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Abstract. Let G(k) denote the least number s having the property that every suffi-
ciently large natural number is the sum of at most s positive integral k-th powers. Then
for all k ∈ N, one has

G(k) ⩽ ⌈k(log k + 4.20032)⌉.
Our new methods improve on all bounds available hitherto when k ⩾ 14.

1. Introduction

Since the introduction by Hardy and Littlewood of their circle method a century ago
(see [3]), it has been possible to surmise progress associated with this technology from
corresponding advances in the theory of Waring’s problem. As is usual, we denote by G(k)
the least number s having the property that every sufficiently large natural number is the
sum of at most s positive integral k-th powers. The initial bound G(k) ⩽ (k− 2)2k−1 +5
of Hardy and Littlewood [4] was improved rapidly over the next four decades, culminating
in 1959 with Vinogradov’s bound

G(k) ⩽ k(2 log k + 4 log log k + 2 log log log k + 13) (k ⩾ 170, 000)

(see [18]). The latter bound was subsequently improved by Karatsuba [7], and shortly
thereafter by Vaughan [12], showing that

G(k) ⩽ 2k(log k + log log k + 1 + log 2 +O(log log k/ log k)).

A little over three decades after the work of Vinogradov, the second author obtained a
bound roughly half that of this earlier work, establishing the bound

G(k) ⩽ k(log k + log log k + 2 +O(log log k/ log k))

(see [19, 20] and [22, Theorem 1.4]). Our primary goal in this memoir is the removal of
the secondary term of size k log log k.

Theorem 1.1. For all k ∈ N, one has G(k) ⩽ ⌈k(log k + 4.20032)⌉.

The conclusion of this theorem constitutes the largest improvement in available bounds
for G(k), when k is large, since the progress achieved thirty years ago by the second author
[19, 20]. The upper bound presented in Theorem 1.1 is in fact an approximation to one
asymptotically very slightly stronger. In order to describe this result, we introduce some
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auxiliary constants. Let ω be the unique real solution, with ω ⩾ 1, of the transcendental
equation

ω − 2− 1/ω = logω. (1.1)

We then put

C1 = 2 + log(ω2 − 3− 2/ω) and C2 =
ω2 + 3ω − 2

ω2 − ω − 2
. (1.2)

A modest computation reveals that

ω = 3.548292 . . . , C1 = 4.200189 . . . and C2 = 3.015478 . . . .

Theorem 1.2. For all k ∈ N, one has G(k) < k(log k + C1) + C2.

It transpires that the new ideas underlying the progress exhibited in Theorems 1.1 and
1.2 apply not only for very large values of k, but also for exponents of moderate size.

Theorem 1.3. When 14 ⩽ k ⩽ 20, one has G(k) ⩽ H(k), where H(k) is defined by
means of Table 1.

k 14 15 16 17 18 19 20
H(k) 89 97 105 113 121 129 137

Table 1. Upper bounds for G(k) when 14 ⩽ k ⩽ 20.

For comparison, recent work of the second author [24] delivers the bounds G(14) ⩽ 90,
G(15) ⩽ 99, G(16) ⩽ 108, while rather earlier investigations of Vaughan and Wooley [17]
obtained G(17) ⩽ 117, G(18) ⩽ 125, G(19) ⩽ 134, G(20) ⩽ 142. For values of k smaller
than 14, although superior to the bounds of [17], our new methods do not improve on
those obtained in [24].

Two ideas underlie our approach to the theorems above, one old and one new. A
novel mean value estimate for moments of smooth Weyl sums over sets of minor arcs
of intermediate and large height is essential for our findings. This new tool is of utility
in bounding mean values restricted to sets of arcs excluding those of classical major arc
type, and hence is applicable in pruning problems. A simple but crude version of this idea
occurs as [2, Lemma 2.3], where mean values over sets of major arcs of large height are
estimated in terms of complete mean values over shortened exponential sums. This idea,
in turn, has [9, Lemma 5.6] as a less flexible and more restricted precursor. While a version
of [2, Lemma 2.3] is obtained in Theorem 4.2 which applies to lower moments than were
accessible hitherto, the treatment of the present memoir also delivers analogous bounds
for moments restricted to minor arcs. Crucial to our applications is the observation that
the latter estimates are at their most powerful when the associated set of minor arcs is of
maximal height relative to the length of the shortened exponential sums occurring within
our argument. Readers seeking clarity beyond these rough and murky remarks would do
well to inspect the account in §5 of the ideas delivering Theorem 5.3.

This brings us to the second, much older, idea that we exploit. Minor arc estimates of
conventional type for smooth Weyl sums over k-th powers can be substantially improved
when their argument lies on an extreme set of minor arcs, rather than on a conventional
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such set. This idea has been utilized previously in work of Heath-Brown [6] and Karatsuba
[8] on fractional parts of αnk. A flexible analysis using sets of smooth numbers of utility
in applications of the circle method can be found in [22]. These improved minor arc
estimates can be applied through the novel mean value estimates to which we alluded in
the previous paragraph, surmounting difficulties associated with intermediate sets of arcs
that previously obstructed their use. The details associated with this plan of attack are
described in §5.

We begin the main discourse of this memoir in §2 by introducing the infrastructure
required for a discussion of mean values associated with smooth Weyl sums. This section
already introduces ideas that relate intermediate sets of arcs of differing heights. The
delicate analysis involved in considering mean values restricted to sets of intermediate
arcs requires a careful decomposition of smooth Weyl sums, and this we discuss in §3.
Thus prepared, we establish our first mean value estimate in §4, completing the proof of
Theorem 4.2. In order to exploit the mean value estimate provided in this theorem, we
revisit estimates of Weyl type for smooth Weyl sums in §5, providing in Theorem 5.3 an
estimate of minor arc type that should be flexible enough for future application beyond the
present memoir. In §6 we turn to the application central to this paper, namely Waring’s
problem, and we describe a general analysis. Explicit bounds for G(k) are then derived
for larger k in §7, establishing Theorems 1.1 and 1.2. In §8, we consider intermediate
values of k using the tables of exponents made available in [17], and thereby we complete
the proof of Theorem 1.3. Finally, in §9, we briefly outline the consequences of our new
bounds for problems concerning the representation of almost all positive integers as sums
of positive integral k-th powers.

The authors are grateful to the referee for useful comments.

2. Infrastructure

We initiate the proof of the mean value estimates provided in Theorems 4.2 and 5.3 by
introducing infrastructure necessary for the ensuing discussion. A central role is played
by the set of R-smooth integers not exceeding P , namely

A (P,R) = {n ∈ [1, P ] ∩ Z : p|n implies p ⩽ R}.

Here, and throughout this memoir, the letter p is used to denote a prime number. Recall
the usual convention of writing e(z) for e2πiz. Then, associated with this set A (P,R) are
the smooth Weyl sum

f(α;P,R) =
∑

x∈A (P,R)

e(αxk),

and, for each positive real number s, the mean value

Us(P,R) =

∫ 1

0

|f(α;P,R)|s dα.

A real number ∆s is referred to as an admissible exponent (for k) if it has the property
that, whenever ε > 0 and η is a positive number sufficiently small in terms of ε, k and s,
then whenever 1 ⩽ R ⩽ P η and P is sufficiently large, one has

Us(P,R) ≪ P s−k+∆s+ε.
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Here and throughout, with P the underlying parameter, the constant implicit in Vino-
gradov’s notation may depend on ε, η, k and s. It is easily verified that for all positive
numbers s, one has ∆s ⩾ 0. It is a simple exercise in interpolation, moreover, to confirm
that for each η > 0 one has Us(P, P

η) ≫ P s/2. Thus, for all s > 0 one has

∆s ⩾ max{0, k − s/2}.
In the opposite direction, one has the trivial upper bound Us(P,R) ≪ P s. Hence ∆s = k
is an admissible exponent. We may therefore suppose that ∆s ⩽ k, and we shall do so
whenever this is convenient.

We draw a trivial consequence from the definition of an admissible exponent important
enough that we summarise the conclusion in the form of a lemma.

Lemma 2.1. Suppose that ∆s is an admissible exponent for k and that ε is a positive
number. Then there exists a positive number η, depending at most on ε, k and s, with
the following property. Suppose that P is sufficiently large in terms of ε, η, k and s, and
further that 1 ⩽ R ⩽ P η. Then, uniformly in 1 ⩽ Y ⩽ P , one has the bound

Us(Y,R) ≪ P εY s−k+∆s .

Proof. Fix ε, k and s, so that in our use of Vinogradov’s notation we may suppress any
mention of quantities depending on these numbers, and write µs = s − k + ∆s. If we
assume that ∆s is admissible for k, there exists a positive number η1, depending at most
on ε, k and s, and satisfying η1 < ε and the following property. Whenever X is sufficiently
large in terms of η1, say X ⩾ X0(η1), and 1 ⩽ R ⩽ Xη1 , one has Us(X,R) ≪ Xµs+ε. Now
consider a real number P sufficiently large in terms of η1, and suppose that 1 ⩽ Y ⩽ P .
We put η = η21/s and take R to be a real number with 1 ⩽ R ⩽ P η. There are three
different regimes for Y that we must consider. First, if Y ⩽ X0(η1), then a trivial estimate
yields the bound

Us(Y,R) ⩽ Y s ⩽ X0(η1)
s ≪ 1.

Next, when X0(η1) < Y ⩽ R1/η1 , the same trivial estimate now reveals that

Us(Y,R) ⩽ Y s ⩽ Rs/η1 ⩽ P ηs/η1 = P η1 ⩽ P ε.

Finally, when Y ⩾ X0(η1) and R1/η1 < Y ⩽ P , we have R < Y η1 , and then it follows
from the above discussion that we have

Us(Y,R) ≪ Y µs+ε ≪ P εY µs .

By collecting together these estimates, we conclude that the last bound holds uniformly
in 1 ⩽ Y ⩽ P . This completes the proof of the lemma. □

In order to facilitate concision, from this point onwards we adopt the extended ε, R
notation routinely employed by scholars working with smooth Weyl sums while applying
the Hardy-Littlewood method. Thus, whenever a statement involves the letter ε, then it
is asserted that the statement holds for any positive real number assigned to ε. Implicit
constants stemming from Vinogradov or Landau symbols may depend on ε, as well as
ambient parameters implicitly fixed such as k and s. If a statement also involves the
letter R, either implicitly or explicitly, then it is asserted that for any ε > 0 there is a
number η > 0 such that the statement holds uniformly for 2 ⩽ R ⩽ P η. Our arguments
will involve only a finite number of statements, and consequently we may pass to the
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smallest of the numbers η that arise in this way, and then have all estimates in force with
the same positive number η. Notice that η may be assumed sufficiently small in terms of
k, s and ε.

We shall have cause to consider sets of integers, all of whose prime divisors divide a
fixed integer. In this context, we make use of transparent though disturbing notation,
writing u|q∞ to denote that whenever p is a prime and p|u, then p|q. Then, when q ∈ N,
we define the set

Cq(P,R) = {n ∈ A (P,R) : n|q∞},

consisting of R-smooth natural numbers not exceeding P , each having squarefree kernel
dividing q. We recall that, while card(A (P,R)) ≫η P when R ⩾ P η, the set Cq(P,R) is
very thin provided that q is not too large.

Lemma 2.2. Suppose that C is a positive number. Then, uniformly for positive integers
q with q ⩽ PC, one has card(Cq(P,R)) ≪ P ε.

Proof. The desired conclusion is immediate from [20, Lemma 2.1]. □

Our interest lies in mean values of f(α, P,R) analogous to Us(P,R), though with do-
mains of integration given by intermediate sets of arcs from a Hardy-Littlewood dissection.
Let Q be a parameter with 1 ⩽ Q ⩽ P k/2. When q is a natural number with 1 ⩽ q ⩽ Q,
we define the set of arcs Mq(Q,P ) to be the union of the sets

Mq,a(Q,P ) = {α ∈ [0, 1) : |qα− a| ⩽ QP−k},

with 0 ⩽ a ⩽ q and (a, q) = 1, and then put

M(Q,P ) =
⋃

1⩽q⩽Q

Mq(Q,P ).

It is convenient to extend these definitions so that Mq(Q,P ) = ∅ when q > Q. The
related dyadically truncated set of arcs N(Q,P ) may then be defined by

N(Q,P ) = M(Q,P ) \M(Q/2, P ).

Associated with this set are the collections of arcs

Nq(Q,P ) = Mq(Q,P ) \Mq(Q/2, P ).

By Dirichlet’s approximation theorem, given α ∈ [0, 1), there exist a ∈ Z and q ∈ N
with 0 ⩽ a ⩽ q ⩽ P k/2, (a, q) = 1 and |qα−a| ⩽ P−k/2. Thus we see that α ∈ M(P k/2, P ).
Hence, in particular, we have

[0, 1) =
L⋃

j=0

N(2−jP k/2, P ),

in which

L =

⌊
k logP

2 log 2

⌋
. (2.1)
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It therefore follows that

Us(P,R) =
L∑

j=0

∫
N(2−jPk/2,P )

|f(α;P,R)|s dα

≪ (logP ) max
1⩽Q⩽Pk/2

∫
N(Q,P )

|f(α;P,R)|s dα.

An important feature of the mean value on the right hand side here is a certain scaling
property of the associated set N(Q,P ). We summarise this property in the form of a
lemma.

Lemma 2.3. Let F : R → C be a 1-periodic integrable function. Suppose that w ∈ N
satisfies the property that 1 ⩽ Q ⩽ 1

2
(P/w)k/2. Then whenever q ∈ N satisfies (q, w) = 1,

one has ∫
Mq(Q,P )

F (αwk) dα = w−k

∫
Mq(Q,P/w)

F (β) dβ.

Proof. Let

I = [−q−1QP−k, q−1QP−k] and J = [−q−1QwkP−k, q−1QwkP−k].

The hypothesis Q ⩽ 1
2
(P/w)k/2 ensures that the arcs comprising Mq(Q,P/w) are disjoint.

Since F has period 1, we infer that∫
Mq(Q,P/w)

F (β) dβ =

q∑
b=1

(b,q)=1

∫
J

F
( b
q
+ γ

)
dγ. (2.2)

Likewise, we find that∫
Mq(Q,P )

F (αwk) dα =

q∑
a=1

(a,q)=1

∫
I

F
((a

q
+ β

)
wk

)
dβ

= w−k

q∑
a=1

(a,q)=1

∫
J

F
(awk

q
+ γ

)
dγ. (2.3)

By hypothesis (q, w) = 1, whence the mapping a 7→ awk induces a bijection on the reduced
residue classes modulo q. Once again using the hypothesis that F has period one, it now
follows that the sums on the right hand sides of (2.2) and (2.3) are equal. This proves
the lemma. □

3. A decomposition of the smooth Weyl sum

We are unable to apply Lemma 2.3 directly with F (β) = |f(β;P,R)|s. However,
following a decomposition of the smooth Weyl sum f(β;P,R), we are able to achieve a
conclusion tantamount to such an application. Here, the coprimality condition (q, w) =
1 of Lemma 2.3 figures prominently in the analysis. We begin by isolating a part of
the smooth Weyl sum f(α;P,R) in which a large factor w of the argument is available
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coprime to an auxiliary variable q. With this objective in mind, we introduce the auxiliary
exponential sums

f ∗
q (α;P,M,R) =

∑
v∈A (P,R)

v>M
(v,q)=1

∑
u∈Cq(P/v,R)

e(α(uv)k) (3.1)

and

f †
q (α;P,M,R) =

∑
v∈A (M,R)
(v,q)=1

∑
u∈Cq(P/v,R)

e(α(uv)k). (3.2)

Lemma 3.1. Let q ∈ N. Then

f(α;P,R) = f ∗
q (α;P,M,R) + f †

q (α;P,M,R).

Proof. Consider an integer x ∈ A (P,R), and let u denote the largest divisor of x with
u|q∞. Put v = x/u. Then either v ⩽ M , in which case v ∈ A (M,R), or else v > M and
v ∈ A (P,R). In both cases, one has x = uv with u ∈ Cq(P/v,R) and (v, q) = 1. The
conclusion of the lemma follows at once. □

It transpires that the contribution of the exponential sum f †
q (α;P,M,R) is easily han-

dled via a trivial estimate.

Lemma 3.2. Let Q be a parameter with 1 ⩽ Q ⩽ P k/2. Then, whenever 1 ⩽ q ⩽ Q, one
has ∫

Mq(Q,P )

|f †
q (α;P,M,R)|s dα ≪ QM sP ε−k.

Proof. By applying Lemma 2.2 together with a trivial estimate for the sum over v in (3.2),
we see that

|f †
q (α;P,M,R)| ⩽

∑
v⩽M

∑
u∈Cq(P/v,R)

1 ≪ P εM.

Thus, since mes(Mq(Q,P )) ≪ QP−k, we deduce that∫
Mq(Q,P )

|f †
q (α;P,M,R)|s dα ≪ QP−k(P εM)s,

and the conclusion of the lemma follows. □

In order to analyse the exponential sum f ∗
q (α;P,M,R) further, we recall a decomposi-

tion of the smooth numbers utilised in work of Vaughan [12]. In this context, we introduce
a subset of the smooth numbers A (P,R) given by

B(M,π,R) = {v ∈ A (Mπ,R) : v > M , π|v, and π′|v implies π′ ⩾ π}.

Both here and in the remainder of this memoir, we reserve the symbols π and π′ to denote
prime numbers. We also require the exponential sum

g∗q,π(α;P,m,R) =
∑

w∈A (P/m,π)
(w,q)=1

∑
u∈Cq(P/(mw),R)

e(α(wu)k). (3.3)
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Lemma 3.3. Let q ∈ N. Then whenever M ⩾ R, one has

f ∗
q (α;P,M,R) =

∑
π⩽R

∑
m∈B(M,π,R)

(m,q)=1

g∗q,π(αm
k;P,m,R).

Proof. It follows from [12, Lemma 10.1] that for each v ∈ A (P,R) satisfying v > M ⩾ R,
there is a unique triple (π,m,w) with v = mw, w ∈ A (P/m, π) and m ∈ B(M,π,R).
On noting that the coprimality conditions (m, q) = (w, q) = 1 are inherited from the
constraint (v, q) = 1, the conclusion of the lemma follows from the definition (3.1) of
f ∗
q (α;P,M,R). □

We complete this section by combining the conclusions of Lemmata 3.1, 3.2 and 3.3 so
as to obtain a mean value estimate of considerable utility. In order to abbreviate notation
at this point, we introduce the mean value Iq(M ;B) defined for B equal to either M or
N by

Iq(M ;B) =
∑
π⩽R

∑
m∈B(M,π,R)

(m,q)=1

∫
Bq(Q,P )

|g∗q,π(αmk;P,m,R)|s dα. (3.4)

Lemma 3.4. Let Q be a real number with 1 ⩽ Q ⩽ P k/2, and suppose that s is a real
number with s > 1. Then whenever M ⩾ R and 1 ⩽ q ⩽ Q, one has∫

Nq(Q,P )

|f(α;P,R)|s dα ≪ (MR)s−1Iq(M ;N) +QM sP ε−k.

The same conclusion also holds when M replaces N throughout.

Proof. It follows from Lemma 3.1 that when α ∈ [0, 1), one has

|f(α;P,R)|s ≪ |f ∗
q (α;P,M,R)|s + |f †

q (α;P,M,R)|s.
Moreover, by applying Hölder’s inequality in combination with Lemma 3.3, one obtains
the bound

|f ∗
q (α;P,M,R)|s =

∣∣∣∑
π⩽R

∑
m∈B(M,π,R)

(m,q)=1

g∗q,π(αm
k;P,m,R)

∣∣∣s
≪ (MR)s−1

∑
π⩽R

∑
m∈B(M,π,R)

(m,q)=1

|g∗q,π(αmk;P,m,R)|s.

Note that Nq(Q,P ) ⊆ Mq(Q,P ). Hence, on integrating over α ∈ Nq(Q,P ) or α ∈
Mq(Q,P ), the lemma now follows from Lemma 3.2. □

4. Mean value estimates over intermediate arcs

The upper bound provided by Lemma 3.4 bounds f(α;P,R) in mean, over a set of
intermediate arcs, in terms of an auxiliary mean value. The latter is susceptible to Lemma
2.3, but the presence of factors in the argument lying in Cq(P/(mw), R) creates difficulties
to which we now attend. In this section, we prepare a preliminary mean value using a
method that in certain circumstances may be enhanced. These enhancements we defer to
the next section.
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We begin with a discussion of the exponential sum g∗q,π(α;P,m,R). Here, we shall find
it useful to introduce a modification of the set Cq(P,R), namely

Cq,π(P,R) = {n ∈ Cq(P,R) : p|n implies p > π}.

Lemma 4.1. One has

g∗q,π(α;P,m,R) =
∑

z∈Cq,π(P/m,R)

∑
x∈A (P/(mz),π)

e(α(xz)k).

Proof. On recalling the definition (3.3) of g∗q,π(α;P,m,R), we may interchange the order
of summation to obtain

g∗q,π(α;P,m,R) =
∑

u∈Cq(P/m,R)

∑
w∈A (P/(mu),π)

(w,q)=1

e(α(wu)k).

For each integer u ∈ Cq(P/m,R), there is a unique pair of integers (y, z) satisfying u = yz,
where y has all of its prime divisors no larger than π, and z has no prime divisors less
than or equal to π. Thus, we have y ∈ Cq(P/m, π) and z ∈ Cq,π(P/m,R). Making use of
this decomposition, we see that

g∗q,π(α;P,m,R) =
∑

z∈Cq,π(P/m,R)

∑
y∈Cq(P/(mz),π)

∑
w∈A (P/(myz),π)

(w,q)=1

e(α(wyz)k). (4.1)

Notice here that, given any integer n ∈ A (P/(mz), π), there are unique integers y and
w with n = yw, and satisfying the condition that y has all of its prime divisors amongst
those of q, and w is coprime with q. With such decompositions in mind, we recognise that∑

y∈Cq(P/(mz),π)

∑
w∈A (P/(myz),π)

(w,q)=1

e(γ(wy)k) =
∑

x∈A (P/(mz),π)

e(γxk).

The conclusion of the lemma follows on substituting this relation into (4.1). □

We now investigate the mean value Iq(M ;B) defined in (3.4) as a prelude to the high-
light of this section, a mean value estimate for moments of f(α;P,R) restricted to the set
M(Q,P ). Fix B to be either M or N, and fix a real number Q with 1 ⩽ Q ⩽ 1

2
P k/2R−k.

At this point, we put

M = P (2Q)−2/kR−1, (4.2)

and we observe that our hypothesis on Q ensures that M ⩾ R. Then, when π ⩽ R
and m ∈ B(M,π,R), one has m ⩽ Mπ ⩽ P (2Q)−2/k, and thus Q ⩽ 1

2
(P/m)k/2. The

latter condition ensures that the arcs Mq,a(Q,P/m) are disjoint for 0 ⩽ a ⩽ q ⩽ Q with
(a, q) = 1. Under these hypotheses on Q and m, therefore, we deduce from (3.4) via
Lemma 2.3 that

Iq(M ;B) =
∑
π⩽R

∑
m∈B(M,π,R)

(m,q)=1

m−k

∫
Bq(Q,P/m)

|g∗q,π(α;P,m,R)|s dα. (4.3)
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Observe next that, since Cq,π(P/m,R) ⊆ Cq(P/m,R), it follows from Lemma 4.1 to-
gether with Lemma 2.2 and Hölder’s inequality that when s > 1, one has

|g∗q,π(α;P,m,R)|s ≪ P ε
∑

z∈Cq,π(P/m,R)

∣∣∣ ∑
x∈A (P/(mz),π)

e(α(xz)k)
∣∣∣s

≪ P ε
∑

z∈A (P/m,R)

|f(αzk;P/(mz), π)|s.

Write

Vs(π,m, z;B) =

∫
B(Q,P/m)

|f(αzk;P/(mz), π)|s dα.

Then we deduce via (4.3) that∑
1⩽q⩽Q

Iq(M ;B) ⩽
∑
π⩽R

∑
m∈B(M,π,R)

m−k
∑

1⩽q⩽Q

∫
Bq(Q,P/m)

|g∗q,π(α;P,m,R)|s dα

≪ P ε
∑
π⩽R

∑
m∈B(M,π,R)

m−k
∑

z∈A (P/m,R)

Vs(π,m, z;B). (4.4)

The special case of (4.4) with B = M combines with Lemma 3.4 to deliver the main
conclusion of this section. We emphasise that in this statement just as elsewhere, we are
making use of the extended ε, R convention.

Theorem 4.2. Suppose that s is a real number with s ⩾ 2 and ∆s is an admissible
exponent. Then whenever Q is a real number with 1 ⩽ Q ⩽ P k/2, one has the uniform
bound ∫

M(Q,P )

|f(α;P,R)|s dα ≪ P s−k+εQ2∆s/k.

Proof. We begin by observing that the conclusion is immediate from the definition of an
admissible exponent when 1

2
P k/2R−k < Q ⩽ P k/2, for in such circumstances one has∫

M(Q,P )

|f(α;P,R)|s dα ⩽ Us(P,R) ≪ P s−k+∆s+ε ≪ P s−k+2εQ2∆s/k.

We may therefore suppose henceforth that 1 ⩽ Q ⩽ 1
2
P k/2R−k. In view of (4.2), one

then has also M ⩾ R. For each summand m in the relation (4.4), one trivially has
M(Q,P/m) ⊆ [0, 1). Thus, by means of a change of variable we deduce that

Vs(π,m, z;M) ⩽
∫ 1

0

|f(αzk;P/(mz), π)|s dα = Us(P/(mz), π).

We hence infer from Lemma 2.1 and (4.4) that when s− k +∆s ⩾ 1, one has∑
1⩽q⩽Q

Iq(M ;M) ≪ P ε
∑
π⩽R

∑
m∈B(M,π,R)

m−k
∑

z∈A (P/m,R)

( P

mz

)s−k+∆s

≪ P−k+2ε
∑
π⩽R

∑
m∈B(M,π,R)

(P
m

)s+∆s

≪ P s−k+3εM1−s
( P

M

)∆s

.
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The condition s − k + ∆s ⩾ 1 is satisfied so long as s ⩾ 2, for as we have already
observed, it is always the case that ∆s ⩾ k − s/2. We therefore conclude from Lemma
3.4 that ∫

M(Q,P )

|f(α;P,R)|s dα =
∑

1⩽q⩽Q

∫
Mq(Q,P )

|f(α;P,R)|s dα

≪ (MR)s−1
∑

1⩽q⩽Q

Iq(M ;M) +Q2M sP ε−k

≪ P s−k+ε(P/M)∆s +Q2M sP ε−k.

Thus, on recalling our choice (4.2) for M , we conclude that∫
M(Q,P )

|f(α;P,R)|s dα ≪ P s−k+ε
(
Q2∆s/k +Q2−2s/k

)
.

The conclusion of the theorem follows on observing that ∆s ⩾ k − s, whence the first
term on the right hand side majorises the second. □

We remark that a version of Theorem 4.2 appears as [2, Lemma 2.3], though in that
version the condition s ⩾ k + 1 is imposed. The proof of that lemma is in many ways
more straightforward, with the price being a more restrictive constraint on s. As we shall
see in the next section, the approach that we have taken in this memoir also offers the
option of retaining minor arc information.

5. Mean value estimates restricted to minor arcs

The conclusion of Theorem 4.2 provides a mean value estimate over an intermediate
set of major arcs M(Q,P ). If instead we integrate over the truncated set N(Q,P ), then
we are removing the points from M(Q,P ) of small height, and the resulting mean value
is relevant to the estimation of the minor arc contribution. Suppose that 1 ⩽ Q ⩽ 1

2
P k/2

and put X = Q2/k. Then in very rough terms, one can interpret the argument leading to
Theorem 4.2 as delivering a bound of the flavour∫

M(Q,P )

|f(α;P,R)|s dα ≪ (P/X)s−k+ε

∫
M( 1

2
Xk/2,X)

|f(α;X,R)|s dα

≪ (P/X)s−k+εUs(X,R).

Our goal now is to obtain an analogous bound of the general shape∫
N(Q,P )

|f(α;P,R)|s dα ≪ (P/X)s−k+ε

∫
N( 1

2
Xk/2,X)

|f(α;X,R)|s dα.

The set N(1
2
Xk/2, X) is an extreme set of minor arcs. Here, when α lies on N(1

2
Xk/2, X),

it is known that the smooth Weyl sum f(α;X,R) is O(X1−c/k), for a suitable positive
number c. Since this bound is considerably sharper than conventional minor arc bounds
for f(α;X,R), which would lose a factor of roughly log k in the Weyl exponent, one has
rather sharper bounds for ∫

N(Q,P )

|f(α;P,R)|s dα

than were available hitherto, at least when s is fairly large.



12 JÖRG BRÜDERN AND TREVOR D. WOOLEY

We begin by deriving a consequence of [22, Lemma 3.1].

Lemma 5.1. Let t be an even integer, and suppose that the exponent ∆t is admissible.
Then whenever b ∈ Z, r ∈ N and (b, r) = 1, one has

f(α;P,R) ≪ rεP 1+ε
(
P∆t

(
Θ−1 + P−k/2 + P−kΘ

))2/t2
+ P 1/2+ε,

in which we write Θ = r + P k|rα− b|.

Proof. Suppose that 1
2
< λ < 1, M = P λ and α ∈ R. Suppose further that a ∈ Z and

q ∈ N satisfy (a, q) = 1 and |α − a/q| ⩽ 1/q2. Then [22, Lemma 3.1] establishes that for
all even natural numbers t and w, one has

f(α;P,R) ≪ qεP 1+ε
(
M∆w(P/M)∆t

(
q−1 +M−k + (P/M)−k + qP−k

))2/(tw)

+M.

We take w = t and λ = 1
2
+ δ, for a small fixed positive number δ. Thus

f(α;P,R) ≪ qεP 1+kδ
(
P∆t

(
q−1 + P−k/2 + qP−k

))2/t2
+ P 1/2+δ.

We now apply a standard transference principle (see [23, Lemma 14.1]) to see that the
same conclusion holds for all b ∈ Z and r ∈ N with (b, r) = 1 when we replace q by
Θ = r + P k|rα − b| throughout. The conclusion of the lemma therefore follows, since δ
may be taken arbitrarily small. □

The most powerful consequences of Lemma 5.1 are made available by applying Dirich-
let’s approximation theorem to obtain integers b and r with (b, r) = 1 and 1 ⩽ r ⩽ P k/2

for which |rα − b| ⩽ P−k/2. In such circumstances, Lemma 5.1 is most effective when α
satisfies the condition that r > cP k/2, for some fixed c > 0. One then has f(α;P,R) ≪
P 1−τ(t,k)+ε + P 1/2+ε, where

τ(t, k) =
k − 2∆t

t2
.

Since ∆t ⩾ max{k − t/2, 0}, one sees that

τ(t, k) ⩽ min

{
t− k

t2
,
k

t2

}
⩽

1

4k
,

and thus our estimate for f(α;P,R) simplifies to f(α;P,R) ≪ P 1−τ(t,k)+ε. To extract the
most from this bound, we introduce the number

τ(k) = max
w∈N

k − 2∆2w

4w2
, (5.1)

and then have
f(α;P,R) ≪ P 1−τ(k)+ε. (5.2)

The number τ(k) will be of significance in the argument below. It appears also in slightly
different guises in work of Karatsuba [8] and Heath-Brown [6].

We now return to the rescaling argument underlying the work of §4. In this context,
we introduce an auxiliary exponent. Suppose that s is a real number with s ⩾ 2, and
that the exponents ∆u are admissible for 2 ⩽ u ⩽ s. We define

∆∗
s = min

0⩽t⩽s−2
(∆s−t − tτ(k)) , (5.3)
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and refer to ∆∗
s as an admissible exponent for minor arcs.

Theorem 5.2. Suppose that s ⩾ 2, and that ∆∗
s is an admissible exponent for minor arcs.

Then whenever 1 ⩽ Q ⩽ 1
2
P k/2R−k, one has the uniform bound∫

N(Q,P )

|f(α;P,R)|s dα ≪ P s−k+εQ2∆∗
s/k.

Proof. We again fix M according to equation (4.2), and we recall from (4.4) that when
1 ⩽ Q ⩽ 1

2
P k/2R−k, one has∑
1⩽q⩽Q

Iq(M ;N) ≪ P ε
∑
π⩽R

∑
m∈B(M,π,R)

m−k
∑

z∈A (P/m,R)

Vs(π,m, z;N), (5.4)

where

Vs(π,m, z;N) =

∫
N(Q,P/m)

|f(αzk;P/(mz), π)|s dα. (5.5)

We apply Lemma 5.1 to estimate f(αzk;P/(mz), π) when α ∈ N(Q,P/m). In the
latter circumstances, one has α ∈ M(Q,P/m) \M(Q/2, P/m). Thus, there exist integers
a and q with 0 ⩽ a ⩽ q ⩽ Q and (a, q) = 1 for which one has |qα − a| ⩽ Q(P/m)−k,
and either q > Q/2 or |qα− a| > 1

2
Q(P/m)−k. Consider a fixed integer z ∈ A (P/m,R).

Then as a consequence of these relations, if we put

r =
q

(q, zk)
and b =

azk

(q, zk)
,

then we find that (b, r) = 1 with r ⩽ Q and |r(αzk)− b| ⩽ Q(P/(mz))−k. Moreover, one
has either r > 1

2
Qz−k or |r(αzk)− b| > 1

2
Q(P/m)−k. Thus, in particular,

1
2
Qz−k < r +

( P

mz

)k

|r(αzk)− b| ⩽ 2Q.

We therefore deduce from Lemma 5.1 that whenever t is an even integer, then

f(αzk;P/(mz), π) ≪Qε
( P

mz

)1+ε
(( P

mz

)∆t
(zk
Q

+
(mz

P

)k/2

+Q
(mz

P

)k))2/t2

+
( P

mz

)1/2+ε

.

We choose t = 2w to correspond to the maximum in the definition of τ = τ(k) in
(5.1), and recall from (4.2) that Q = 1

2
(P/(MR))k/2. Then, when M < m ⩽ MR and

α ∈ N(Q,P/m), we conclude that

f(αzk;P/(mz), π) ≪
( P

mz

)1/2+ε

+ P ε
(P
m

)1−τ

z−1+2(k−∆t)/t2 .

Since ∆t ⩾ k − t/2 and t ⩾ 2, we arrive at the upper bound

sup
α∈N(Q,P/m)

|f(αzk;P/(mz), π)| ≪ P ε(P/m)1−τz−1/2. (5.6)
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We now return to the mean value Vs(π,m, z;N) defined in (5.5). Let t and v be non-
negative integers with s = t+ v. Then it follows from (5.6) that

Vs(π,m, z;N) ≪ P ε(P/m)t(1−τ)

∫ 1

0

|f(αzk;P/(mz), π)|v dα.

A change of variable therefore combines with Lemma 2.1 to show that

Vs(π,m, z;N) ≪ P ε(P/m)t(1−τ)Uv(P/(mz), π)

≪ P 2ε(P/m)t(1−τ)(P/(mz))v−k+∆v .

Since ∆v ⩾ k − v/2, we see that v − k + ∆v ⩾ 1 whenever v ⩾ 2. On recalling the
definition (5.3) of ∆∗

s, therefore, and noting that v = s− t, we discern that

Vs(π,m, z;N) ≪ z−1P ε(P/m)s−k+∆∗
s .

On substituting this upper bound into (5.4), we find that∑
1⩽q⩽Q

Iq(M ;N) ≪ P ε
∑
π⩽R

∑
M<m⩽MR

m−k(P/m)s−k+∆∗
s

∑
1⩽z⩽P/m

z−1

≪ P s−k+2εM1−s(P/M)∆
∗
s . (5.7)

We next appeal to Lemma 3.4, proceeding just as in the conclusion of the proof of
Theorem 4.2. Thus, making use of the bound (5.7), we obtain∫

N(Q,P )

|f(α;P,R)|s dα =
∑

1⩽q⩽Q

∫
Nq(Q,P )

|f(α;P,R)|s dα

≪ (MR)s−1
∑

1⩽q⩽Q

Iq(M ;N) +Q2M sP ε−k

≪ P s−k+ε(P/M)∆
∗
s +Q2M sP ε−k.

Hence, on recalling the choice (4.2) for M , we conclude that∫
N(Q,P )

|f(α;P,R)|s dα ≪ P s−k+ε(Q2−2s/k +Q2∆∗
s/k). (5.8)

We have observed already that τ(k) ⩽ 1/(4k). Thus, since ∆s−t ⩾ k − (s − t), one sees
that for some integer t satisfying 0 ⩽ t ⩽ s−2 (the integer t associated with the definition
(5.3) of ∆∗

s), one has

2

k
∆∗

s ⩾
2

k

(
k − (s− t)− t

4k

)
⩾ 2− 2s

k
.

The desired conclusion is therefore immediate from (5.8). □

This theorem may be exploited to obtain a bound for minor arc contributions of con-
siderable utility in applications of the circle method. In this context, we introduce the
set of minor arcs m(Q) = m(Q,P ) given by m(Q) = [0, 1] \ M(Q,P ). We also abbrevi-
ate the major arcs M(Q,P ) simply to M(Q) in circumstances where the implicit second
parameter is equal to P and brevity is to be prized above full disclosure.
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Theorem 5.3. Let s ⩾ 2 and suppose that ∆∗
s is an admissible exponent for minor

arcs satisfying ∆∗
s < 0. Let θ be a positive number with θ ⩽ k/2. Then whenever

P θ ⩽ Q ⩽ P k/2, one has the bound∫
m(Q)

|f(α;P,R)|s dα ≪θ P
s−kQε−2|∆∗

s |/k.

Proof. Write

J =

⌈
log(P k/2/Q)

log 2

⌉
and J0 =

⌈
log(2Rk)

log 2

⌉
.

We begin by observing that, since m(Q) = [0, 1] \M(Q,P ), we have

m(Q) ⊆
J⋃

j=0

N(2−jP k/2, P ).

When J0 < j ⩽ J , it follows from Theorem 5.2 that∫
N(2−jPk/2,P )

|f(α;P,R)|s dα ≪ P s−k+ε
(
2−jP k/2

)2∆∗
s/k

≪ P s−k+εQ−2|∆∗
s |/k. (5.9)

Meanwile, when 0 ⩽ j ⩽ J0, we may apply the argument underlying the proof of
Theorem 5.2. Thus, when α ∈ N(2−jP k/2, P ), there exist b ∈ Z and r ∈ N with (b, r) = 1,
r ⩽ 2−jP k/2 and |rα− b| ⩽ 2−jP−k/2. Since α ̸∈ M(2−j−1P k/2, P ), we have

P k/2R−k ≪ 2−1−jP k/2 ⩽ r + P k|rα− b| ≪ P k/2.

By Lemma 5.1 and (5.2), we now have f(α;P,R) ≪ P 1−τ(k)+ε. With s = t+ v, and t and
v defined as in the proof of Theorem 5.2, we therefore infer that∫

N(2−jPk/2,P )

|f(α;P,R)|s dα ≪ (P 1−τ(k)+ε)t
∫ 1

0

|f(α;P,R)|v dα

≪ P s−k+εP∆v−tτ(k)

≪ P s−k+εQ−2|∆∗
s |/k.

On combining this estimate with (5.9), we see that∫
m(Q)

|f(α;P,R)|s dα ≪
J∑

j=0

∫
N(2−jPk/2,P )

|f(α;P,R)|s dα

≪ P s−k+εQ−2|∆∗
s |/k.

Since Q ⩾ P θ and θ > 0, it suffices to recall the conventions concerning the use of ε and
η to complete the proof of the theorem. □

6. The treatment of G(k) in general terms

Our proofs of Theorems 1.1 and 1.2 are largely routine given the flexible nature of
Theorem 5.3, so we may be concise in our exposition. We begin with a pruning argument
that extends the range of Q in Theorem 5.3 from a power of P to an arbitrarily slowly
growing function of P .
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Theorem 6.1. Suppose that k ⩾ 3, s ⩾ 2k + 3 and ∆∗
s is an admissible exponent for

minor arcs with ∆∗
s < 0. Let ν be any positive number with

ν < min

{
2|∆∗

s|
k

,
1

6k

}
.

Then, when 1 ⩽ Q ⩽ P k/2, one has the uniform bound∫
m(Q)

|f(α;P,R)|s dα ≪ P s−kQ−ν .

Proof. In view of the conclusion of Theorem 5.3, it suffices to consider values of Q with
1 ⩽ Q ⩽ P θ, where θ is a fixed positive number small in terms of k and s. We assume in
particular that θ < 1/k, whence for k ⩾ 3 one has

3

4
+

θ

8
< 1− 1

2k
. (6.1)

Our starting point is the observation that, as a consequence of Theorem 5.3,∫
m(Q)

|f(α;P,R)|s dα =

∫
m(P θ)

|f(α;P,R)|s dα +

∫
m(Q)\m(P θ)

|f(α;P,R)|s dα

≪ P s−k(P θ)ε−2|∆∗
s |/k +

∫
m(Q)\m(P θ)

|f(α;P,R)|s dα

≪ P s−kQ−ν +

∫
M(P θ)\M(Q)

|f(α;P,R)|s dα. (6.2)

When a ∈ Z and q ∈ N satisfy 0 ⩽ a ⩽ q ⩽ 1
2
P k/2 and (a, q) = 1, the intervals

Mq,a(
1
2
P k/2, P ) are disjoint, and for α ∈ Mq,a(

1
2
P k/2, P ) we put

Υ(α) = (q + P k|qα− a|)−1.

Meanwhile, for α ∈ [0, 1) \ M(1
2
P k/2, P ) we put Υ(α) = 0. This defines a function

Υ : [0, 1) → [0, 1]. By [14, Lemma 7.2], we find that when

2 ⩽ R ⩽ M ⩽ P, |qα− a| ⩽ M/(k(2P )kR) and (a, q) = 1,

one has
f(α;P,R) ≪ qεL3

(
PΥ(α)1/(2k) + (PMR)1/2 + q1/4P (R/M)1/2

)
where L is defined by (2.1). But on taking M = P (2+θ)/4 and recalling (6.1), we see that
when q ⩽ P θ one has

qεL3
(
(PMR)1/2 + q1/4P (R/M)1/2

)
≪ P

3
4
+ θ

8
+εR ≪ P 1−1/(2k).

It follows that whenever α ∈ M(P θ, P ), one has the bound

f(α;P,R) ≪ PL3Υ(α)−ε+1/(2k) + P 1−τ(k)+ε. (6.3)

We now put s = t+ v, where t and v are chosen in accordance with the definition (5.3)
of ∆∗

s, just as in the proof of Theorem 5.2. Thus, by substituting (6.3) into (6.2), we
obtain the bound∫

m(Q)

|f(α;P,R)|s dα ≪ P s−kQ−ν + P εT1 + (PL3)tT2, (6.4)
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where

T1 =
(
P 1−τ(k)

)t ∫ 1

0

|f(α;P,R)|v dα (6.5)

and

T2 =

∫
M(P θ)\M(Q)

Υ(α)−ε+t/(2k)|f(α;P,R)|v dα. (6.6)

As in the proof of Theorem 5.3, it is apparent from (6.5) that

T1 ≪
(
P 1−τ(k)

)t
P v−k+∆v+ε ≪ P s−k−|∆∗

s |+ε.

Thus we obtain the estimate

P εT1 ≪ P s−kQ−ν . (6.7)

Meanwhile, an application of Hölder’s inequality to (6.6) reveals that

T2 ⩽ T
(v−2)/(s−2)
3 T

t/(s−2)
4 , (6.8)

where

T3 =

∫
m(Q)

|f(α;P,R)|s dα

and

T4 =

∫
M(P θ)\M(Q)

Υ(α)−ε+(s−2)/(2k)|f(α;P,R)|2 dα. (6.9)

On substituting (6.7) and (6.8) into (6.4), we obtain the estimate

T3 ≪ P s−kQ−ν + (PL3)tT
1−t/(s−2)
3 T

t/(s−2)
4 ,

whence ∫
m(Q)

|f(α;P,R)|s dα ≪ P s−kQ−ν + (PL3)s−2T4. (6.10)

Thus it remains only to bound the mean value T4.
When α ∈ R, it follows from Dirichlet’s approximation theorem that there exist a ∈ Z

and q ∈ N with (a, q) = 1, q ⩽ Q−1P k and |qα− a| ⩽ QP−k. When α ∈ M(P θ) \M(Q),
moreover, one has q+P k|qα−a| > Q, and hence Υ(α) < Q−1. We therefore deduce from
(6.9) that when s ⩾ 2k + 3, we have the bound

T4 ≪ Qε−1/(4k)

∫
M(P θ)

Υ(α)1+1/(4k)|f(α;P,R)|2 dα.

The mean value on the right hand side here is amenable to [10, Lemma 11.1], a pruning
lemma that refines earlier work of the first author [1, Lemma 2]. Thus, we obtain the
estimate T4 ≪ Qε−1/(4k)P 2−k. After substituting this bound into (6.10), we infer that∫

m(Q)

|f(α;P,R)|s dα ≪ P s−kQ−ν +Qε−1/(4k)L3sP s−k.

The desired conclusion therefore follows provided that Q > L60ks, since then

L3sQε−1/(4k) ⩽ Qε−1/(5k)
(
L60ksQ−1

)1/(20k)
< Q−ν .
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At this point we are reduced to the scenario in which one has Q ⩽ L60ks. In this range
for Q, we appeal to [14, Lemma 8.5]. Let A > 0 be fixed. Then the latter lemma shows
that when a ∈ Z and q ∈ N satisfy (a, q) = 1 and q ⩽ LA, one has the upper bound

f(α;P,R) ≪ PΥ(α)−ε+1/k + P exp
(
−c(logP )1/2

)
(1 + P k|α− a/q|),

in which c = c(A) > 0. When α ∈ M(L60ks) \M(Q), one has

Q < q + P k|qα− a| ⩽ 2L60ks.

In such circumstances, therefore, we have

f(α;P,R) ≪ PΥ(α)−ε+1/k + PL−60ks ≪ PΥ(α)1/(2k)Q−1/(3k).

Write

T5 =

∫
M(L60ks)\M(Q)

|f(α;P,R)|s dα.

Then we deduce that when s ⩾ 2k + 3, one has

T5 ≪ (PQ−1/(3k))s−2

∫
M(L60ks)

Υ(α)(s−2)/(2k)|f(α;P,R)|2 dα

≪ P s−2Q−1/2

∫
M(L60ks)

Υ(α)1+1/(2k)|f(α;P,R)|2 dα.

Observe that m(Q) \ m(L60ks) = M(L60ks) \M(Q). Then, again employing [10, Lemma
11.1], we conclude that∫

m(Q)\m(L60ks)

|f(α;P,R)|s dα = T5 ≪ P s−kQ−1/2.

Hence, on applying the conclusion of the theorem already established when Q ⩾ L60ks,
we obtain ∫

m(Q)

|f(α;P,R)|s dα =

∫
m(L60ks)

|f(α;P,R)|s dα + T5

≪ P s−k(L60ks)−ν + P s−kQ−1/2

≪ P s−kQ−ν .

The conclusion of the theorem therefore follows also in this last case with 1 ⩽ Q ⩽ L60ks,
and thus the proof of the theorem is complete. □

We are now equipped to bound the quantity G(k) relevant to Waring’s problem. We
assume that we have available an admissible exponent ∆u for each positive number u.
Then, when k ⩾ 4, we define τ(k) as in (5.1), and we also put

G0(k) = min
v⩾2

(
v +

∆v

τ(k)

)
. (6.11)

Also, when s ∈ N, we write Rs,k(n) for the number of solutions of the equation

xk
1 + . . .+ xk

s = n, (6.12)

with xi ∈ N.
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Theorem 6.2. Suppose that k ⩾ 4 and s ⩾ max{⌊G0(k)⌋ + 1, 2k + 3}. Then provided
that the integer n is sufficiently large in terms of k and s, and for each natural number q
the congruence

xk
1 + . . .+ xk

s ≡ n (mod q)

possesses a solution with (x1, q) = 1, one has Rs,k(n) ≫ ns/k−1. In particular, when k is
not a power of 2 one has G(k) ⩽ max{⌊G0(k)⌋ + 1, 2k + 3}, and when k is a power of 2
one has instead G(k) ⩽ max{⌊G0(k)⌋+ 1, 4k}.

Proof. We first address the claimed asymptotic lower bound Rs,k(n) ≫ ns/k−1, the fi-
nal conclusions of the theorem following from the standard theory associated with local
solubility in Waring’s problem (see [13, Theorem 4.6], for example). Consider a natural
number n sufficiently large in terms of k and s. Let P = n1/k and R = P η, where η > 0
is sufficiently small, in a manner to be specified in due course. We denote by rs,k(n) the
number of representations of n in the form (6.12) with xi ∈ A (P,R) (1 ⩽ i ⩽ s), so that
Rs,k(n) ⩾ rs,k(n). By orthogonality, one has

rs,k(n) =

∫ 1

0

f(α;P,R)se(−nα) dα.

We put Q = L1/15, and we specify η to be sufficiently small in the context of the (finitely
many) admissible exponents that must be discussed in determining τ(k) and G0(k). We
make use of a simplified Hardy-Littlewood dissection. Thus, we take K to be the union
of the arcs

K(q, a) = {α ∈ [0, 1) : |α− a/q| ⩽ QP−k},
with 0 ⩽ a ⩽ q ⩽ Q and (a, q) = 1, and then put k = [0, 1) \ K. Thus, by the triangle
inequality, we have

rs,k(n) =

∫
K

f(α;P,R)se(−nα) dα +O

(∫
k

|f(α;P,R)|s dα
)
. (6.13)

We first handle the contribution of the minor arcs k within (6.13). Suppose that s ⩾
max{⌊G0(k)⌋+1, 2k+3}, and recall (5.3) and (6.11). Then there exists a positive number
v with v ⩾ 2 and an admissible exponent ∆v for which the exponent ∆∗

s is admissible for
minor arcs, where

∆∗
s = ∆v − (s− v)τ(k) = −τ(k) (s−G0(k)) < 0.

Put ν = min{|∆∗
s|/k, 1/(18k)}. Then we see from Theorem 6.1 that∫

m(Q)

|f(α;P,R)|s dα ≪ P s−kQ−ν = P s−kL−ν/15.

Finally, since k ⊆ m(Q), we may conclude thus far that∫
k

|f(α;P,R)|s dα ⩽
∫
m(Q)

|f(α;P,R)|s dα ≪ P s−kL−ν/15. (6.14)

Next we attend to the contribution of the major arcs K. Suppose that α ∈ K(q, a) ⊆ K.
The standard theory of smooth Weyl sums (see [12, Lemma 5.4]) shows that there is a
positive number c = c(η) such that

f(α;P,R) = cq−1S(q, a)v(α− a/q) +O(PL−1/4),
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wherein

S(q, a) =

q∑
r=1

e(ark/q) and v(β) =
1

k

∑
m⩽n

m−1+1/ke(βm).

Since K has measure O(Q3n−1), we see that∫
K

f(α;P,R)se(−nα) dα = csJ(n,Q)S(n,Q) +O(P s−kQ3L−1/4), (6.15)

where

J(n,X) =

∫ X/n

−X/n

v(β)se(−βn) dβ

and

S(n,X) =
∑

1⩽q⩽X

q∑
a=1

(a,q)=1

q−sS(q, a)se(−na/q).

Notice that since Q = L1/15, the error term in (6.15) is O(P s−kL−1/20). Familiar estimates
from the theory of Waring’s problem (see [13, Chapters 2 and 4]) show that under the
hypotheses on s at hand,

S(n,X) = S(n) +O(X−1/k),

where

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

q−sS(q, a)se(−na/q).

Thus, in particular, subject to the hypotheses of the statement of the theorem, one has
S(n,X) ≫ 1. Likewise, one finds that

J(n,X) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 +O(ns/k−1X−1/k).

Hence, again under the hypotheses of the statement of the theorem, we deduce from (6.15)
that ∫

K

f(α;P,R)se(−nα) dα = csS(n)
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 + o(ns/k−1). (6.16)

On substituting (6.14) and (6.16) into (6.13), we conclude that

rs,k(n) = csS(n)
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1 + o(ns/k−1),

whence Rs,k(n) ⩾ rs,k(n) ≫ ns/k−1. This completes the proof of the asymptotic lower
bound asserted in the statement of the theorem, subject of course to the associated
hypotheses on s, and, when s < 4k and k is a power of 2, the hypothesis on local solubility.
Since we have already confirmed the remaining assertions of the theorem, subject to
validity of this asymptotic lower bound, the proof of the theorem is complete. □
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7. The proofs of Theorems 1.1 and 1.2

The proof of our main theorems using Theorem 6.2 is relatively routine, involving an
optimisation of parameters. We first compute the Weyl-type exponent τ(k) defined in
(5.1). This is essentially the optimisation performed in the proofs of Corollaries 1 and 2
to [21, Theorem 1.1].

We begin by observing that whenever v is even, then the corollary to [21, Theorem
2.1] shows that the exponent ∆v is admissible for k ⩾ 4, where ∆v is the unique positive
solution of the equation

∆ve
∆v/k = ke1−v/k. (7.1)

Notice here that the exponent ∆s in the statement of this earlier result corresponds to
our ∆v with v = 2s, owing to the slightly different definitions employed between [21]
and the present memoir. Equipped with these exponents, we now seek to obtain a good
approximation to

kτ(k) = max
w∈N

1− 2∆2w/k

4w2/k2
. (7.2)

We explore this quantity by putting w = ⌈γk⌉, where γ > 0 is a real parameter at our
disposal. With the relation (7.1) in mind, we take δ = δ(γ) to be the positive solution of
the equation

δ + log δ = 1− 2γ. (7.3)

We note that the function t + log t is increasing for t > 0. Then, since the relation (7.1)
shows that the exponent ∆2w is admissible, where ∆2w is the unique positive solution of
the equation

∆2w

k
+ log

∆2w

k
= 1− 2w

k
,

and 1− 2w/k ⩽ 1− 2γ, we infer that ∆2w ⩽ kδ(γ). We now define θ = θ(γ, w) by setting
θ = w − γk. Thus 0 ⩽ θ < 1, and we see that the formula (7.2) delivers the lower bound

kτ(k) ⩾ max
γ>0

1− 2δ(γ)

4(γ + θ/k)2
. (7.4)

One may now attempt to optimise the choice of γ on the right hand side of (7.4) so as
to maximise our lower bound for τ(k). It transpires that the optimal choice for γ is very
close to 1, and so a good approximation to the maximum is found by taking γ = 1 and
hence θ = 0. Solving (7.3) with γ = 1, it is apparent that δ is constrained to satisfy the
equation

δ + log δ + 1 = 0.

It is not difficult via a Newton iteration to verify that δ = 0.2784645 . . .. With this value
of δ, one has

kτ(k) ⩾
1− 2δ

4
=

1

9.027900 . . .
. (7.5)

Asymptotic information very slightly superior to the lower bound (7.5) is obtained by
observing that since 0 ⩽ θ < 1, the relation (7.4) yields

kτ(k) ⩾ max
γ>0

1− 2δ(γ)

4(γ + 1/k)2
.
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The maximum here corresponds to a value of γ for which

4(γ + 1/k)2

1− 2δ(γ)

achieves its minimum. On making use of (7.3) to eliminate γ and substituting ξ for δ(γ),
we find that this minimum value is equal to the minimum of the function

κ(ξ) =
(1− ξ − log ξ + 2/k)2

1− 2ξ
,

as ξ varies over the interval (0, 1), and that the minimising value of δ(γ) is then equal to
the value of ξ corresponding to this minimum. Identifying the value of ξ where κ′(ξ) = 0,
we see that ξ satisfies the equation

ξ − 1

ξ
+ 2 +

2

k
= log ξ.

Thus, if ω = 3.548292 . . . is the positive real number with ω ⩾ 1 satisfying the equation
(1.1), namely ω − 2 − 1/ω = logω, then we find that ξ = 1/ω + O(1/k). We should
therefore take δ asymptotically close to 1/ω for large k.

Motivated by this discussion, and recalling the relation (7.3), we put

γ = 1
2
(1− 1/ω + logω) = 0.992320 . . . ,

and we avoid adjusting this value by the term of size O(1/k) corresponding to the optimal
choice. With this very slightly non-optimal choice of γ, we find that

kτ(k) ⩾
1− 2δ(γ)

4(γ + 1/k)2
.

Here, in view of (7.3), one has

δ + log δ = 1− 2γ =
1

ω
+ log

1

ω
,

whence δ = 1/ω. Thus

kτ(k) ⩾
1− 2/ω

(1− 1/ω + logω + 2/k)2
=

1

9.026725 . . .
+O

(1
k

)
.

We summarise these deliberations in the form of a lemma.

Lemma 7.1. When k ⩾ 4, one has

τ(k) ⩾
1

9.027901k
,

and also

τ(k) ⩾
1− 2/ω

(1− 1/ω + logω + 2/k)2k
,

where ω is the unique real solution with ω ⩾ 1 of the equation

ω − 2− 1/ω = logω.
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We remark that, following a modest computation, one can confirm that the second
lower bound for τ(k) delivered by this lemma takes the asymptotic form

τ(k) ⩾
1

(ω2 − 3− 2/ω)k
+O

( 1

k2

)
.

We may now make use of Theorem 6.2, where we must consider the quantity

G0(k) = min
v⩾2

(
v +

∆v

τ(k)

)
.

Write τ(k) = (Dk)−1, where D may depend on k, but is asymptotic to a constant deter-
mined via the conclusion of Lemma 7.1. Given a positive even integer v, we take δ to be
the real number with 0 < δ < 1 satisfying the equation δ+log δ = 1− v/k. Then, in view
of the equation (7.1), one has ∆v = kδ, and hence also ∆v = ke1−δ−v/k. Consequently,

G0(k) ⩽ v +
∆v

τ(k)
⩽ v +Dk2e1−δ−v/k. (7.6)

As a corresponding inequality in a real variable v, the right hand side is approximately
minimised by taking v = k(1 + log(Dk)). Instead, with v constrained to be an even
integer, we take

v = 2

⌊
1

2
k(1 + log(Dk))− 1

2D

⌋
.

In this way, one finds that

δ + log δ ⩾ 1− (1 + log(Dk)) +
1

Dk
=

1

Dk
+ log

( 1

Dk

)
,

whence δ ⩾ 1/(Dk).
Define the real number θ via the relation

v = k(1 + log(Dk))− 1

D
− θ,

and note that one then has 0 ⩽ θ < 2. In this way, we discern that

1− δ − v

k
⩽ 1− 1

Dk
− (1 + log(Dk)) +

1

Dk
+

θ

k

= − log(Dk) +
θ

k
.

Then we deduce from (7.6) that

G0(k) ⩽ v +
∆v

τ(k)
⩽ k(1 + log(Dk))− 1

D
− θ + keθ/k. (7.7)

The function −θ + keθ/k is increasing with θ for θ ∈ [0, 2), so is bounded above in this
interval by −2 + ke2/k. Moreover, the function k(e2/k − 1) is decreasing as a function of
k for k ⩾ 2. One may check that when k ⩾ 20, one has

−2 + ke2/k ⩽ k +
1

9.6694
< k +

1

D
.

In such circumstances, we deduce that

− 1

D
− θ + keθ/k ⩽ − 1

D
− 2 + ke2/k < k,
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whence, as a consequence of (7.7), we obtain the bound

G0(k) ⩽ v +
∆v

τ(k)
< k(2 + log(Dk)).

In this way, we deduce that for k ⩾ 20, one has

G0(k) ⩽ k(log k + 2 + logD). (7.8)

The proof of Theorem 1.1. By reference to the first bound supplied by Lemma 7.1, one
finds that the argument just described may be applied with D = 9.027901 whenever
k ⩾ 20. In such circumstances, one has 2 + logD ⩽ 4.2003199, and hence it follows from
(7.8) that

⌊G0(k)⌋ ⩽ ⌊k(log k + 4.2003199)⌋ ⩽ ⌈k(log k + 4.20032)⌉ − 1.

The proof of Theorem 1.1 when k ⩾ 20 is therefore made complete by reference to
Theorem 6.2. For small values of k, one finds that the bounds for G(k) already available
in the literature are smaller than ⌈k(log k + 4.20032)⌉ for k ⩽ 19. Indeed, the bound
G(k) ⩽ 2k + 1 available via Hua’s work (see the corollary to [13, Theorem 2.6], for
example) already suffices for k ⩽ 4, while for k ⩾ 14 one has the bounds already reported
in the introduction following the announcement of Theorem 1.3. We can complete this
list with the addition of the bounds G(7) ⩽ 31, G(8) ⩽ 39, G(9) ⩽ 47, G(10) ⩽ 55,
G(11) ⩽ 63, G(12) ⩽ 72, G(13) ⩽ 81, available from [24], together with the bounds
G(5) ⩽ 17 and G(6) ⩽ 24 obtained, respectively, in [16] and [15]. Following this small list
of checks, the proof of Theorem 1.1 is complete. □

We note that the bound supplied by Theorem 1.1 is surprisingly competitive even for
small values of k. Thus, for example, the bound G(20) ⩽ 144 of Theorem 1.1 may be
compared with the corresponding bound G(20) ⩽ 142 of [17]. Of course, in Theorem 1.3
of the present memoir, we obtain G(20) ⩽ 137.

The proof of Theorem 1.2. We now apply the second bound supplied by Lemma 7.1. With
this bound in hand, the argument leading to (7.8) may be applied with

D =
(ω − 1− 2/ω + 2/k)2

1− 2/ω
,

again, whenever k ⩾ 20. On recalling the definition (1.2) of C1 and C2, we now have

2 + logD = 2 + log
(
ω2 − 3− 2

ω

)
+ 2 log

(
1 +

2

k(ω − 1− 2/ω)

)
< C1 +

4ω

k(ω2 − ω − 2)
= C1 +

C2 − 1

k
.

We therefore deduce from (7.8) that

G0(k) + 1 < k(log k + C1 + (C2 − 1)/k) + 1 = k(log k + C1) + C2.

The proof of Theorem 1.2 is completed by reference to Theorem 6.2 when k ⩾ 20. For
the small values of k with k ⩽ 19, the bound claimed in the statement of Theorem 1.2
is again confirmed by reference to the previously known upper bounds for G(k) already
cited in the proof of Theorem 1.1. □
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8. Bounding G(k) for intermediate values of k

Our proof of Theorem 1.3 follows the argument used to establish Theorems 1.1 and 1.2,
save that we now make use of the numerical tables of exponents available from [17]. We
begin by numerically computing the exponent τ(k).

Theorem 8.1. When 14 ⩽ k ⩽ 20, one has τ(k) ⩽ T (k)−1, where the exponents T (k)
are presented in Table 2.

Proof. We apply the formula

T (k) =
(k − 2∆2w

4w2

)−1

,

available from (5.1), using the values of w and corresponding admissible exponents ∆2w

to be found in the tables of [17]. Here, the exponents λw of [17] are related to ∆2w via
the formula ∆2w = λw−2w+k. We record the necessary choice of parameter w, together
with the associated admissible exponent ∆2w, rounded up in the final decimal place, in
Table 2 below. □

k 2w ∆2w T (k) v ∆v G0(k)

14 26 4.039939 114.1869 76 0.109356 88.4871
15 28 4.323087 123.3903 82 0.117123 96.4519
16 30 4.606286 132.5981 90 0.108806 104.4275
17 32 4.888677 141.7763 96 0.116203 112.4749
18 34 5.170691 150.9411 104 0.109619 120.5461
19 36 5.451758 160.0695 110 0.116770 128.6914
20 38 5.732224 169.1748 118 0.111388 136.8441

Table 2. Choice of exponents for 13 ⩽ k ⩽ 20.

We next confirm Theorem 1.3 by utilising the formula G(k) ⩽ ⌊G0(k)⌋ + 1 available
via Theorem 6.2. Here, we have

G0(k) = v +
∆v

τ(k)
= v + T (k)∆v,

for a suitably chosen value of v. We present values of v, ∆v and G0(k) in Table 2, with the
values ∆v extracted from [17], again all rounded up in the final decimal place presented.
The conclusion of Theorem 1.3 follows on noting that G(k) ⩽ ⌊G0(k)⌋+ 1 for each value
of k in the table. This completes the proof of Theorem 1.3.

9. Remarks on upper bounds for G+(k)

Scholars of the circle method as it applies to Waring’s problem will appreciate instantly
that the methods of this paper deliver bounds for the number G+(k), the smallest number
s having the property that almost all positive integers (in the sense of natural density)
are the sum of at most s positive integral k-th powers. Here, one makes a standard
application of Bessel’s inequality to estimate the minor arc contribution in mean square,
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the upshot being the familiar upper bound G+(k) ⩽ 1
2
(H(k) + 1), whenever H(k) is an

upper bound for G(k) obtained by the methods of this paper. The methods here have
nothing to contribute to the literature well-known to any worker in the area, so we may
record without further delay the following conclusions.

Theorem 9.1. Suppose that k ∈ N \ {4, 8, 16, 32}. Then
G+(k) ⩽ ⌈1

2
k(log k + 4.20032)⌉

and
G+(k) < 1

2
k(log k + C1) +

1
2
(C2 + 1).

In the exceptional cases k = 2j with j ∈ {2, 3, 4, 5}, one has G+(k) = 4k. Moreover, when
14 ⩽ k ⩽ 20 but k ̸= 16, one has G+(k) ⩽ H+(k), where H+(k) is defined by means of
Table 3.

k 14 15 16 17 18 19 20
H+(k) 45 49 53 57 61 65 69

Table 3. Upper bounds for G+(k) when 14 ⩽ k ⩽ 20.

The assertion that G+(k) = 4k when k = 2j with j ∈ {2, 3, 4, 5} is not new. This was
established by Hardy and Littlewood [5] when k = 4, by Vaughan [11] when k = 8, and
by the second author [20] when k = 16 and k = 32. It is straightforward, however, to
establish the following refinements that more fully reflect the entry H+(16) = 53 from
Table 3, and the upper bound implicitly obtained for k = 32 in Theorem 9.1.

Theorem 9.2. Let k be either 16 or 32, and put H+(16) = 53 and H+(32) = 123.
Suppose that s ⩾ H+(k) and that r is an integer with 1 ⩽ r ⩽ s. Then almost all positive
integers n with n ≡ r (mod 4k) are the sum of s positive integral k-th powers.

The proof of this conclusion is once again routine for scholars of the circle method,
and we refer the reader to earlier literature such as [11] or [20] for the ideas necessary to
complete this exercise.
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[1] J. Brüdern, A problem in additive number theory, Math. Proc. Cambridge Philos. Soc. 103 (1988),
no. 1, 27–33.
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