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ABSTRACT. We investigate k-superirreducible polynomials, by which we mean irreducible polyno-
mials that remain irreducible under any polynomial substitution of positive degree at most k. Let F
be a finite field of characteristic p. We show that no 2-superirreducible polynomials exist in F[t] when
p = 2 and that no such polynomials of odd degree exist when p is odd. We address the remaining
case in which p is odd and the polynomials have even degree by giving an explicit formula for the
number of monic 2-superirreducible polynomials having even degree d. This formula is analogous
to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite
field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or
the size of the finite field tends to infinity.

1. INTRODUCTION

Superirreducible polynomials are polynomials that resist factorization under polynomial substi-
tutions. Let R be a commutative domain with unity having field of fractions F , and consider a
polynomial f ∈ R[t]. For each natural number k, we say that f is weakly k-superirreducible
over R if f(g(t)) is irreducible over F [t] for all polynomials g ∈ R[t] having degree k. If the
polynomial f is weakly k-superirreducible over R for 1 ≤ k ≤ K, then we say that f is K-
superirreducible. In this hierarchy, a 1-superirreducible polynomial is simply an irreducible poly-
nomial. It transpires that a polynomial may be weakly k-superirreducible, and yet not weakly
(k − 1)-superirreducible (and consequently, not k-superirreducible). For example, one may check
that x6 + x5 + x3 + x2 +1 is weakly 3-superirreducible over F2, yet not weakly 2-superirreducible.
When d ≥ 2 and f ∈ R[t] has degree d, a consideration of the polynomial f(t + f(t)) reveals
that f cannot be k-superirreducible whenever k ≥ d. The situation when 2 ≤ k < d is more
subtle, however, and our focus in this paper lies on the simplest situation here in which k = 2 and
R is a finite field. Let Fq denote the finite field of q elements, and when 1 ≤ k < d, denote by
sk(q, d) the number of monic weakly k-superirreducible polynomials lying in Fq[t] having degree
d. In Proposition 3.6, we provide an explicit formula for s2(q, d) analogous to the formula given by
Gauss for the number of monic irreducible polynomials of given degree over Fq. A consequence of
this formula delivers the asymptotic formula recorded in our first theorem.

Theorem 1.1. One has s2(q, d) = 0 when either q is a power of 2 or d is odd. Furthermore, one
has s2(q, d) = 0 also when q > (d− 1)2. Meanwhile, when q is odd and d→∞ through the even
integers, one has the asymptotic formula

s2(q, d) =
qd

d2q
+O

(1
d
qd/2

)
. (1.1)
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Superirreducibility has in fact been studied in the past, although not by name. Strengthening
the above pedestrian observation concerning f(t + f(t)), it follows from work of Schinzel [6,
Lemma 10] that a polynomial of degree d ≥ 3 lying in Q[t] cannot be (d − 1)-superirreducible.
More recently, Bober et al. [1] have considered superirreducibility as a potential limitation to the
understanding of smooth integral values of polynomials. These authors show, inter alia, that 2-
superirreducible polynomials exist in Q[t] having degree 6 (see [1, §6]). Moreover, in work con-
temporaneous with that reported on herein, Du [3, Theorem 1.3] (see also [2]) has exhibited 2-
superirreducible polynomials in Q[t] of degree 4, such as the simple example t4 + 2.

With a potential local-global principle in mind, it might be expected that insights into the su-
perirreducibility of polynomials over Z and over Q might be gained by examining corresponding
superirreducibility properties over the p-adic integers Zp and p-adic numbers Qp. Such considera-
tions lead in turn to an investigation of the superirreducibility of polynomials over finite fields. We
finish our paper by disappointing the reader in §4 with the news that if k ≥ 2 and p is any prime
number, then k-superirreducible polynomials exist over neither Zp nor Qp.

2. BASIC LEMMAS

In this section we prove the basic lemmas that provide the infrastructure for our subsequent
discussions concerning superirreducibility. Recall the definition of k-superirreducibility provided
in our opening paragraph. We begin by expanding on the observation that there are no weakly
k-superirreducible polynomials of degree k or larger.

Lemma 2.1. LetR be a commutative domain with unity, and let f ∈ R[t] be a polynomial of degree
d ≥ 2. Then f(t) is not weakly k-superirreducible for any k ≥ d.

Proof. For each non-negative integer r, consider the degree d + r substitution g(t) = t + trf(t).
We have

f(g(t)) = f(t+ trf(t)) ≡ f(t) ≡ 0 (mod f(t)).
Thus, we see that f(g(t)) is divisible by f(t), and it is hence reducible. It follows that f is not
weakly k-superirreducible for k ≥ d. �

The next lemma is a mild generalization of [1, Proposition 3.1] to arbitrary fields. The latter
proposition is restricted to the rational field Q, and we would be remiss were we not to record that
Schinzel [7, Theorem 22] attributes this conclusion to Capelli.

Lemma 2.2. Let K be a field. Suppose that f(x) ∈ K[x] is a monic irreducible polynomial, let
α be a root of f lying in a splitting field extension for f over K, and put L = K(α). Then, for
any non-constant polynomial g(t) ∈ K[t], the polynomial f(g(t)) is reducible in K[t] if and only if
g(t)− α is reducible in L[t].

Proof. We consider the K-algebra A = K[x, t]/(f(x), g(t) − x) from two perspectives. First, on
noting that f(x) is irreducible over K[x], we find that K[x]/(f(x)) ∼= K[α] = K(α) = L. Thus,
on the one hand,

A ∼=
K[x, t]/(f(x))

(g(t)− x)
∼= L[t]/(g(t)− α).

Here, of course, we view (g(t)−x) as being an ideal inK[x, t]/(f(x)). On the other hand, similarly,

A ∼=
K[x, t]/(g(t)− x)

(f(x))
∼= K[t]/(f(g(t))).
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Thus, we obtain a K-algebra isomorphism

K[t]/(f(g(t))) ∼= L[t]/(g(t)− α). (2.1)

HenceK[t]/(f(g(t))) is a field if and only if L[t]/(g(t)−α) is a field, and thus f(g(t)) is irreducible
in K[t] if and only if g(t)− α is irreducible in L[t]. The desired conclusion follows. �

We take the opportunity to record a further consequence of the relation (2.1), since it may be of
use in future investigations concerning superirreducibility.

Lemma 2.3. Let K be a field. Suppose that f(x) ∈ K[x] is a monic irreducible polynomial, and
let g(t) ∈ K[t] be any non-constant polynomial. Then, for any polynomial divisor h(t) of f(g(t)),
we have deg(f)| deg(h).

Proof. The relation (2.1) shows that K[t]/(f(g(t)) has the structure of an L-algebra. Any ring
quotient of an L-algebra is still an L-algebra. Thus, we see that K[t]/(h(t)) is an L-algebra, and in
particular a vector space over L. Consequently, one has

deg(h) = dimK K[t]/(h(t)) = [L : K] (dimLK[t]/(h(t))) = deg(f) (dimLK[t]/(h(t))) ,

and thus deg(f)| deg(h). �

We also provide a trivial lemma explaining the relationship between our definitions of superirre-
ducibility and weak superirreducibility for different values of k.

Lemma 2.4. Let R be a commutative domain with unity, and let f(x) ∈ R[x] and k ∈ N. The
polynomial f(x) is k-superirreducible if and only if it is weakly `-superirreducible for all natural
numbers ` ≤ k. The polynomial f(x) is weakly k-superirredcubible if and only if it is weakly
`-superirreducible for all natural numbers ` dividing k.

Proof. All of the implications follow formally from the definitions except for the statement that,
if f(x) is weakly k-superirreducible and `|k, then f(x) is weakly `-superirreducible. To prove
this, write k = `m and consider a polynomial g(t) of degree `. The substitution f(g(tm)) is thus
irreducible, and hence so is f(g(t)). �

It follows that “2-superirreducible” and “weakly 2-superirreducible” are synonyms.

3. COUNTING 2-SUPERIRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

Recall that when 1 ≤ k < d, we write sk(q, d) for the number of monic weakly k-superirreducible
polynomials lying in Fq[t] having degree d. In particular, s2(q, d) is the number of monic 2-
superirreducible polynomials in Fq[t] having degree d, because “2-superirreducible” and “weakly
2-superirreducible” are equivalent conditions by Lemma 2.4. Our goal in this section is to establish
formulae for s2(q, d) that deliver the conclusions recorded in Theorem 1.1.

3.1. Elementary cases. We begin by confirming that when q is a power of 2, and also when d is
odd, one has s2(q, d) = 0. In fact, rather more is true, as we now demonstrate.

Proposition 3.1. Let p be a prime. Then for all natural numbers ` and d, one has sp(p`, d) = 0.
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Proof. Consider a polynomial f ∈ Fp` [t] having degree d. Write f(x) =
∑d

j=0 ajx
j , and note that

aj = ap
`

j for each index j. Thus, we have

f(tp) =
d∑
j=0

ap
`

j t
pj =

(
d∑
j=0

ap
`−1

j tj

)p

,

and it follows that f(x) is not weakly p-superirreducible. Consequently, one has sp(p`, d) = 0. �

The special case p = 2 of Proposition 3.1 shows that s2(q, d) = 0 when q is a power of 2. Next,
we turn to polynomials of odd degree over Fq.

Proposition 3.2. When d is an odd natural number, one has s2(q, d) = 0.

Proof. In view of the case p = 2 of Proposition 3.1, there is no loss of generality in assuming that
q is odd. Let f(x) ∈ Fq[x] be a monic irreducible polynomial of degree d. The polynomial f has
a root α lying in Fqd , and Fqd = Fq(α). By virtue of Lemma 2.2, if we are able to find a quadratic
polynomial g(t) ∈ Fq[t] having the property that g(t)− α has a root in Fqd , then we may infer that
f(g(t)) is reducible. This will confirm that f(x) is not 2-superirreducible, delivering the desired
conclusion.

We may divide into two cases:
(a) Suppose first that α = β2 for some β ∈ Fqd . Then we put g(t) = t2, and observe that the

polynomial g(t)− α has the root β ∈ Fqd .
(b) In the remaining cases, we may suppose that α is not the square of any element of Fqd .

Since q 6= 2, there exists an element b ∈ Fq which is not the square of any element of Fq.
On recalling our assumption that d is odd, we find that b is not the square of any element
in Fqd . Thus, we may infer that b−1α = β2 for some β ∈ Fqd . We now put g(t) = bt2 and
observe that the polynomial g(t)− α has the root β ∈ Fqd .

In either case, our previous discussion shows that f(x) is not 2-superirreducible, and this implies
the desired conclusion. �

The conclusion of Proposition 3.2 combines with that of Proposition 3.1 to confirm the first as-
sertion of Theorem 1.1. These cases of Theorem 1.1 help to explain the example noted in the
introduction demonstrating that weak (k − 1)-superirreducibility is not necessarily inherited from
the corresponding property of weak k-superirreducibility. Expanding a little on that example, we
observe that by making use of commonly available computer algebra packages, one finds the fol-
lowing examples of polynomials weakly 3-superirreducible over F2[x] yet not 2-superirreducible
over F2[x]:

x6 + x5 + x3 + x2 + 1,

x8 + x6 + x5 + x3 + 1,

x10 + x9 + x7 + x2 + 1,

x10 + x9 + x8 + x4 + x3 + x2 + 1,

x10 + x9 + x7 + x6 + x5 + x4 + x3 + x2 + 1.

In each of these examples of a polynomial f ∈ F2[x], the failure of 2-superirreducibility follows
from Proposition 3.1. Meanwhile, a direct computation confirms that the polynomial f(g(t)) is
irreducible over F2[t] for each of the 8 possible monic cubic polynomials g(t) lying in F2[t]. No
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analogous odd degree examples are available, of course, by virtue of Proposition 3.2, though exam-
ples of larger even degrees are not too difficult to identify.

3.2. Heuristics. We next address the problem of determining a formula for the number sk(q, d) of
monic weakly k-superirreducible polynomials of degree d over Fq. The simplest situation here with
k = 1 is completely resolved by celebrated work of Gauss, since 1-superirreducibility is equivalent
to irreducibility. Thus, as is well-known, it follows from Gauss [4, page 602] that

s1(q, d) =
1

d

∑
e|d

µ

(
d

e

)
qe,

whence, as d→∞, one has the asymptotic formula

s1(q, d) =
qd

d
+O

(
1

d
qd/2

)
.

The corresponding situation with k ≥ 2 is more subtle. We now motivate our proof of an asymptotic
formula for s2(q, d) with a heuristic argument that addresses the cases remaining to be considered,
namely those where d is even and q is odd. The heuristic argument is based on the following lemma,
which will also be used in the proof.

Lemma 3.3. Let q be an odd prime power, and let f(x) ∈ Fq[x] be a monic irreducible polynomial
of even degree d. Let α ∈ Fqd be a root of f(x). The polynomial f(x) is 2-superirreducible if and
only if α + c is not a square in Fqd for all c ∈ Fq.

Proof. As a consequence of Lemma 2.2, the polynomial f(x) is 2-superirreducible in Fq[x] if and
only if g(t)− α is irreducible in Fqd [t] for all quadratic polynomials g ∈ Fq[t]. Since this condition
is invariant under all additive shifts mapping t to t + v, for v ∈ Fq, it suffices to consider only
the quadratic polynomials of the shape g(t) = at2 − b, with a, b ∈ Fq. Moreover, the assumption
that d is even ensures that a is a square in Fqd , and hence we may restrict our attention further to
polynomials of the shape g(t) = t2− c with c ∈ Fq. So f(x) is 2-superirreducible if and only if the
equation t2 − c = α has no solution in Fqd for any c ∈ Fq. �

For heuristic purposes, we now model the behaviour of these elements α + c as if they are
randomly distributed throughout Fqd . Since roughly half the elements of Fqd are squares, one should
expect that the condition that α+c is not a square is satisfied for a fixed choice of c with probability
close to 1

2
. Treating the conditions for varying c ∈ Fq as independent events, we therefore expect

that f(x) is 2-superirreducible with probability close to 1/2q. Multiplying this probability by the
number of choices for monic irreducible polynomials f(x) of degree d, our heuristic predicts that
when d is even and q is odd, one should have

s2(q, d) ≈
qd

d2q
.

We shall see in the next subsection that this heuristic accurately predicts the asymptotic behaviour
of s2(q, d) as d→∞ through even integers d.

3.3. The large d limit. The asymptotic formula predicted by the heuristic described in the previ-
ous subsection will follow in the large d limit from Weil’s resolution of the Riemann hypothesis for
curves over finite fields. We make use, specifically, of the Weil bound for certain higher autocorre-
lations of the quadratic character generalizing Jacobi sums. Our goal in this subsection is the proof
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of the estimate for s2(q, d) supplied by the following theorem, an immediate consequence of which
is the asymptotic formula (1.1) supplied by Theorem 1.1.

Theorem 3.4. When q is odd and d is even, one has∣∣∣s2(q, d)− qd

d2q

∣∣∣ < q

2d
qd/2.

The proof of this estimate is based on a more rigorous version of the heuristic argument given in
Section 3.2, and it employs character sums that we now define.

Definition 3.5. Let q be an odd prime power, and write χq for the nontrivial quadratic character
χq : F×q → {1,−1}, extended to Fq by setting χq(0) = 0. We define the order n autocorrelation of
χq with offsets u1, . . . , un ∈ Fq to be the sum

aq(u1, . . . , un) =
∑
β∈Fq

χq(β + u1) · · ·χq(β + un).

Noting that this definition is independent of the ordering of the arguments, when U = {u1, . . . , un}
is a subset of Fq, we adopt the convention of writing aq(U) for aq(u1, . . . , un).

Note that aq(U) ∈ Z for all subsets U of Fq. When |U | = 1 it is apparent that aq(U) = 0.
Meanwhile, in circumstances where |U | = 2, so that U = {u1, u2} for some elements u1, u2 ∈ Fq
with u1 6= u2, the autocorrelation aq(U) = aq(u1, u2) is a quadratic Jacobi sum. Thus, in this
situation, we have aq(u1, u2) = ±1 (see [5, Chapter 8]). The higher-order correlations become more
complicated, but we will see that they can easily be bounded. First, we relate the autocorrelations
of χq to the number s2(q, d) of monic 2-superirreducible polynomials of degree d in Fq[x].

Proposition 3.6. Let q be an odd prime power and d be even. Then

s2(q, d) =
1

d2q

∑
e|d

d/e odd

µ
(d
e

)(
qe +

∑
∅6=U⊆Fq

(−1)|U |aqe(U)
)
.

Proof. Consider a monic irreducible polynomial f(x) ∈ Fq[x] of degree d, and let α be a root of
f(x) in Fqd . It follows from Lemma 3.3 that f(x) is 2-superirreducible if and only if α + c is not
a square in Fqd for each c ∈ Fq. Since the latter condition is equivalent to the requirement that
χqd(α + c) = −1 for all c ∈ Fq, we see that

∏
c∈Fq

1

2

(
1− χqd(α + c)

)
=

{
1, if f is 2-superirreducible,
0, otherwise.

This relation provides an algebraic formulation of the indicator function for 2-superirreducibility.
Instead of summing this quantity over monic irreducible polynomials, we can instead sum over
elements α ∈ Fqd not lying in any proper subfield, dividing by d to account for overcounting. Thus,
we find that

s2(q, d) =
1

d

∑
α∈F

qd

α /∈ Fqe (e < d and e|d)

∏
c∈Fq

1

2

(
1− χqd(α + c)

)
.
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The condition on α in the first summation of this relation may be encoded using the Möbius func-
tion. Thus, we obtain

s2(q, d) =
1

d2q

∑
e|d

µ
(d
e

) ∑
α∈Fqe

∏
c∈Fq

(
1− χqd(α + c)

)
.

When d/e is even, the quadratic character χqd on Fqd restricts to the trivial character on Fqe , and
when d/e is odd it instead restricts to χqe . We therefore deduce that

s2(q, d) =
1

d2q

∑
e|d

d/e odd

µ
(d
e

) ∑
α∈Fqe

∏
c∈Fq

(1− χqe(α + c)) ,

and the desired formula for s2(q, d) follows on observing that∑
α∈Fqe

∏
c∈Fq

(1− χqe(α + c)) = qe +
∑
∅6=U⊆Fq

(−1)|U |aqe(U).

�

We next establish a bound on the autocorrelations aqe(U).

Lemma 3.7. Let q be an odd prime power. Suppose thatU is a non-empty subset of Fq with |U | = n.
Then for each positive integer e, one has |aqe(U)| ≤ (n− 1)qe/2.

Proof. Observe that

aqe(U) =
∑
β∈Fqe

χqe(h(β)),

where h(t) = (t + u1) · · · (t + un) is a polynomial in Fq[t] having roots −u1, . . . ,−un. Since
u1, . . . , un are distinct and χqe is a multiplicative character of order 2, it follows from a version of
Weil’s bound established by Schmidt that |aqe(U)| ≤ (n − 1)qe/2 (see, for example, Theorem 2C’
on page 43 of [8, Chapter 2]). �

Now we complete the proof of Theorem 3.4. In this proof, we expend a little extra effort to
achieve a more attractive conclusion.

Proof of Theorem 3.4. We begin by observing that, in view of Lemma 3.7, one has∣∣∣∣ ∑
∅6=U⊆Fq

(−1)|U |aqe(U)
∣∣∣∣ ≤ q∑

n=1

(
q

n

)
(n− 1)qe/2

= qe/2
(
q

q∑
n=2

(
q − 1

n− 1

)
−

q∑
n=2

(
q

n

))
= qe/2

(
q(2q−1 − 1)− (2q − q − 1)

)
. (3.1)

We note next that since d is assumed to be even, then whenever e is a divisor of d with d/e odd,
then e is even. Moreover, if it is the case that e < d, then e ≤ d/3. The first constraint on e here
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conveys us from (3.1) to the upper bound

∑
e|d

d/e odd

∣∣∣∣∣∣
∑
∅6=U⊆Fq

(−1)|U |aqe(U)

∣∣∣∣∣∣ ≤ (2q−1(q − 2) + 1
) d/2∑
m=0

qm

<
q

q − 1

(
2q−1(q − 2) + 1

)
qd/2.

Meanwhile, making use also of the second constraint on e, we obtain the bound∑
e|d

e < d and d/e odd

qe ≤
∑

0≤m≤d/3

qm <
q

q − 1
qd/2.

By applying these bounds in combination with Proposition 3.6, we deduce that∣∣∣∣s2(q, d)− qd

d2q

∣∣∣∣ < 1

d2q
(
(q − 1)2q−1 − 2q−1 + 2

) q

q − 1
qd/2 ≤ q

2d
qd/2.

This completes the proof of Theorem 3.4. �

3.4. Vanishing in the large q limit. We turn our attention next to the behaviour of s2(q, d) when
d is fixed and q is large. It transpires that s2(q, d) = 0 for large enough prime powers q. This
conclusion follows from Lemma 3.3 once we confirm that for every primitive element α ∈ Fqd ,
there exists an element c ∈ Fq for which χqd(α + c) = 1.

Lemma 3.8. Suppose that q is an odd prime power and α ∈ Fqd is a primitive element. Then,
whenever q > (d− 1)2, one has ∣∣∣∣∑

c∈Fq

χqd(α + c)

∣∣∣∣ < q.

Proof. Consider the d-dimensional commutative Fq-algebra Fqd = Fq[α]. Put β = −α, and observe
that the character χqd is not trivial on Fq[β] = Fqd . Then it follows from Wan [9, Corollary 2.2] that∣∣∣∣∑

c∈Fq

χqd(c− β)
∣∣∣∣ ≤ (d− 1)q1/2.

Provided that q > (d− 1)2, one has (d− 1)q1/2 < q, and thus the desired conclusion follows. �

We are now equipped to establish the final conclusion of Theorem 1.1.

Theorem 3.9. Let d be an even integer, and suppose that q is an odd prime power with q > (d−1)2.
Then s2(q, d) = 0.

Proof. Suppose that f(x) ∈ Fq[x] is a 2-superirreducible polynomial of degree d over Fq, and
consider a root α ∈ Fqd of f . By Lemma 3.3, we must have χqd(α+ c) = −1 for every c ∈ Fq, and
hence ∑

c∈Fq

χqd(α + c) = −q.

This contradicts the estimate supplied by Lemma 3.8, since we have assumed that q > (d − 1)2.
Consequently, there can be no 2-superirreducible polynomials of degree d over Fq. �



ON 2-SUPERIRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS 9

4. RELATIONSHIP TO RATIONAL AND p-ADIC SUPERIRREDUCIBILITY

Fix a rational prime number p. Then, any monic polynomial f ∈ Z[x] that is irreducible modulo p
is also irreducible over Q[x]. One might guess that this familiar property extends from irreducibility
to superirreducibility. Thus, if the monic polynomial f(x) reduces to a weakly k-superirreducible
polynomial modulo p, one might expect that f(x) is itself weakly k-superirreducible over Z, and
perhaps also over Q. We find that such an expectation is in fact excessively optimistic. Indeed,
there are 2-superirreducible polynomials over F3 with integral lifts that are not 2-superirreducible
over Z.

Example 4.1. Consider the polynomial f(x) ∈ Z[x] given by

f(x) = x4 − 12x3 + 2x2 − 39x+ 71.

Then, we have f(x) ≡ x4−x2−1 (mod 3), and it is verified by an exhaustive check that x4−x2−1
is 2-superirreducible in F3[x]. However, one has

f(3t2 + t) = (t4 + 3t3 + 2t2 − 1)(81t4 − 135t3 − 27t2 + 39t− 71),

so that f(x) is not 2-superirreducible over Z.

Despite examples like the one above, one may still hope that the assumption of additional congru-
ential properties involving higher powers of p might suffice to exclude such problematic examples,
thereby providing a means to lift superirreducible polynomials over Zp to superirreducible polyno-
mials over Z. The following proposition reveals a major obstruction to any such lifting process,
since it shows that for each natural number k ≥ 2, there are no p-adic weakly k-superirreducible
polynomials.

Proposition 4.2. Let p be a prime number. When k ≥ 2, there are no weakly k-superirreducible
polynomials over Zp or over Qp.

Proof. Suppose, if possible, that f ∈ Qp[x] is a weakly k-superirreducible polynomial. There is
no loss of generality in assuming that f is an irreducible polynomial lying in Zp[x]. Let α be a
root of f lying in a splitting field extension for f over Qp, and let e = 1 + |vp(α)|, where vp(α)
is defined in such a manner that |α|p = p−vp(α). Let h ∈ Zp[t] be any polynomial of degree
k, put g(t) = peh(t) + t, and consider the equation g(β) = α. Since |g(α) − α|p < 1 and
|g′(α)|p = |1 + peh′(α)|p = 1, an application of Hensel’s lemma demonstrates that the equation
g(β) = α has a solution β ∈ Qp(α). Thus, the equation α = peh(β) + β has a solution β ∈ Qp(α),
and by appealing to Lemma 2.2, we conclude that the polynomial f(peh(t) + t) is reducible over
Qp[t]. Since peh(t)+ t ∈ Zp[t], we see that f is neither weakly k-superirreducible over Zp nor over
Qp, and we arrive at a contradiction. The desired conclusion follows. �

The discussion of this section appears to show, therefore, that superirreducibility over Fp, and
indeed superirreducibility over Zp and Qp, is not closely connected to corresponding superirre-
ducibility over Z and Q.
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