (1 6 i 6 s). By averaging over these values of y and invoking
orthogonality, we thus deduce that∫

[0,1)k

s∏
i=1

fk(ciα;X) dα 6 X−1

∫
[0,1)k

s∏
j=0

fk(cjα; 2X) dα. (1.12)

By comparison with the mean value (1.8), we now have an additional variable over
which to average in (1.12), and it is this which permits us to achieve subconvexity.
We note that, in order to analyse the mean value (1.9), which is restricted to minor
arcs only, we employ some ideas from harmonic analysis previously deployed in our
work [19] devoted to the asymptotic formula in Waring’s problem.

This paper is organised as follows. We derive the fundamental lemma, based on
the strategy just described, in §2. This work already permits a swift proof of the
first subconvex estimate (1.8) recorded in Theorem 1.2. In §3 we begin the proof
of a more general variant of the minor arc estimate (1.9) recorded in Theorem 1.2.
This lays the foundation of the proof of Theorem 1.1. This preliminary minor arc
estimate is converted in §4 into one more accessible to conventional applications of
the Hardy-Littlewood method. The major arc analysis required to complete the
proof of Theorem 1.1 is then tackled in §5. We complete the proofs of Theorems
1.1 and 1.2 in §6. Finally, in §7, we discuss the non-singularity condition implicit
in Theorem 1.1, showing that the existence of non-singular solutions of the system
(1.4) is implied by the conditions that we have already noted.

Throughout, the letter ε will denote a positive number. We adopt the convention
that whenever ε appears in a statement, either implicitly or explicitly, we assert
that the statement holds for each ε > 0. Our basic parameter will be either X
or B, a sufficiently large positive number. In addition, we use � and � to denote
Vinogradov’s well-known notation, implicit constants depending at most on k, s and
ε, as well as other ambient parameters apparent from the context. Finally, we define
‖θ‖ for θ ∈ R by putting ‖θ‖ = min{|θ − n| : n ∈ Z}.
Historical note: The first version of this paper dates from 2014, motivated by the
author’s proof in January 2014 of the main conjecture in the cubic case of Vino-
gradov’s mean value theorem (see [21], which first appeared as arXiv:1401.3150).
The author is grateful to Julia Brandes, Simon Rydin Myerson, Per Salberger and
others for their comments on talks on this topic delivered at Warwick, King’s College
London, Oxford and Göteborg in the period 2014 to 2016 as the associated ideas
evolved. These ideas subsequently delivered subconvex conclusions in the Hilbert-
Kamke problem (see [26]) and affine variants of Vinogradov’s mean value theorem
(see [24, 25], and note also [5]).

The author is grateful to the referee for useful comments.

2. An averaged mean value

We begin by interpreting the strategy outlined at the end of the introduction
as it applies to a mean value not necessarily open to a Diophantine interpretation.
This supplies a fairly general conclusion useful in our subsequent deliberations. We
suppose throughout that s, k, y and n are fixed as in the preamble to the statement
of Theorem 1.1. When y ∈ Z, we define βj(y) = βj(α; y) by putting

βj(α; y) = yk−jαj (1 6 j 6 k). (2.1)
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In the proof of the next lemma as well as in its preamble, when j ∈ {k − 1, k}, we
promote concision by abbreviating the differential dα1 . . . dαj to dαj . Then, when
B ⊆ R is measurable, we introduce the mean value

Is(B;X) =

∫
B

∫
[0,1)k−1

s∏
i=1

f(ciβ(yi)) dαk, (2.2)

in which f(θ) = fk(θ;X) is defined via (1.6). Notice that, by orthogonality, one has
Ns,k(B;y) = Is([0, 1);B). We make use of technology associated with Vinogradov’s
mean value theorem. With this in mind, when t, k ∈ N, the parameter X is positive,
and B ⊆ R is measurable, we define

Jt,k(B;X) =

∫
B

∫
[0,1)k−1

|fk(α;X)|t dαk. (2.3)

Lemma 2.1. Let c,y ∈ (Z \ {0})s, and define

c0 = −(c1y
k
1 + . . .+ csy

k
s ). (2.4)

Suppose that c0 6= 0. Then, whenever B ⊆ R is measurable, one has

Is(B;X)� X−1(logX)s+1
s∏
i=0

Js+1,k(ciB;X)1/(s+1).

Here, the constant implicit in Vinogradov’s notation may depend on y.

Proof. We make use of the translation invariance underlying a blown-up version of
the system of Diophantine equations underlying the mean value (2.2). Write

ψ(u;θ) = θ1u+ . . .+ θku
k. (2.5)

Observe first that for each index i, and every integral shift z, it follows from (1.6)
that one has

f(β(yi);X) =
∑

|x−yiz|6X

e(ψ(x− yiz;β(yi))). (2.6)

Write

fi,z(α; γ) =
∑
|x|62X

e (ψ(x− yiz;β(yi)) + γ(x− yiz)) . (2.7)

In addition, define

K(γ) =
∑
|w|6X

e(−γw), (2.8)

and put

Λ = min
16i6s

|yi|−1.

Then we deduce from (2.6) via orthogonality that when |z| 6 ΛX, one has

f(β(yi);X) =

∫ 1

0
fi,z(α; γ)K(γ) dγ. (2.9)

Next, define

Fz(α;γ) =

s∏
i=1

fi,z(ciα; γi). (2.10)
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Then, on substituting (2.9) into (2.2), we deduce that for each integer z satisfying
|z| 6 ΛX, one has

Is(B;X) =

∫
[0,1)s

I (γ; z)K̃(γ) dγ, (2.11)

where

I (γ; z) =

∫
B

∫
[0,1)k−1

Fz(α;γ) dαk (2.12)

and

K̃(γ) =

s∏
i=1

K(γi). (2.13)

By orthogonality, one finds that∫
[0,1)k−1

Fz(α;γ) dαk−1 =
∑
|x|62X

∆(αk,γ, z), (2.14)

where ∆(θ,γ, z) is equal to

e

(
θ

s∑
i=1

ci(xi − yiz)k +
s∑
i=1

(xi − yiz)γi

)
,

when
s∑
i=1

ciy
k−j
i (xi − yiz)j = 0 (1 6 j 6 k − 1), (2.15)

and otherwise ∆(θ,γ, z) is equal to 0.

By applying the binomial theorem and recalling (2.4), one discerns that whenever
the system (2.15) is satisfied by the s-tuple x, then

c0z
j +

s∑
i=1

ciy
k−j
i xji = 0 (1 6 j 6 k − 1),

and hence
s∑
i=1

ci(xi − yiz)k = c0z
k +

s∑
i=1

cix
k
i .

Then, on recalling (2.5), it follows from (2.14) that∫
[0,1)k−1

Fz(α;γ) dαk−1 = e(−zγ · y)

∫
[0,1)k−1

F0(α;γ)e(c0ψ(z;α)) dαk−1.

From here, we are led from the relation (2.12) to the formula

I (γ; z) = e(−zγ · y)

∫
B

∫
[0,1)k−1

F0(α;γ)e(c0ψ(z;α)) dαk.

Recalling the notation (1.6), we may consequently conclude thus far that∑
|z|6ΛX

I (γ; z) =

∫
B

∫
[0,1)k−1

F0(α;γ)f(c0α− γ̃; ΛX) dαk, (2.16)

where γ̃ is defined by putting γ̃1 = γ · y and γ̃j = 0 (2 6 j 6 k).

It is convenient at this point to set y0 = 1 and to apply orthogonality just as in
the argument leading to (2.9). Thus, on recalling (2.7), we see that

f(α; ΛX) =

∫ 1

0
f0,0(α; γ)K0(γ) dγ,
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where

K0(γ) =
∑
|z|6ΛX

e(−γz). (2.17)

Thus, by applying Hölder’s inequality to (2.16) and recalling (2.10), we see that∣∣∣∣ ∑
|z|6ΛX

I (γ; z)

∣∣∣∣ 6 ∫ 1

0

( s∏
i=0

Ωi

)1/(s+1)

|K0(γ0)| dγ0, (2.18)

where

Ω0 =

∫
B

∫
[0,1)k−1

|f0,0(c0α− γ̃; γ0)|s+1 dαk

and

Ωi =

∫
B

∫
[0,1)k−1

|fi,0(ciα; γi)|s+1 dαk (1 6 i 6 s).

By a change of variable and application of periodicity modulo 1, we find from
(2.1) and (2.7) that for 0 6 i 6 s, one has

Ωi =

∫
B

∫
[0,1)k−1

|fi,0(ciα; 0)|s+1 dαk = c−1
i

∫
ciB

∫
[0,1)k−1

|fi,0(α; 0)|s+1 dαk.

It therefore follows from (2.3) via orthogonality that Ωi = c−1
i Js+1,k(ciB;X). Thus

we infer from (2.18) that∣∣∣∣ ∑
|z|6ΛX

I (γ; z)

∣∣∣∣ 6
(

s∏
i=0

Js+1,k(ciB;X)

)1/(s+1) ∫ 1

0
|K0(γ0)| dγ0.

On substituting this estimate into (2.11) and recalling (2.13), we therefore obtain

Is(B;X) 6 (2ΛX)−1

∫
[0,1)s

∣∣∣∣ ∑
|z|6ΛX

I (γ; z)K̃(γ)

∣∣∣∣ dγ
� X−1

s∏
i=0

(
Js+1,k(ciB;X)1/(s+1)

∫ 1

0
|Ki(γi)|dγi

)
, (2.19)

in which we have taken the expedient step of writingKi(γi) forK(γi) when 1 6 i 6 s.
Recall (2.8) and (2.17). Then the elementary bound Ki(γ)� min{X, ‖γ‖−1} shows,
as is familiar, that ∫ 1

0
|Ki(γi)| dγi � logX (0 6 i 6 s).

Thus, we conclude from (2.19) that

Is(B;X)� X−1(logX)s+1
s∏
i=0

Js+1,k(ciB;X)1/(s+1).

Here, we stress that the constant implicit in Vinogradov’s notation may depend on
y. This completes the proof of the lemma. �

An almost immediate consequence of Lemma 2.1 delivers the first conclusion of
Theorem 1.2.
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Lemma 2.2. Let s and k be natural numbers with 1 6 s < k(k + 1). Suppose that
c,y ∈ (Z \ {0})s and c1y

k
1 + . . .+ csy

k
s 6= 0. Then one has

Is([0, 1);X)� X(s−1)/2+ε.

Proof. Put c0 = −(c1y
k
1 + . . .+ csy

k
s ). We apply Lemma 2.1 to obtain the bound

Is([0, 1);X)� Xε−1
s∏
i=0

Js+1,k(ci[0, 1);X)1/(s+1). (2.20)

Here, in view of the definition (2.3), we have

Js+1,k(ci[0, 1);X) = |ci|
∫

[0,1)k
|fk(α;X)|s+1 dα.

Since our hypothesis on s ensures that s + 1 6 k(k + 1), we deduce from the (now
confirmed) main conjecture in Vinogradov’s mean value theorem (for which see
[3, 21, 23]) that

Js+1,k(ci[0, 1);X)� Xε(X(s+1)/2 +Xs+1−k(k+1)/2).

By substituting this estimate into (2.20), therefore, we conclude that

Is([0, 1);X)� Xε(X(s−1)/2 +Xs−k(k+1)/2).

The conclusion of the lemma is now immediate. �

In order to obtain the upper bound (1.8), we have only to set y1 = . . . = ys = 1
to conclude from (2.2) and Lemma 2.2 that when 1 6 s < k(k + 1), one has∫

[0,1)k
fk(c1α;X) · · · fk(csα;X) dα� X(s−1)/2+ε.

In the next lemma, and throughout the remainder of the paper, we suppose that
k > 3 and c,y ∈ (Z\{0})s. Moreover, putting c0 = −(c1y

k
1 + . . .+csy

k
s ), we suppose

that c0 6= 0. We next obtain from Lemma 2.1 an estimate of minor arc type. When
1 6 Q 6 X, we define a one-dimensional Hardy-Littlewood dissection as follows.
We define the set of major arcs M(Q) to be the union of the arcs

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 QX−k},
with 0 6 a 6 q 6 Q and (a, q) = 1, and then write m(Q) = [0, 1) \M(Q) for the
corresponding set of minor arcs.

Next, when k is an integer with k > 2, we define the exponent σ = σ(k) by taking

σ(k)−1 =

{
2k−1, when 2 6 k 6 5,

k(k − 1), when k > 6.

Then, when k > 2 and 1 6 Q 6 X, one has

sup
αk∈m(Q)

sup
αk−1∈[0,1)k−1

|fk(αk;X)| � X1+εQ−σ(k). (2.21)

The reader may consult [26, Lemma 2.2] for a proof of this conclusion, which makes
use of the standard literature.

Lemma 2.3. When 1 6 Q 6 X and s > k(k + 1), one has

Is(m(Q);X)� Xs−1
2k(k+1)+εQ−σ(k).
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Proof. We apply Lemma 2.1 to obtain the bound

Is(m(Q);X)� Xε−1
s∏
i=0

Js+1,k(cim(Q);X)1/(s+1). (2.22)

Here, in view of the definition (2.3), we have

Js+1,k(cim(Q);X) =

∫
cim(Q)

∫
[0,1)k−1

|fk(α;X)|s+1 dαk.

An elementary exercise confirms that cim(Q) ⊆ m(Q/|ci|) (mod 1), and hence we
deduce from (2.21) that

sup
αk∈cim(Q)

sup
αk−1∈[0,1)k−1

|fk(αk;X)| � X1+εQ−σ(k).

Thus, we find that

Js+1,k(cim(Q);X)� X1+εQ−σ(k)

∫
[0,1)k

|fk(α;X)|s dαk.

By applying the (now confirmed) main conjecture in Vinogradov’s mean value the-
orem (see [3, 21, 23]) once again, we therefore conclude that

Js+1,k(cim(Q);X)� X1+εQ−σ(k)(Xs/2 +Xs−k(k+1)/2).

The conclusion of the lemma follows by substituting this upper bound into (2.22).
�

The conclusion of Lemma 2.3 is neither quite sufficient, by itself, to deliver the
bound (1.9) of Theorem 1.2, nor the key minor arc input into Theorem 1.1. However,
it does provide a bound for the most difficult region of the minor arcs. Our goal in
§§3 and 4 is to handle the remaining parts of the minor arcs in the Hardy-Littlewood
dissection.

3. A generalised minor arc estimate

Our goal in this section is to lay the foundations for an application of the Hardy-
Littlewood method capable of delivering the estimate (1.9) of Theorem 1.2, as well
as the conclusion of Theorem 1.1. To this end we introduce a Hardy-Littlewood
dissection. First, as a close relative of the mean value Is(B;X) introduced in (2.2),
we define the mean value Ts(A) = Ts(A;X) for measurable sets A ⊆ [0, 1)k by
writing

Ts(A;X) =

∫
A
f(c1β(y1)) · · · f(csβ(ys)) dα. (3.1)

Next, when 1 6 Z 6 X, we denote by K(Z) the union of the major arcs

K(q,a;Z) = {α ∈ [0, 1)k : |αj − aj/q| 6 ZX−j (1 6 j 6 k)},
with 1 6 q 6 Z, 0 6 aj 6 q (1 6 j 6 k) and (q,a) = 1, and we define the

complementary set of minor arcs by putting k(Z) = [0, 1)k \K(Z). We have already
defined the one-dimensional Hardy-Littlewood dissection of [0, 1) into sets of arcs

M = M(Q) and m = m(Q). We now fix L = X1/(8k2) and Q = Lk, and we define
k-dimensional sets of arcs by taking N = K(Q2) and n = k(Q2). We also need
the narrow set of major arcs P = K(L), and the complementary set of minor arcs
p = k(L). In this last dissection, it is convenient to abbreviate K(q,a;L) to P(q,a).



SUBCONVEXITY VIA THE CIRCLE METHOD 11

We note that this last set of major and minor arcs coincide with those defined in
the preamble to the statement of Theorem 1.2.

We partition the set of points (α1, . . . , αk) lying in [0, 1)k into four disjoint subsets,
namely

W1 = [0, 1)k−1 ×m,

W2 = ([0, 1)k−1 ×M) ∩ n,

W3 = ([0, 1)k−1 ×M) ∩ (N \P),

W4 = P.

Noting that P ⊆ [0, 1)k−1 ×M, it follows that [0, 1)k = W1 ∪ . . . ∪W4. Hence, by
orthogonality, we infer that

Ns,k(X;y) = Ts([0, 1)k) =

4∑
i=1

Ts(Wi), (3.2)

and further that ∫
p
f(c1β(y1)) · · · f(csβ(ys)) dα =

3∑
i=1

Ts(Wi). (3.3)

The work of §2 already permits us to announce a satisfactory upper bound for
the contribution of the set of arcs W1 in (3.2) and (3.3).

Lemma 3.1. When s > k(k + 1), one has

Ts(W1)� Xs−1
2k(k+1)−1/(8k3).

Proof. We observe that

Ts(W1) = Is(m(Q);X).

Thus, on substituting Q = X1/(8k) into Lemma 2.3, noting that σ(k) > 1/k2 for
k > 3, the conclusion of the lemma is immediate. �

4. Further minor arc estimates

We next estimate the contributions arising from the sets of arcs W2 and W3

within (3.2) and (3.3). We begin with an estimate of Weyl-type for the exponential
sum f(ciβ(yi)) (1 6 i 6 s).

Lemma 4.1. Suppose that 1 6 i 6 s and ciyi 6= 0. Then

sup
α∈n
|f(ciβ(yi))| � X1−1/(6k2) and sup

α∈p
|f(ciβ(yi))| � X1−1/(12k3).

Proof. We begin by confirming the first bound. Put τ = 1/(6k2) and δ = 1/(5k).
Since τ−1 > 4k(k − 1) and δ > kτ , we find from [18, Theorem 1.6] that whenever
|f(ciβ(yi))| > X1−τ , there exist q ∈ N and a ∈ Zk having the property that

1 6 q 6 Xδ and |ciqβj(yi)− aj | 6 Xδ−j (1 6 j 6 k).

Write

r = |ciyk−1
i |q and bj =

aj |ciyk−1
i |

ciy
k−j
i

(1 6 j 6 k).
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Then, on recalling from (2.1) that we have βj(yi) = yk−ji αj (1 6 j 6 k), we see that
when X is sufficiently large in terms of y, one has

|rαj − bj | 6 |yi|j−1Xδ−j 6 Xδ′−j (1 6 j 6 k),

in which we have written δ′ = 1/(4k). In particular, we see that r 6 Q2 and
|αj − bj/r| 6 Q2X−j (1 6 j 6 k), and hence α ∈ N (mod 1). We therefore infer
that whenever X is sufficiently large in terms of k and y, and α ∈ n, then one must
have |f(ciβ(yi))| � X1−τ (1 6 i 6 s), and the first conclusion of the lemma follows.

In order to confirm the second bound, we put τ = 1/(12k3) and δ = 1/(10k2). We
again have τ−1 > 4k(k − 1) and δ > kτ , and so the same argument applies mutatis
mutandis. Thus, whenever |f(ciβ(yi))| > X1−τ , one deduces that α ∈ P (mod 1).
Consequently, when X is sufficiently large in terms of k and y, and α ∈ p, then one
must have |f(ciβ(yi))| � X1−τ (1 6 i 6 s). This delivers the second conclusion and
completes the proof of the lemma. �

By combining this Weyl-type estimate with the conclusion of Lemma 2.1, we
obtain a satisfactory estimate for Ts(W2) by exploiting the observation that W2 has
small measure.

Lemma 4.2. When ciyi 6= 0 (1 6 i 6 s) and s > k(k + 1), one has

Ts(W2)� Xs−1
2k(k+1)−1/(16k).

Proof. When αk ∈M, define

L(αk) = {(α1, . . . , αk−1) ∈ [0, 1)k−1 : α ∈W2}.
Then an application of Hölder’s inequality leads from (3.1) to the upper bound

Ts(W2) 6
s∏
i=1

(∫
M
Ii(αk) dαk

)1/s

, (4.1)

where

Ii(αk) =

∫
L(αk)

|f(ciβ(yi))|s dα1 · · · dαk−1.

Noting that W2 ⊆ n, applying the trivial estimate |f(ciβ(yi))| 6 2X+1, and writing
v = k(k − 1)/2, we deduce that

Ii(αk)� Xs−k(k+1)
(

sup
α∈n
|f(ciβ(yi))|

)2k
∫

[0,1)k−1

|f(ciβ(yi))|2v dα1 · · · dαk−1. (4.2)

By orthogonality, the mean value here counts the integral solutions of the system of
equations

ciy
k−j
i

v∑
l=1

(xjl − z
j
l ) = 0 (1 6 j 6 k − 1),

with 1 6 x, z 6 X, each solution being counted with the unimodular weight

e(ciαk(x
k
1 − zk1 + . . .+ xkv − zkv )).

Thus, applying the (now proven) main conjecture in Vinogradov’s mean value the-
orem (see [3, 21, 23]), we find that one has the bound∫

[0,1)k−1

|f(ciβ(yi))|2v dα1 · · · dαk−1 � J2v,k−1([0, 1);X)� Xv+ε,

uniformly in αk.
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Making use of the latter bound, we deduce from (4.2) via Lemma 4.1 that

Ii(αk)� Xs−k(k+1)
(
X1−1/(6k2)

)2k
Xv+ε.

Moreover, we have mes(M)� Q2X−k. Consequently, we infer that∫
M
Ii(αk) dαk � Xs−1

2k(k+1)+ε(Xk−1/(3k))(Q2X−k)

� Xs−1
2k(k+1)+ε(Q2X−1/(3k)).

Since Q2 = X1/(4k), we conclude that∫
M
Ii(αk) dαk � Xs−1

2k(k+1)−1/(16k).

The conclusion of the lemma follows by substituting this bound into (4.1). �

The analysis of the set of arcs W3 requires standard major arc estimates from the
theory of Vinogradov’s mean value theorem.

Lemma 4.3. Suppose that u > 1
2k(k + 1) + 2 and ciyi 6= 0 for 1 6 i 6 s. Then∫

N
|f(ciβ(yi))|u dα� Xu−k(k+1)/2.

Proof. Suppose that α ∈ N. Then there exist q ∈ N and a ∈ Zk for which (q,a) = 1,

1 6 q 6 Q2 and 0 6 aj 6 q (1 6 j 6 k),

and such that

|αj − aj/q| 6 Q2X−j (1 6 j 6 k).

In such circumstances, one has

|ciyk−ji αj − ciyk−ji aj/q| 6 |ciyk−ji |Q2X−j .

Thus, whenX is sufficiently large in terms of y, we see that ciβ(yi) ∈ K(Q2+ε) (mod 1).
Hence, applying periodicity modulo 1, we have∫

N
|f(ciβ(yi))|u dα�

∫
K(Q2+ε)

|f(β)|u dβ.

From here we may apply [20, Lemma 7.1], observing that the set of major arcs
K(Q2+ε) is a subset of the major arcs employed in the latter source. Thus, in
particular, one has ∫

K(Q2+ε)
|f(β)|u dβ � Xu−k(k+1)/2,

and the conclusion of the lemma follows. �

Lemma 4.4. When ciyi 6= 0 (1 6 i 6 s) and s > k(k + 1), one has

Ts(W3)� Xs−1
2k(k+1)−1/(12k2).

Proof. An application of Hölder’s inequality conveys us from (3.1) to the upper
bound

Ts(W3) 6
s∏
i=1

J
1/s
i , (4.3)
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where

Ji =

∫
W3

|f(ciβ(yi))|s dα.

Since W3 ⊆ N \P, we discern from Lemma 4.1 that

sup
α∈W3

|f(ciβ(yi))| 6 sup
α∈p
|f(ciβ(yi))| � X1−1/(12k3).

Thus, taking u = s − k and noting that u > 1
2k(k + 1) + 3, it follows from Lemma

4.3 that

Ji 6
(

sup
α∈p
|f(ciβ(yi))|

)k ∫
N
|f(ciβ(yi))|u dα

�
(
X1−1/(12k3)

)k
Xu−k(k+1)/2.

The conclusion of the lemma follows on substituting this bound into (4.3). �

5. The analysis of the major arc contribution

By substituting the conclusions of Lemmata 3.1, 4.2 and 4.4 into the relation
(3.2), we find that

Ns,k(X;y) = Ts(P) +O(Xs−1
2k(k+1)−1/(8k3)). (5.1)

The goal of this section is to obtain an asymptotic formula for Ts(P) that suffices
to confirm (1.5), and hence completes the proof of Theorem 1.1.

We begin by introducing the generating functions

I(θ;X) =

∫ X

−X
e(θ1γ + . . .+ θkγ

k) dγ

and

S(q,a) =

q∑
r=1

eq(a1r + . . .+ akr
k),

in which eq(u) denotes e2πiu/q. Recall the notation (2.1). When 1 6 i 6 s, we define

Ii(θ;X) = I(ciβ(θ; yi);X) and Si(q,a) = S(q, ciβ(a; yi)).

Then, when α ∈ P(q,a) ⊆ P, we write

Vi(α; q,a) = q−1Si(q,a)Ii(α− a/q;X).

Define the function Vi(α) to be Vi(α; q,a) when α ∈ P(q,a) ⊆ P, and to be 0
otherwise. Then, when α ∈ P(q,a) ⊆ P, we see from [15, Theorem 7.2] that

f(ciβ(α; yi))− Vi(α; q,a)� q +X|qα1 − a1|+ . . .+Xk|qαk − ak| � L2,

with the implicit constant in Vinogradov’s notation depending at most on ci, yi and
k. Thus, uniformly for α ∈ P, we have the bound

s∏
i=1

f(ciβ(α; yi))−
s∏
i=1

Vi(α)� Xs−1+1/(4k2).

Write

T ∗s (P) =

∫
P

s∏
i=1

Vi(α) dα.
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Then since mes(P)� L2k+1X−k(k+1)/2, we deduce that

Ts(P)− T ∗s (P)� Xs−k(k+1)/2L−1. (5.2)

Next write

Ω(X;D) = [−DX−1, DX−1]× · · · × [−DX−k, DX−k].

Then one finds that

T ∗s (P) = S(L)T(X;L), (5.3)

where

T(X;D) =

∫
Ω(X;D)

s∏
i=1

Ii(θ;X) dθ (5.4)

and

S(D) =
∑

16q6D

∑
16a6q
(q,a)=1

q−s
s∏
i=1

Si(q,a).

We examine the truncated singular integral T(X;D) and the truncated singular
series S(D) in turn. In this context, we recall the definitions of the real density σ∞
and the p-adic densities σp from the sequel to the statement of Theorem 1.1. We
begin by examining the integrals

I(D) =

∫
Ω(1;D)

s∏
i=1

Ii(θ; 1) dθ

and

I∞ =

∫
Rk

s∏
i=1

Ii(θ; 1) dθ.

Lemma 5.1. Suppose that s > 1
2k(k + 1) + 3. Then the limit I∞ = limD→∞ I(D)

exists, and one has

T(X;L) = I∞X
s−k(k+1)/2 +O(Xs−k(k+1)/2L−1/k).

Moreover, one has I∞ = σ∞, and provided that the system (1.4) has a non-singular
real solution z ∈ Rs, one has σ∞ > 0.

Proof. We consider a parameter D with D > 1, and we put

Ωc(D) = Rk \ Ω(1;D).

We begin by applying Hölder’s inequality to the mean value complementary to (5.4),
obtaining the bound∫

Ωc(D)

s∏
i=1

|Ii(θ; 1)|dθ 6
s∏
i=1

(∫
Ωc(D)

|Ii(θ; 1)|s dθ

)1/s

. (5.5)

Recall the bound

I(θ; 1)� (1 + |θ1|+ . . .+ |θk|)−1/k,

available from [15, Theorem 7.3]. When θ ∈ Ωc(D), one has |θi| > D for some index
i with 1 6 i 6 k. Then in view of the definition (2.1) of β(θ; yi), we have

sup
θ∈Ωc(D)

|Ii(θ; 1)| �y D
−1/k.
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Thus, leaving the dependence of y implicit in Vinogradov’s notation henceforth, we
deduce that∫

Ωc(D)
|Ii(θ; 1)|s dθ � (D−1/k)s−

1
2k(k+1)−2

∫
Rk

|Ii(θ; 1)|
1
2k(k+1)+2 dθ. (5.6)

When t > 1
2k(k + 1) + 1, the integral∫

Rk

|I(θ; 1)|t dθ

converges absolutely (see [1, Theorem 1.3]). Thus, one finds by a change of variable
that ∫

Rk

|Ii(θ; 1)|t dθ �
∫
Rk

|I(θ; 1)|t dθ � 1.

By substituting this bound first into (5.6) and then into (5.5), we obtain the estimate∫
Ωc(D)

s∏
i=1

|Ii(θ; 1)|dθ � D−1/k.

It therefore follows that the integral I∞ converges absolutely, and further that one
has I∞ − I(D) � D−1/k. Moreover, by two changes of variable, we are led from
(5.4) to the relation

T(X;L) = Xs−k(k+1)/2

∫
Ω(1;L)

s∏
i=1

Ii(θ; 1) dθ

= Xs−k(k+1)/2
(
I∞ +O(L−1/k)

)
. (5.7)

At this point we recall the definitions of the quantities M∞(η) and σ∞, defined in
the sequel to the statement of Theorem 1.1. Since the singular integral I∞ converges
absolutely, it follows from the argument of [8, §9] that

I∞ = lim
η→0+

(2η)−kM∞(η) = σ∞.

It is apparent, moreover, that whenever the system of equations (1.4) has a non-
singular real solution, then one has M∞(η)� ηk, and hence σ∞ > 0. In view of the
conclusion (5.7) already obtained, the proof of the lemma is complete. �

Before discussing the singular series

S = lim
D→∞

S(D),

we introduce the quantity

A(q) =
∑

16a6q
(q,a)=1

q−s
s∏
i=1

Si(q,a).

Thus, one has

S(D) =
∑

16q6D

A(q),

and the singular series is given by the infinite sum

S =

∞∑
q=1

A(q). (5.8)
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Lemma 5.2. Suppose that s > k(k + 1). Then the singular series S converges
absolutely. Moreover, for each prime number p, the limit σp exists, the product over
all primes

∏
p σp converges absolutely, and one has S =

∏
p σp. Moreover, one has

S(L) =
∏
p

σp +O(L−1−1/(3k)), (5.9)

and provided that the system (1.4) has a non-singular p-adic solution for each prime
number p, one has

∏
p σp � 1.

Proof. We may suppose that s > k(k+ 1). Put t = 1
2k(k+ 1) + 5

2 . Then, in view of
our assumption throughout that k > 3, one sees that

s− t > 1
2k(k + 1)− 5

2 > k + 1
2 ,

and in particular 1
2k(k+ 1) + 2 < t < s. From [15, Theorem 7.1], we find that when

(q,a) = 1 one has S(q,a)� q1−1/k+ε. Hence, we deduce that

Si(q,a)�y q
1−1/k+ε.

Again suppressing the implicit dependence on y in Vinogradov’s notation, an appli-
cation of Hölder’s inequality reveals that

A(q) 6
s∏
i=1

( ∑
16a6q
(q,a)=1

q−s|Si(q,a)|s
)1/s

� qε−(s−t)/k
s∏
i=1

( ∑
16a6q
(q,a)=1

q−t|Si(q,a)|t
)1/s

.

Since we have arranged parameters so that s − t > k + 1
2 , we find by means of

Hölder’s inequality that

∑
q>D

|A(q)| � D−1−1/(3k)
s∏
i=1

(∑
q>D

∑
16a6q
(q,a)=1

q−t|Si(q,a)|t
)1/s

. (5.10)

A change of variable supplies the estimate∑
q>D

∑
16a6q
(q,a)=1

q−t|Si(q,a)|t �
∞∑
q=1

∑
16a6q
(q,a)=1

q−t|S(q,a)|t.

By reference to [1, Theorem 2.4], the sum on the right hand side here is absolutely
convergent for t > 1

2k(k + 1) + 2. We therefore derive from (5.10) the upper bound∑
q>D

|A(q)| � D−1−1/(3k), (5.11)

and thus the singular series (5.8) is absolutely convergent, and one has

S−S(L)� L−1−1/(3k). (5.12)
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The standard theory of singular series shows that the functionA(q) is a multiplicative
function of q (see [15, §2.6] for the necessary ideas). Moreover, since (5.11) shows
that, for each prime number p, one has∑

h>H

|A(ph)| � p−H(1+1/(3k)),

we see that the limit

lim
H→∞

H∑
h=0

A(ph)

exists, and that the infinite sum

Ap =
∞∑
h=0

A(ph)

is absolutely convergent with Ap = 1 + O(p−1−1/(3k)). Thus the infinite product∏
pAp is absolutely convergent and S =

∏
pAp. In particular, we deduce from

(5.12) that

S(L)−
∏
p

Ap � L−1−1/(3k). (5.13)

Once again applying the standard theory of singular series, moreover, one has

H∑
h=0

A(ph) = pH(k−s)Mp(H),

where Mp(H) denotes the number of solutions of the system

s∑
i=1

ciy
k−j
i zji ≡ 0 (mod pH) (1 6 j 6 k),

with 1 6 z 6 pH . Thus we find that Ap is equal to the p-adic density σp defined
in the sequel to the statement of Theorem 1.1. We are at liberty to assume that
the system of equations (1.4) has a non-singular p-adic solution for each prime p. It
therefore follows via Hensel’s lemma that there is a non-negative integer νp satisfying
the property that, whenever H > νp, one has

Mp(H) > p(H−νp)(s−k),

whence

σp = lim
H→∞

pH(k−s)Mp(H) > p−(s−k)νp > 0.

Then, on recalling that σp = 1 + O(p−1−1/(3k)), we find that there is a positive
integer p0 with the property that

S =
∏
p

σp �
∏
p>p0

(1− p−1−1/(4k))� 1,

whilst at the same time S � 1. The proof of the lemma is completed on noting
that since Ap = σp, the relation (5.13) yields the asymptotic relation (5.9). �

We are now equipped to complete the asymptotic analysis of the major arc con-
tribution Ts(P).
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Lemma 5.3. Suppose that s > k(k + 1), and the system (1.4) has a non-singular
real solution, and a non-singular p-adic solution for each prime p. Then one has

Ts(P) = σ∞

(∏
p

σp

)
Xs−k(k+1)/2 + o(Xs−k(k+1)/2),

in which the product over real and p-adic densities is positive.

Proof. By substituting the conclusions of Lemmata 5.1 and 5.2 into (5.3), we find
that

T ∗s (P) =
(
S +O(L−1−1/(3k))

)(
σ∞X

s−k(k+1)/2 +O(Xs−k(k+1)/2L−1/k)
)

= σ∞

(∏
p

σp

)
Xs−k(k+1)/2 +O(Xs−k(k+1)/2L−1/k).

Moreover, the product over real and p-adic densities here in the leading asymptotic
term is positive. We therefore conclude from (5.2) that

Ts(P) = σ∞

(∏
p

σp

)
Xs−k(k+1)/2 +O(Xs−k(k+1)/2L−1/k),

and the proof of the lemma is complete. �

6. The proof of Theorems 1.1 and 1.2

The completion of the proofs of our main theorems is now at hand, though we
defer to the next section a consideration of the nature of the singularities of the
system (1.4).

The proof of Theorem 1.1. On recalling (5.1), we find that when s > k(k + 1) and
ciyi 6= 0 (1 6 i 6 s), one has

Ns,k(X;y) = Ts(P) + o(Xs−k(k+1)/2). (6.1)

The hypotheses of Theorem 1.1 permit us to assume that the system (1.4) possesses
non-singular real and p-adic solutions, for each prime number p. Thus, we deduce
from Lemma 5.3 that

Ts(P) = Cs,k(y)Xs−k(k+1)/2 + o(Xs−k(k+1)/2),

where Cs,k(y) = σ∞
∏
p σp > 0. The conclusion of Theorem 1.1 now follows by

substituting this asymptotic relation into (6.1). �

The proof of Theorem 1.2. The proof of the upper bound (1.8) has already been
accomplished in Lemma 2.2 and the discussion following the latter. Turning now to
the proof of the upper bounds (1.9) and (1.10), suppose that k > 3 and s > k(k+1).
We set yj = 1 for 1 6 j 6 s and put n = c1 + . . .+ cs 6= 0. In this scenario, we find
that (3.3) delivers the estimate∫

p
fk(c1α;X) · · · fk(csα;X) dα =

3∑
i=1

Ts(Wi), (6.2)

where, by virtue of Lemmata 3.1, 4.2 and 4.4,

3∑
i=1

Ts(Wi)� Xs−1
2k(k+1)−1/(8k3). (6.3)
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When s = k(k+ 1), the right hand side here is O(X(s−δ)/2), where δ = 1/(4k3), and

when s > k(k + 1), it is instead O(Xs−1
2k(k+1)−1

2 δ). In either case, therefore, the
upper bounds (1.9) and (1.10) follow by substituting (6.3) into (6.2). �

7. The non-singularity of non-zero solutions

Suppose that the system of equations (1.4) has a non-zero solution z 6= 0 lying
in either Rs or Qs

p, for a given prime p. Our goal in this section is to show that
this solution is in fact non-singular under the conditions discussed in the sequel to
the statement of Theorem 1.1. We assume throughout that the equation (1.2), with
n 6= 0 and ci 6= 0 (1 6 i 6 s), has a solution y with yi 6= 0 (1 6 i 6 s). Then,
should the system (1.4) have a non-zero solution z over R, or over Qp, we find that
z satisfies the system of equations

s∑
i=1

ciy
k
i (zi/yi)

j = 0 (1 6 j 6 k). (7.1)

Suppose, by way of deriving a contradiction, that this solution z is singular. Then,
for any k-tuple (i1, . . . , ik) of natural numbers satisfying 1 6 i1 < i2 < . . . < ik 6 s,
one must have

det
(
jcily

k−j
il

zj−1
il

)
16j,l6k

= 0. (7.2)

Since ciyi 6= 0 for 1 6 i 6 s, a consideration of Vandermonde determinants reveals
that the condition (7.2) is satisfied if and only if

0 = det

((
zil
yil

)j−1
)

16j,l6k

=
∏

16j<l6k

(
zil
yil
−
zij
yij

)
.

This relation implies that
zil
yil

=
zij
yij
,

for some indices j and l with 1 6 j < l 6 k, and thus we are forced to conclude that
the set {zi/yi : 1 6 i 6 s} contains at most k − 1 distinct values.

By relabelling indices, we may suppose that, for some integer r with 1 6 r 6 k−1,
each of the rational numbers

z1

y1
,
z2

y2
, . . . ,

zr
yr
,

is distinct, and further that, whenever i > r, one has

zi
yi
∈
{
z1

y1
, . . . ,

zr
yr

}
.

We define an equivalence relation on indices by defining i ∼ j whenever one has
zi/yi = zj/yj . Then, on putting

Ci =
∑

16j6s
j∼i

cj
ykj

yki
(1 6 i 6 r),

we see that the equation (1.2) becomes

C1y
k
1 + . . .+ Cry

k
r = n, (7.3)
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while the equations (7.1) transform into the new system

r∑
i=1

Ciy
k
i

(zi
yi

)j
= 0 (1 6 j 6 k), (7.4)

subject to the condition
zi
yi
6= zl
yl

(1 6 i < l 6 r). (7.5)

Notice here that since n 6= 0, it follows from the equation (7.3) that Ciy
k
i 6= 0 for

some index i with 1 6 i 6 r. Moreover, since (z1, . . . , zk) 6= 0, the relation (7.5)
ensures that zi = 0 for at most one index i with 1 6 i 6 r, and in such circumstances
one must have r > 2.

Should the solution y of (1.2) satisfy the condition that there be no vanishing
subsums, then Ci 6= 0 for 1 6 i 6 r. We suppose either that such is the case and
z 6= 0, or else that zi 6= 0 for 1 6 i 6 s. In both circumstances we relabel indices in
such a manner that Cizi 6= 0 for 1 6 i 6 R, and Cizi = 0 for R < i 6 r. Here, in
either scenario, our discussion thus far permits us the assumption that 1 6 R < k.
We now infer from the system of equations (7.4) that

R∑
i=1

Ciy
k
i

(zi
yi

)j
= 0 (1 6 j 6 R).

We view these relations as a system of linear equations, with the quantities Ciy
k
i

(1 6 i 6 R) as variables. Then since in either scenario under consideration, we have
Ciy

k
i 6= 0 for all indices i with 1 6 i 6 R, we see that

det

((
zi
yi

)j)
16i,j6R

= 0.

Expanding the Vandermonde determinant, we thus conclude that( R∏
l=1

zl
yl

) ∏
16i<j6R

(
zi
yi
− zj
yj

)
= 0.

But the hypothesis (7.5) ensures that the second product on the left hand side is
non-zero, and our hypothesis Cizi 6= 0 for 1 6 i 6 R ensures that the first product
on the left hand side is non-zero. We therefore arrive at a contradiction, so that the
solution z cannot in fact be singular. The conditions in the sequel to the statement
of Theorem 1.1 consequently suffice to guarantee the existence of non-singular real
and p-adic solutions, as we had claimed.
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