SUBCONVEX LP-SETS, WEYL’S INEQUALITY,
AND EQUIDISTRIBUTION

TREVOR D. WOOLEY

ABSTRACT. We examine sets o/ of natural numbers having the property that for some
real number p € (0, 2), one has the subconvex bound

1
/ S o) da < N 0 [1, NP
O hewn[1,N]

We show that exponential sums over such sets satisfy inequalities analogous to Weyl’s
inequality, and in many circumstances of the same strength as classical versions of Weyl’s
bound. We also examine equidistribution of polynomials modulo 1 in which the sum-
mands are restricted to these subconvex LP-sets. In addition, we describe applications
to problems involving character sums and averages of arithmetic functions.

1. INTRODUCTION

The inequality of Weyl provides non-trivial estimates for exponential sums having real
polynomial arguments summed over all integers of an interval. In this memoir, we show
that certain subsets of the natural numbers, that we term subconvex LP-sets, satisfy
analogues of Weyl’s inequality losing nothing by comparison with the strength of these
classical bounds. These bounds will facilitate applications of the Hardy-Littlewood (circle)
method to problems involving subconvex LP-sets. We illustrate our ideas by considering
equidistribution results for sequences of polynomials modulo 1, and averages of arithmetic
functions, in which the underlying arguments are restricted to subconvex LP-sets. In view
of our new conclusions, the investigation and characterisation of subconvex LP-sets are
tasks that seem worthy of future attention.

We now introduce the sets central to our discussion. Throughout this memoir, when
o/ CNand N > 1, we write &/ (N) = o/ N [1, N] and A(N) = card(«/(N)). As usual,

we write e(z) for €2™#. Then, when p is a positive real number, we define the mean value

[p(N;,Q%):/Ol’ Z e(na)

ned/ (N)

p

da. (1.1)

Definition 1.1. Suppose that 7 is a non-empty subset of N.

(a) We say that & is a weakly subconvex LP-set if 0 < p < 2 and, for all € > 0 and all
real numbers N sufficiently large in terms of p and &, one has

L,(N; o) < N“TA(N). (1.2)
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(b) We say that & is a strongly subconvex LP-setif 0 < p < 2 and, for all real numbers
N sufficiently large in terms of p, one has

L(N; &) < N"TA(N)P. (1.3)

We make three simple observations concerning this definition. First, we note that any
strongly subconvex LP-set &7 has positive lower density. For if 0 < p < 2, it follows from
(1.1) via orthogonality, a trivial estimate, and the upper bound (1.3) that

A(N) = L(N; &) < A(N)*PI,(N; /) < N"TA(N)?.

Thus, we infer that A(N) > N. The lower bound A(N) > N'=¢ follows in like manner
from (1.2) for weakly subconvex LP-sets <.

Second, our use of the adjective subconvez is designed to remind the reader that the
estimate (1.3) constitutes a bound beyond square-root cancellation, a claim justified by
the observation that strongly subconvex LP-sets have positive lower density. Indeed,
were the exponential sum associated with o7 to exhibit only square-root cancellation for
a set of arguments « inside the integral (1.1) having positive measure, we would have
L(N; &) > A(N)P? > NP2 Since p/2 > p— 1 when 0 < p < 2, it is apparent that
the upper bound (1.3) is in this sense subconvex. Similar observations apply, mutatis
mutandis, to weakly subconvex LP-sets.

Third, it is apparent that when |a| < 1/(100N), one has

Z e(na)

ned/ (N)

> LA(N).

2

Thus, we deduce from (1.1) that for 0 < p < 2, one has I,(N;«7) > N~ tA(N)?. The
hypothesised upper bound (1.3) is consequently the best achievable for a p-th moment.
In this context, we note that when 0 < p < 1, the upper bound (1.3) is irritatingly strong,
since then one has I,(N) = o(1) as N — oo. We stress that this scenario is included
within the definition solely for the sake of completeness. Indeed, it is a consequence of
the resolution of Littlewood’s problem (see Konyagin [17] and McGehee, Pigno and Smith
[19, Corollary 1]) that I (N;.e7) > log A(N). Thus, if it were to be the case that &7 is a
strongly subconvex LP-set with 0 < p < 1, then one would have

log A(N) < I,(N; o) < A(N)'"PL(N; &) < N"TA(N),

whence A(N) > N log A(N). Since we may assume that o7 has positive lower density, we
obtain a contradiction. Thus, there exist no strongly subconvex LP-sets when 0 < p < 1.
Our focus in this memoir lies with those situations in which 1 < p < 2. It is this
latter range of p for which we describe applications herein, and for which we envision the
development of a coherent theory. The reader will lose nothing by assuming henceforth
that p is constrained to lie in this range.

It might seem that subconvex LP-sets, whether weak or strong, are subsets of the
integers having such special properties that they should be difficult to find, and might
not perhaps occur in nature. As we explain in §§2 and 3, however, examples of subconvex
LP-sets are abundant. The set of all natural numbers N is a trivial example of a weakly
subconvex L!-set which is also a strongly subconvex LP-set whenever p > 1. This follows
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from the well-known bounds
1 1
/ Z e(n&)‘ da x<log(2N) and / Z e(n&)‘pdoz < NP7U (p>1).
0 0

1<n<N 1<n<N
We remind the reader of these familiar bounds, and their proofs, in Theorem 2.1 and the
ensuing discussion. Consider next, when r > 2, the set .4, of r-free numbers, defined by

Ny ={n € N: 7"|n for no prime 7}.

It transpires that .4, is a weakly subconvex L'*'/"-set, and when p > 1 + 1 Jr it is a
strongly subconvex LP-set. Indeed, if we write u,(n) for the characteristic function of 47,
then these assertions follow from the work of Keil [16, Theorem 1.2] showing that

1 1+1/7
NY"log(2N) <</ ‘ Z ,ur(n)e(noz)‘ do < NY"log?(2N) (1.4)
0 1<n<iN
and .
/ ‘ Z i (n)e(na) " da = NP1 (p>1+1/r). (1.5)
0

1<n<N
In §2 we exhibit other examples of subconvex LP-sets, and in §3 we show how new examples
of subconvex LP-sets may be derived from known examples.
We turn in §§4 and 5 to the topic of Weyl sums. When k£ > 2 and o; € R (0 <@ < k),
consider the polynomial

Yz a) = apa® + ...+ o + ag, (1.6)

and define the exponential sum

Ui(a; N) = > e(v(n;a)). (1.7)
1<n<N
Suppose that the leading coefficient oy, of ¥ (z; a) has the kind of Diophantine approxi-
mation made available via Dirichlet’s theorem, so that a € Z and ¢ € N satisfy (a,q) =1
and |ay —a/q| < 1/¢*. In these circumstances, it follows from Weyl’s inequality (see [23,
Lemma 2.4], for example) that for each € > 0 and each large real number N, one has

Up(a; N) < N 4 N7 g2 " (1.8)

When the variables n defining the summation in (1.7) are restricted to lie in arithmetically
interesting subsequences of the integers, such as the prime numbers or squarefree numbers,
the strength of available estimates analogous to (1.8) typically degrades substantially. Our
first result on Weyl’s inequality shows that no significant degradation need be tolerated
for such subsequences as those defined by weakly subconvex LP-sets, at least when k& > 3
and 1 < p<4/3.

Theorem 1.2. Suppose that o/ is a weakly subconvexr LP-set for some real number p with
1<p<4/3, and k > 3. Let (ag,aq,...,a) € REFL and suppose that a € Z and ¢ € N
satisfy (a,q) = 1 and |ay, —a/q| < 1/¢*. Then, for each € > 0 and each large real number
N, one has

21—k

Z e(apn® + ... +am+ap) K NE(g7 L+ N4 gN )27, (1.9)
ned/(N)
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A comparison of (1.8) and (1.9) will assure the reader that no degradation has occurred
here accompanying our restriction of the set of summands to the subconvex LP-set <.
Theorem 1.2 is in fact a corollary of a more general conclusion applicable also to the
situations in which k£ > 2 and & is any subconvex LP-set with 1 < p < 2. In order to
describe this result, we introduce the exponents

%—%, when k = 2,
o,(k) = 23"“(%—%), when k£ > 3 and 4/3 < p < 2,
21—k, when k >3 and 1 < p < 4/3,
and
(%— )kQ_Ik_Q, when k£ > 3 and k2 k T <p<2
(k) = ﬁ, when k >3 and 1 < p < 7

0, when k = 2.

Theorem 1.3. Suppose that <7 is a weakly subconvex LP-set for some real number p with
1<p<2 and k> 2. Let (g, ay,...,qp) € R¥Y and suppose that a € Z and g € N
satisfy (a,q) = 1 and |y, —a/q| < 1/¢*. Then, for each € > 0 and each large real number
N, one has

Z e(apn® + ...+ an+ ap) € NE(g7L 4 N1 gNFyenk),
nes/ (N)

where wy,(k) = max{o,(k), 7,(k)}.

We observe that when & > 3 and 1 < p < 4/3, then the conclusion of Theorem 1.3
matches Weyl’s inequality (1.8) in strength. Moreover, when k > 3 and
1
I<p<1+ 21

this theorem matches in strength the analogue of Weyl’s inequality deriving from modern
versions of Vinogradov’s mean value theorem (obtained, for example, by substituting the
main conclusions of [6] or [28] into [23, Theorem 5.2]). Meanwhile, even for k = 2, the
strength of Theorem 1.3 approaches that of Weyl’s inequality in the limit as p — 1+.
The focus of Theorems 1.2 and 1.3 is the derivation of exponential sum estimates with
variables restricted to special subsequences of the natural numbers. If, instead, one is
concerned solely with applications of the exponential sums, then one may attempt to
incorporate the restriction to special subsequences into the methods employed following
the application of conventional estimates for exponential sums. Thus, for example, the
reader will find alternative approaches to the one presented in this memoir that extract
conclusions in applications, avoiding impairment, when one restricts the underlying vari-
ables to be square-free, or more generally r-free. We refer the reader to [3, Theorem 2],
for example, for a conclusion concerning small values of ||an”||, when n is restricted to be
square-free. In this latter work, one avoids direct use of the exponential sum

S mnelan®)

1<n<N



SUBCONVEX LP-SETS 5

by applying the convolution identity

pafn) = 3 (),
d2|n
and removing the contribution of the large square factors directly. This approach achieves
a conclusion for the application at hand matching its unrestricted analogue at the cost
of various complications in the associated argument. The ideas underlying the proof of
Theorems 1.2 and 1.3 permit such conclusions to be obtained in wider generality than
hitherto, and oftentimes with greater economy of effort.

As the next application of the ideas in this memoir, in §6, we explore some consequences
for the equidistribution modulo 1 of polynomial sequences. Consider a real sequence
(sn)22, and the associated fractional parts {s,} = s, — |s,]. This sequence is said to be
equidistributed modulo 1 when, for each pair of real numbers a and b with 0 <a < b < 1,
one has

A}iirclm]\f_lcard{l <n<N:a<{s,} <bl=b—a.
Theorem 1.4. Suppose that of = {ay,as, ...}, withay < ay < ..., is a strongly subconvex
LP-set with 1 < p < 2. Let k > 2, suppose that (ap,aq,...,a;) € R¥L and define
the polynomial (x; ) as in (1.6). Then, provided that one at least of the coefficients
Qo, . .., 18 irrational, the sequence (Y(an; )~ is equidistributed modulo 1.

In Theorem 6.1 below, we provide a similar conclusion applicable to weakly subconvex
LP-sets, subject to the condition that one at least of the coefficients aq, ..., ay is of finite
Diophantine type. We direct the reader to the discussion following Example 2.2 for an
explanation of what it means for a real number 6 to be of finite Diophantine type. For
now, it suffices to remark that the set of such numbers has full measure in the real
numbers, and includes all irrational real algebraic numbers. We remark also that the
conclusion of Theorem 1.4 does not remain valid if one insists only that one at least of the
coefficients ay, . .., ay is irrational. An example of a strongly subconvex LP-set is given in
the discussion following the proof of Theorem 1.4 in §6 illustrating that equidistribution
modulo 1 may fail for the sequence (¢ (a,; @))s; when oy is irrational.

In §7, we offer some remarks concerning further applications of subconvex LP-sets .of
to problems involving the estimation of averages of arithmetic functions restricted to o7
We direct the reader to §7 for a more comprehensive account of such matters. Here,
the reader will find a general theorem concerning such averages, as well as illustrative
examples involving the von Mangoldt function, character sums, and averages of cusp
form coefficients, all restricted to subconvex LP-sets. For now, we present but one of
many examples, involving the Mobius function p(n).

Theorem 1.5. Suppose that <7 is a strongly subconvex LP-set for some real number p
with 1 < p < 2. Then, whenever A > 0 and N is sufficiently large in terms of A, one has

Z p(n) < N(log N)™.
ne/ (N)

By applying the results of §3, for example, one finds that the hypotheses of this theorem
are applicable when
o/ = {m+ 1:m is squarefree},
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or even
o/ ={m € N:m+ 1 is not 4-free and m + 2 is 4-free}.

Finally, in §8, we record some connections between subconvex LP-sets and mean values
associated with congruences modulo ¢q. Our principal result in this setting is an analogue
of the mean value (1.3) for strongly subconvex LP-sets .o7.

Theorem 1.6. Suppose that o is a strongly subconvex LP-set for some real number p
with 1 < p < 2. Then, whenever q is a natural number, one has

—Z

a=1

> "a/Q)' < NP7L 4 NP/q.
ne/(N)

When ¢ is smaller than N, the estimate provided by this theorem saves roughly a
factor ¢ over the trivial estimate NP, which is consistent with heuristics associated with
associated congruences modulo g. Such heuristics would be easy to justify were we to be
considering p-th moments with p > 2, since then orthogonality may be brought into play.
The situation in Theorem 1.6 with 1 < p < 2 is, unfortunately, rather more challenging.
Thus, in order to establish this theorem, we are forced to bring into play purely analytic
tools based on the use of the Sobolev-Gallagher inequality and the Carleson-Hunt theorem.
We offer an application of Theorem 1.6 to character sum estimates restricted to subconvex
LP-sets in §8.

We defer a detailed account of our use of subconvex LP-sets in our methods deriving
analogues of Weyl’s inequality to §4 below. For now, it suffices to make some abstract
remarks that may offer some guidance to the reader, motivating our definition of subcon-
vex LP-sets. Suppose then that 7 is a strongly subconvex LP-set for some real number p
with 1 < p < 4/3, and write

g(a) = Z e(na).

nes/ (N)
Consider a unimodular arithmetic function ¢ : N — C, and write
h(a) = Z c(n)e(na).
1<n<N

Then it follows by orthogonality that

1
Z c(n) = / g(@)h(—a) da.
neA(N) 0

Thus, by applying Holder’s inequality and the Definition 1.1(b) of a strongly subconvex

LP-set, we find that
3/4 /4
(/ 9(a |4/3da> (/ h(a |4da)

<% C(nl)c(nz)m>l/4-

1<ny,...,na<N
ni+nz=ns+ng

nepf
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The 4-fold sum in the final parenthetic term may often be interpreted via Weyl differenc-
ing, or perhaps by other means. Thus, it may frequently be shown that this sum is of
smaller order than the trivial estimate N3. In such circumstances, we conclude that one
has the non-trivial estimate

new (N)
We emphasise here that the arithmetic structure of the set &/ makes no appearance in
this estimate beyond the estimate (1.3) that is the fundamental property of a strongly
subconvex LP-set.

We finish by highlighting some connections between the subconvex LP-sets of this mem-
oir, and the almost periodic sets and sets defined by convergent sieves satisfying certain
arithmetic equidistribution properties investigated by Briidern [8] and subsequent authors’
(see [15, 22]). Given a set of natural numbers 7 having positive density and satisfying
appropriate distribution properties in arithmetic progressions, Briidern makes use of the

orthogonality relation
1 2
/ Z e(na)| da = A(N),
0

ned/ (N)
together with a major arc estimation

/zm Z e(na) 2da ~ A(N),

ned/ (N)

to deliver a minor arc estimate

/m > e(na) Qda:o(N).

ne/ (N)

Such a bound would follow from the estimate (1.3) for strongly subconvex LP-sets .o/
whenever one has in addition the non-trivial Weyl-type bound

Z e(na)

ne/ (N)

= o(A(N)). (1.10)

sup
aem

The bound (1.3) is not accessible to Briidern’s almost-periodic theory without highly
stringent additional conditions on the set 7. Likewise, the estimate (1.10) does not
seem to be easily accessible from the upper bound (1.3) without additional hypotheses.
Thus, while there are certainly connections between the concepts of subconvex LP-sets and
Briidern’s almost periodic sets, the associated theories seem for now to be largely disjoint.
It would be very interesting to determine if strongly subconvex LP-sets are characterised
in terms of limit-periodic structures.

Throughout, the letter ¢ will denote a positive number. We adopt the convention
that whenever ¢ appears in a statement, either implicitly or explicitly, we assert that
the statement holds for each € > 0. Our basic parameter will be N, a sufficiently large
positive number. In addition, we use < and > to denote Vinogradov’s well-known

IWe note that, as is made clear in the cited papers here, the work of Briidern preceded and inspired
the work of Schlage-Puchta and Keil, despite the apparent publication chronology.
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notation, implicit constants depending at most on ¢, as well as other ambient parameters
apparent from the context. We write f < g when f < g and g < f. Also, we define [|¢||
and {6} for 6 € R by putting ||0|| = min{|0 —¢| : ¢t € Z} and {6} =0 — |0].

2. EXAMPLES OF SUBCONVEX [P-SETS

We present a number of naturally occurring examples of subconvex LP-sets in this
section in order to motivate our subsequent discussions. Our first result concerns the
classical and well-known example of the natural numbers N. Here, we justify some of
the remarks made in the introduction following Definition 1.1. The proof of this theorem
follows as a familiar exercise. We provide details for the sake of completeness.

Theorem 2.1. One has
1
|

1
/
Thus, the set N is a weakly subconvex L'-set, and when p > 1 it is a strongly subconvex
LP-set.

Z e(na)

1<n<N

da =< log(2N),

and when p > 1, one has

p
do <, NP1

Z e(na)

1<n<N

Proof. Summing over the implicit geometric progression, we find that when « ¢ Z, then
for integral values of N one has

sin(Nma
5 etne)| = [P 2.
sin(ma)
1<n<N
Thus
1 1/2
/ Z e(na)|da < 1+ / a~tda < log(2N),
(N oy 1/N
and when p > 1, meanwhile,
1 P 1/2
/ Z e(na)| da < NP1 +/ aPda < NP1
0o [ 52N 1/N

The lower bound implicit in the first estimate of the theorem follows via a straightforward
exercise using the formula (2.1), and so the conclusion of the theorem is complete. 0

Our second example is based on the relatively recent result of Keil [16, Theorem 1.2]
mentioned in connection with the estimates (1.4) and (1.5).

Example 2.2. The set .4, of r-free numbers is a weakly subconvex L'/ -set, and when
p>1-+1/ritis a strongly subconvex LP-set.

The final entry on our list of basic examples of subconvex LP-sets makes use of certain
Beatty sequences. Given real numbers a and 3, we define the Beatty set

HB(a,p) ={n € N:n = |am + 3] for some m € N}.
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Writing B(a, f) = {n1,ns,...} with 1 < ny < ny < ..., this set may be interpreted as a
sequence (ng)52;. In order to introduce the Beatty sequences of interest to us, we recall
that a real number 6 is said to be of finite Diophantine type if there is a natural number
k for which

liminf ¢*||¢d|| > 0.
q—00

Thus, the set of real numbers not of finite Diophantine type has measure 0. Moreover, it
follows from Liouville’s theorem (see [1, Theorem 1.1]) that every real irrational algebraic
number is of finite Diophantine type.

Our estimates for moments of exponential sums over Beatty sequences are essentially
as strong as those given in Theorem 2.1 for the corresponding exponential sums over all
natural numbers in an interval.

Theorem 2.3. Suppose that o and (5 are real numbers with o > 0 having the property
that 1/« is of finite Diophantine type. Then one has
1<n<N

1
/
ne#(a,B)
1
/

Thus, the set B(a,B) is a weakly subconvexr L'-set, and when p > 1 it is a strongly
subconver LP-set.

Z e(n@)‘ df < log®(2N),

and when p > 1, one has

p

> e(nf)| df < N7
1<n<N
ne#(a,B)

Proof. There is no loss of generality in restricting attention to the scenario in which a > 1.
For if 0 < a < 1, then the set #A(a, ) contains all large natural numbers, and the de-
sired conclusion is essentially immediate from Theorem 2.1. Next, with our subsequent
deliberations in mind, we equip ourselves with a conclusion concerning Diophantine ap-
proximations to the real number 1/«. Since 1/« has finite Diophantine type, we may
suppose that there is a natural number k£ with the property that

liminf ¢*||q/a|| > 0.
q—00

In particular, there exists a positive number ¢ = ¢(«) having the property that, for all
large enough natural numbers ¢, and for all integers a, one has

Our plan is to adopt an argument relating exponential sums over Beatty sequences
to corresponding unrestricted exponential sums, following a path close to that pursued
in the proof of [4, Lemma 4.3]. Along the way, we incorporate adjustments and minor
corrections relative to the latter source. We begin by observing that n = [am + 3] for
some m € Z if and only if

1 a ) c

l—al<{a'(n-p) <1 (2.3)
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For if a~!(n — 8) =m — 1+ 4, for some ¢ € [0,1] and m € Z, then
n=am+ S —a(l->9),
whence
lam + 3] = [n+a(l —0)].
This last integer is equal to n if and only if 0 < a(1—¢) < 1. Thus, we have |am+ ] =n
if and only if 1 — 1/a < § < 1, or equivalently, one has

l1-1/a<{m—-1+4d} <L
The situation with 6 = 1 — 1/« corresponds to n = am + 8 — 1, whilst that with 6 = 1
corresponds to n = am + . Since « is irrational, these situations can happen in their
respective situations at most once.
Next, define the function ¢ : R — [—=1/2,1/2) by putting
U(z) =2 —|z] -1/2,

and observe that ¢ (x) is periodic with period 1. When x € [0, 1), moreover, one has
1, whenl—-1/a<z<1,
0, when0<z<1-1/a.

a b ap(x) =Yz +1/a) = {

Here, we have corrected the corresponding statement in the proof of [4, Lemma 4.3]. It
therefore follows from the criterion (2.3) that

D e(nb) = Si(6) + Sx(9), (2.4)

1<n<N
ne#(a,B)
where )
S1(0) = — > e(nd)
1<n<N
and ne B nil B
50 = % (o(220) - o) e+ 00)

1<n<
The most difficult part of the decomposition (2.4) concerns the expression Sy(#). Again
following [4], we write

W(e)= > min{l, N"¥|nja— gl '}.
1<n<N

Then, by applying Montgomery and Vaughan [21, Lemma D.1], we see that
e(=ph/a) —e((1 - B)h/a)
Z Srih Z e(n(f + h/a))

0<|h|<NF 1<n<N
+O(1+W((B-1)/a)+W(B/a)). (2.5)
By Dirichlet’s approximation theorem, there exist a € Z and ¢ € N with (a,q) = 1 and

1 < g < NP satisfying the bound |¢/a — a] < N7*. Since a has the property (2.2), we
find that

52(8) =

1 a
g1 < ]a . E‘ <gIN7F,
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whence ¢* > ¢N*, and in particular ¢ > N. We therefore deduce from Baker [2, Lemma
3.2] that

W(p)=N"" > min{N" |n/a—¢| ™"}

1<n<N
< N7*(N* +qlogq)(N/q + 1)
< N (q_1 + N7' 4+ (qlogq)N~F1 + (log q)N_k) )

Since we may suppose that N < q¢ < N¥, we therefore see that W (yp) < log(2N), and
hence we deduce from (2.5) that

$:(0) < log2N)+ S — min{N, ||+ h/a] 1} (2.6)

0<|h|<NF ’h’

By a change of variable, we see that

1 1 1
/|Sg(9)\d¢9<<log(2N)+ > 7/ min{N, [|0]|~"} df
0 0<\h|<Nk‘ ‘ 0
1
<log2N)+ Y ]

0<|h|<NF

log(2N),

whence )
/ |52(0)] d < log®(2N).
0
We therefore deduce from (2.4) and the argument associated with Theorem 2.1 that

/01 ) e(ne)‘degé/ol > e(n9>‘d9+/01152(9)\d9

1<n<N 1<n<N
ne#(a,B)

1
< —log(2N) + log*(2N).
a

The first conclusion of the theorem is now immediate.

The second bound of the theorem requires additional effort. We suppose throughout
that p is a real number with p > 1. We observe first that from (2.6), there is a choice of
n € {+1,—1} for which

1
Ss(0) < log(2N) + > Fmin{N, [[h/a+ 5] 7'},
1<h<NF
By dividing the summation over h into dyadic intervals, we find that

Sy(0) < log(2N) + ) ~277U(2), (2.7)

=0

where J = | k(log N)/(log2)], and
UH)= > min{N,|h/a+n0]|"}. (2.8)

H<h<2H
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Consider a typical value of H = 27 with 0 < j < J. By Dirichlet’s approximation
theorem, there exist a € Z and ¢ € N with (a, q) = 1 and 1 < g < H satisfying the bound

g/ —al < H

Since « has the property (2.2), we find that

g 'H,

1 a
<]l <

whence ¢ > HY*. We therefore deduce from Baker [2, Lemma 3.2] that

> min{N, |h/a+n6|| "'} < (N + qlogq)(H/q+ 1)

H<h<2H

1 1 qlogg loggq
NH (- + ).
< q+H+ NH + N

Since we may suppose that H'/* < ¢ < H < N*, we discern that

UH)= Y min{N,[[h/a+n0|"'} < NH'V*log(2H) < NH'7/CH_ (2.9)

H<h<2H

By applying Hélder’s inequality and substituting the estimate (2.9), we find from (2.8)
that

UHP < UH)P D202 5™ (min{N, |h/a +ng) 1)) T

H<h<2H
< (NHl—l/(%))(p—l)/QH(p—l)/Q Z (min{N, 1h/a + 770”_1})(p+1)/2'

H<h<2H

Since we are assuming throughout that p > 1, it follows via a change of variable that

1
/U( )P df < NP0/ gr=i-E=/Ek N - / (min{ N, || 8|~ “*"* ap
0

H<h<2H
< N@=1/2 gpp=(p=1)/(4k) pr(p+1)/2-1

< NP~LgEP=20-1) (2.10)

where we write § = 1/(8k).
We now return to (2.7), observing that an additional application of Holder’s inequality
reveals that

p—1 J

S5(0)|P < log”(2N) + <22 5J> 3 26e--rig 27y,

J=0
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By applying (2.10), we therefore infer that
J

1 1
/ [S2(0) df < logP(2N) + )y  20®=1=#) / U(29)" do
0 0

=0

< log”(2N) + Z 2(5(p—1)—p)ij—1(Qj)p—%(p—l)
=0

J
< logP(2N) + NP71y " 270¢=17 « NP71,
5=0
Finally, on substituting this bound into a consequence of the decomposition (2.4), we
arrive at the upper bound

/01 Z e(nh)

1<n<N
neB(a,8)

p 1 1
d9<</ 151(9)|pd9+/ 1S5(0)|P 46
0 0

1
g
0

The second conclusion of the theorem is now immediate from the second estimate of
Theorem 2.1. This completes the proof of the theorem. 0

p
dg + NP1,

Z e(nh)

1<n<N

It is possible that a more sophisticated argument might yield the bound
1

/ Z e(nd)
0

1<n<N
The reader should regard this as a challenge for the enthusiast.

df < log(2N).

ne#(a,B)

3. ENGINEERING NEW SUBCONVEX LP-SETS

Given one or more subconvex LP-sets, it is possible to modify these sets in various
ways so as to create new examples of subconvex L?-sets, for values of ¢ depending on the
original parameter p. In this section we survey the methods available for engineering these
new subconvex sets. This survey of methods is far from exhaustive, but at least serves
to illustrate that there is available an extraordinary diversity of examples of subconvex
LP-sets. Throughout this section, we concentrate on conclusions for strongly subconvex
LP-sets. However, all of our results apply equally well to weakly subconvex LP-sets, with
the corresponding proofs proceeding mutatis mutandis.

We begin by examining complements of sets.

Theorem 3.1. Suppose that &/ and B are strongly subconver LP-sets with p > 1 and
o C A, and define € = B\ /. Then provided that € has positive lower density, the
set € is a strongly subconvex LP-set.

Proof. One has
Z e(na) = Z e(na) — Z e(na).

ne€¢(N) neAB(N) ned/ (N)
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It therefore follows from (1.1) and (1.3) that
L(N;€) < I,(N; B) + I,(N; o) < NP1,

Hence, provided that % has positive lower density, we see that it is a strongly subconvex
LP-set. [l

Corollary 3.2. Suppose that <7 is a strongly subconver LP-set with p > 1 for which
o/ =N\ o has positive lower density. Then </° is a strongly subconvexr LP-set.

Proof. The set N is a strongly subconvex L?-set whenever ¢ > 1, and hence also a strongly
subconvex LP-set. Thus, the conclusion is immediate from Theorem 3.1. 0

Corollary 3.3. When r > s > 2, the set of r-free numbers that are not s-free, namely
N \ Ns, is a strongly subconver LP-set whenever p > 1+ 1/s.

Proof. Asnoted in Example 2.2, both .4, and .4} are strongly subconvex LP-sets whenever
p > 14 1/s. Since A; C A, and A, \ A5 has positive density, the desired conclusion
follows from Theorem 3.1. 0

Next, we turn our attention to translations and dilations of sets.

Theorem 3.4. Suppose that o7 is a strongly subconvexr LP-set with p > 1. Then, whenever
g €N and a € Z, the set B = (q/ + a) NN is also a strongly subconver LP-set.

Proof. We have
Y ena)= Y el(gn+a)a)+0(1),

neB(N) ned (N/q)

whence, by a change of variable, it follows from (1.1) that

Z e(gna)

ne (N/q)
< 1+ ,(N/q; ) < NP1

The desired conclusion follows at once. O

p

1
Ip(N;@)<<1-|—/ da
0

Perturbations of subconvex LP-sets, in which sufficiently few elements are removed or
added, also yield subconvex LP-sets.

Theorem 3.5. Suppose that < is a strongly subconvex LP-set with p > 1. Let % and €
be subsets of N with  C o/ and € C N\ & satisfying the property that

B(N) + C(N) < N?72/», (3.1)
Then the perturbed set of' = (o \ B)UE is also a strongly subconvexr LP-set.
Proof. One has

Z e(na) = Z e(na) — Z e(na) + Z e(na),
ned/’'(N) ned(N) neAB(N) ne?é(N)
whence, it follows from (1.1) that
L,(N; ') < I,(N; &) + I,(N; ) + I,(N; ).
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Since we may assume that p < 2, it follows from Holder’s inequality and orthogonality
that one has

I,(N; B) < L(N; B)? < B(N)/?,

with a similar upper bound available for the mean value over the exponential sum asso-
ciated with the set ¢’ (V). Since & is a strongly subconvex LP-set, it therefore follows
from the hypothesis (3.1) that

I,(N; ') < NP~ + B(N)?2 + C(N)?/?
< NP1 4 (N2—2/p)p/2 < NP1,
This confirms that &7’ is a strongly subconvex LP-set. O

A particularly attractive feature of subconvex LP-sets is that intersections of such sets,
provided that these intersections remain of positive lower density, are likewise subconvex
Li-sets, for an appropriate choice of g. The condition here that the intersections have pos-
itive lower density is natural. For example, the set .45 consisting of square-free numbers
plainly has the property that 45N A45° is empty. So although .45 and .45¢ are both weakly
subconvex L% %-sets, their intersection is not. The problem of determining whether or not
two subconvex LP-sets &/ and % have an intersection with positive lower density may
have a number-theoretic flavour. In particular, in many examples, the circle method will
provide a viable means of establishing whether or not .7 N % has positive lower density.

It is convenient in the proof of the next theorem, and elsewhere, to define an exponential
sum f(a; 2) = fn(a; 2) associated with each subset Z of the natural numbers. Thus,
we write

fnlo; 2) = Z e(na). (3.2)

neZ(N)

Theorem 3.6. Let &/ be a strongly subconvex L9-set with ¢ > 1, and let & be a strongly
subconvexr L"-set with r > 1. Define the real number p via the relation

1 1 1

=4+ 1. 3.3

p q T (3:3)
Suppose that o/ N B has positive lower density, and in addition one has

3 1 1

- <-4+ -<2 3.4

R (3.4)

Then the set o N A is a strongly subconvexr LP-set.

Proof. The desired conclusion is essentially a consequence of Young’s convolution inequal-
ity (see [7], for example), though the argument is sufficiently simple and instructive that
we take the opportunity to describe our proof in detail. We recall that as a consequence of
Definition 1.1, it is implicit that the strong subconvexity of o/ and % implies that ¢ < 2
and r < 2. Define the real number p via the relation (3.3), and note that the condition
(3.4) then ensures that 1 < p < 2. Also, put ¥ = & N %A. Then on making use of the
notation (3.2), it follows from orthogonality that one has

f(a;%) = /O f(o — B ) f(5: B) B,
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Next, observe that as a consequence of the last relation, it follows from (1.1) that
1 1
L6) = [ 1) [ sla - 6:)(6:8) 5] da
0 0

1 1
. p—1 _ A .
< / / Fes )P f (o — ;) F(5; )| dB da

An application of Holder’s inequality therefore reveals that

1_1 1_1 1

I(N;€) < Ty "Ty pT??a (3.5)

where

1 1

T = /0 /0 Fs @) | — B: )] dB da,
1 1

T, - /0 /0 Fls E)PIF(8: B dB da,

1 1
T, = /0 /O o — B )| £(5: B)|" 4B da

Here, we have made use of the observation that
1 1 1

ST =1-=

q p r
so that 0 < 1/¢ — 1/p < 1, and similarly 0 < 1/r — 1/p < 1. Moroever,

1 1 1 1 1 1 1 1
(- C-Bei-tet-tan
q P r . p p qg 1T P

Hence, our application of Holder’s inequality is legitimate.
By applying a change of variables, and utilising the definition (1.1) and the fact that
4/ is a strongly subconvex Li-set, we find that

Ty = 1,(N;€),(N; o) < N 'L,(N;%).
Similarly, one sees that To < N""'[,(N; %), and
Ty = 1,(N; o)1, (N: B) < N¥7 2.
We therefore deduce from (3.5) that
L(N:%) < (N L(N: %)) » (N"UL(N; %)) » (No+r=2) /7
< NYYPL(N; @) e, (3.6)

Our hypothesis that the set € = &/ N Z# has positive lower density ensures that when
0 < a< (100N)™!; one has

[f(a;6)| =

Z e(na)

n€¢(N)

> —|C(N)| > N,

1
2

whence

1/(100N)
L)z [ I fe @) da s N
0
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Then we conclude from (3.6) that I,(N; €)Y? < N'=%/? whence I,(N; %) < NP~!. This
confirms that & N A is a strongly subconvex LP-set. O

This conclusion yields an immediate corollary for intersections of subconvex LP-sets
with Beatty sequences.

Corollary 3.7. Let o/ be a strongly subconver Li-set for some real number q € (1,2).
Suppose that o and B are real numbers with o > 0 such that 1/« is of finite Diophantine
type. Then the set o/ NAB(«, B) is a strongly subconvex LP-set whenever p is a real number
with p € (q,2) and o/ N B(«, B) has positive lower density.

Proof. The Beatty sequence %(«, 3) is a strongly subconvex L"-set whenever 1 < r < 2,
as a consequence of Theorem 2.3. Choose any such value of r sufficiently close to 1, and
define the real number p by means of the relation (3.3). Then we may take p as close as we
like to ¢ by choosing r suitably close to 1. The conclusion of Theorem 3.6 then shows that
o NAB(a, B) is a strongly subconvex LP-set provided that this set has positive density and
condition (3.4) is satisfied. Since ¢ > 1 and r > 1, the upper bound on 1/¢ + 1/r in the
latter condition is automatically satisfied. Moreover, one has ¢ < 2, so the lower bound
1/q + 1/r > 3/2 is satisfied on taking r sufficiently close to 1. The desired conclusion
therefore follows. OJ

The discussion of this section exhibits numerous means of generating new examples of
subconvex LP-sets from any existing examples. One can also splice together different sets
by considering (in the obvious sense) such hyprid examples as

P(N) = o/ (N/3) U(B(2N/3) \ B(N/3)) U (€ (N)\ €(2N/3)),

when given subconvex LP-sets o/, 4 and . A basic problem worthy of attention would
be to characterise subconvex LP-sets.

Problem 3.8. Suppose that p is a real number with 1 < p < 2. Characterise, to the
extent possible, strongly subconvex LP-sets.

4. WEYL SUMS OVER WEAKLY SUBCONVEX LP-SETS, I

We begin with the most striking of the applications of subconvex LP-sets to exponential
sums over polynomials having summands restricted to these LP-sets, demonstrating how
to establish the upper bound (1.9) of Theorem 1.2.

Proof of Theorem 1.2. Let o/ be a weakly subconvex LP-set for some real number p with
1 < p <4/3. We may suppose that k > 3, and that a € Z and ¢ € N satisfy (a,q) =1
and |y, — a/q| < ¢72. We recall the definition (1.6), and introduce the exponential sum
Fi(a) = Fy.(a; N), defined by

Fua;N)= Y e(d(n;)), (4.1)
neo/ (N)
We also make use of the exponential sum g(a) = fy(a;.o/) defined via (3.2), so that

gla)= Y ena) (12)

neA(N)
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and introduce the exponential sum
Grla, B) = Y e(¥(n;a) + Bn). (4.3)
1<n<N

We note that Gi(a, §) is merely a more convenient form of an exponential sum that
may be written in terms of the sum Wy(a; N) defined in (1.7). It now follows from
orthogonality that one has the fundamental relation

Fi(a) = / Giler, B)g(—B) dB. (4.4)

An application of Holder’s inequality reveals that

el < ([ 6@ nrtas) ([ as)” (45)

Here, our hypothesis that 7 is a weakly subconvex LP-set for some real number p with
p < 4/3 ensures that

! 1
[ tooas <5 [iggpag < v
0 0

Hence, we deduce from (4.5) that

1
Pl < N [ (Gulan )] ds. (16)
0

By orthogonality, the integral on the right hand side of (4.6) may be interpreted in the
form

/ |Grle, B dp = > e(d(n; ) + ¥(ny; @) — (ng; @) — (na; ).
1<n,n2,n3,na<N
ni+nz=nsg+ng

For suitable integers hy and he with |h;| < N (i = 1,2), one can write the summands n
and ny in the shape
ng :Tl1+h1 and ny :n1+h2.

The relation ny + ny = n3 + ny then implies that no = ny + hy + hs. Thus, making use of
the forward difference operator

Ai(p(x); h) = p(z + h) — ¢(z),
and the second order operator
Ao (p(); hay ha) = Ai(Ar(p(2); ha); ha),
we see that
Y(n; @) + P(ng; @) — P(ng;a) — Y(na; a) = Ao (P(na; a); by, ha).
In this way, we conclude that

/0 GleB)'di= 3 S S e(Anw(m )by, ha)), (4.7)

|h1|<N |h2|<N n€.#(N;h)
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in which .#(N;h) denotes the interval of integers defined by
f(N,h) = [1,N] ﬂ[l—hl,N—hl]ﬂ [1—h2,N—h2] N [1—h1 —hQ,N—hl —hg]

The right hand side of (4.7) will be recognised as the principal output of a second order
Weyl differencing process applied to the exponential sum Gi(a,0) = ¥i(a; N). The
interested reader should direct their attention to [23, Lemma 2.3] and compare with the
situation therein with 5 = 2.

On substituting (4.7) into (4.6), we see that

Fila)* < N'Y 30 3,

|[h1|<N |ha|<N

where
Ty =) e(Ds(th(n; @); hy, o)),
€Iy
in which % = #(N;h). A comparison of this upper bound with the statement of [23,
Lemma 2.3] reveals, just as in the proof of [23, Lemma 2.4], that the application of k — 3
further Weyl differencing steps delivers the bound

|Fi(a)|? " <« N2 ke S Y D el heapea (@b hi)),

|h1‘<N |hk_1‘<N TEI 1
where .#;._; is a subinterval of integers lying within [1, N], and
pk_l([E; h17 ey hk—l) = k"Oék(ZL‘ + %hl —+ ...+ %hk—l) + (k‘ — 1)!Ozk_1.

Hence, just as in the completion of the argument of the proof of [23, Lemma 2.4], one
concludes that
[Fi(a) < N*7H (g + N7 gN ).
Thus
|[Fe(o)] < N5 (g7 4+ N7 gNTF)>
confirming the desired conclusion (1.9). O

We next address the proof of Theorem 1.3. This we achieve in two stages, the second
of which we defer to the next section. We recall the definition of the exponent o, (k)
recorded in the preamble to the statement of Theorem 1.3.

Lemma 4.1. Suppose that <7 is a weakly subconvex LP-set for some real number p with
1 < p <2, and further that k > 2. Let (ag,aq,...,a) € R¥ and suppose that a € Z
and q € N satisfy (a,q) = 1 and |a, — a/q| < q2. Then, for each € > 0 and each large
real number N, one has

Z e(apn® + ...+ am+ag) K N7 (g 4+ N7 gNFyonb), (4.8)
nes/ (N)

Proof. We begin by noting that when . is a weakly subconvex L!-set, then it is also
a weakly subconvex LP-set for any p > 1. The conclusion of Theorem 1.3 for p = 1 is
obtained from that for 1 < p < 2 by taking p sufficiently close to 1, on adjusting the value
of ¢ in the desired conclusion. There is consequently no loss of generality in supposing
throughout that 1 < p < 2 and k > 2. Next, we observe that in the case k = 2 it makes
little sense to perform two Weyl differencing steps, so that the proof of Theorem 1.2 is of
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limited use to us. In this case we nonetheless have the orthogonality relation (4.4), but
in present circumstances we apply Holder’s inequality to obtain the upper bound

el < ([ 1Gtaareas) " ([aras) (4.9

Our hypothesis that A is a weakly subconvex LP-set ensures via (1.2) that

1
/0 lg(B)|P dB < NP71te, (4.10)

Moreover, since 1 < p < 2, we may suppose that p/(p — 1) > 2. Hence, by orthogonality,
we see that

/ Gl B)7T dB < (sup Gl " / Gyo(ex, B)2dB
8e0,1)
< N( sup [Gi(e 76>|)‘7 g (4.11)

BE0,1)

Since a € Z and ¢q € N satisfy (a,q) = 1 and |ay, — a/q| < ¢72, it follows from Weyl’s
inequality (see [23, Lemma 2.4]) that we have the bound

Gila, B) < N"(q + N7 gN 9>
Thus we see from (4.11) that

/ Grle, B)[7TdB < N - Not5(q™ 4 N1 4 N5 5702,
On substituting this estimate together with (4.10) into (4.9), we conclude that
Frla) < N%—H( Lo N qN_k)(%_l)Qlfk(Np—He)%

<<N1+25(q 4+ NL +gN- >( —1)2!- k'

Thus far, our discussion has been independent of the value of k > 2. Specialising to the
situation with k£ = 2, however, we obtain the estimate (4.8) with o,(k) = ]lg— 3, confirming
the conclusion of the lemma in this case.

The situation with £ > 3 and 1 < p < 4/3 is immediate from Theorem 1.2, since, in
such circumstances, one has o,(k) = 21~ k We turn now to address the situation in Wthh
k >3 and 4/3 < p < 2. Here, our starting point is the relation (4.4), though we apply
Holder’s inequality in a manner that incorporates the 4-th moment of Gy(ey, 5). Thus,

we obtain
File) < U7 70y / 9@ as)”" (4.12)
where
/|Gk AP d3  (r>1). (4.13)

By orthogonality, one finds from (4.3) that U; < N. Meanwhile, the argument leading
from (4.7) to the conclusion of the proof of Theorem 1.2 shows that

Uy < N***(q7 '+ N1+ gN )2
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Thus, on recalling the upper bound (4.10), we deduce from (4.12) that

Fi(a) < N2 7ot <N3(C]_1 + N4 qN‘k)Q‘Q’*k)E T (NP

< N7l 4 N7L g gN—)Gm2)2 ",
Since o, (k) = (5 — 3)2** when k > 3 and 4/3 < p < 2, this confirms the conclusion of
the lemma in this final case. 0

5. WEYL SUMS OVER WEAKLY SUBCONVEX [LP-SETS, II

We next shift attention to the application of Vinogradov’s methods for bounding ex-
ponential sums, though now with the variables restricted to subconvex LP-sets. Here, we
adopt an approach that differs from that more familiarly presented in work, for example,
of Vaughan [23, §5.2].

Lemma 5.1. Suppose that < is a weakly subconvex LP-set for some real number p with
1 < p <2, and further that k > 3. Let (ap,aq,...,ax) € R¥! and suppose that a € Z
and q € N satisfy (a,q) = 1 and |a, — a/q| < q2. Then, for each € > 0 and each large
real number N, one has

Z e(apn® + ... F a4 ap) K N'e(g7 4 N7 gN Ry ), (5.1)
ned/ (N)
Proof. Just as in the proof of Lemma 4.1, there is no loss of generality in supposing
throughout that 1 < p < 2. Furthermore, in view of the definition of 7,(k), we may
suppose in addition that k& > 3. Moreover, we again have the upper bounds (4.9) and
(4.10) employed in the course of the proof of Lemma 4.1. We augment these estimates
with a new mean value estimate. Write

r=1k(k—1). (5.2)

)
It transpires that we are able to bound |Fj(e)| in terms of the mean value U,, defined as

in (4.13). It is this mean value to which we apply Vinogradov’s methods.
Observe first that from (4.3), one has

Glaf) =5 3 X el +ha)+nt ).

1<n<N 1-n<h<N-—n
Thus, by Holder’s inequality, one sees that

1

Grla B < = D [Bile, Bin)[*, (5.3)

1<n<N
in which we write
Ee,Bin) = > e(@(n+h;a)+hp).
1-n<h<N-n

Next, write
o(h; B) = Broh™ 2 + ... + Bih,
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and put
Di(e,Bin) = Y e((n+hia)+¢(hB)).
1-n<h<N-—n

Then we see via orthogonality that

1
/0|Ek<a,ﬂ;n>|2fdﬂ= o /[ Dl B:m)e(~B - m) 4B,

|ma|<2rN2 |mg— 2|<2rNk 2

where we abbreviate Gomo + ... + fr_ami_s to 8- m. An application of the triangle
inequality therefore propels us from (5.3) to the bound

/ Gila, B)P’”dﬁ<<— > NatnE / D Bin) . (5.4)

1<n<N [0,1)%=
By orthogonality, the mean value on the right hand side of (5.4) is equal to
> Y, elonha),
1-n<hi<N—-n 1-n<hgy,,-<N—n

in which we write
,

o(n,hia) =Y (W(n+hsa) —(n+ b))
i=1
and the summation over hq, ..., hy, is subject to the condition

T

Y (Bl =hl)=0 (1<j<k—2).

i=1
By expanding the polynomial ¢)(n + h; &) using the binomial theorem, moreover, we see
that for each summand h, we have

T

o(n,h;a) = akz (¥ — TH + (knoy, +Oék71)Z(h? ! hf—&-zl)

i=1

Hence, with the same 1mph(:1t condition on hq, ..., hs,., we deduce that

o> - > elo(nhia)

1<n<N 1-n<hi<N—n 1-n<hg,<N—n
<Y Y (knakz (hk-1 hjfﬂl)’, (5.5)
ne.s (h)

hil<N  |ho|<N

where .#(h) denotes the set of integers n in the interval [1, N| satisfying the property
that

Since the set .#(h) is a subinterval of the integers lying in [1, N, it follows in a standard
manner that by summing the implicit geometric progression, one has

Z (knakz hk ! hfﬂl ) <<min{ k’OékZ hk ! hfﬂl

ne.s (h)
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By substituting this bound into (5.5), and thence into (5.4), we conclude thus far that

1
[ 1Gula g as < NIEDED2 ST i, e T} (56)
0

|mg_1|<2rNk—1

where we write p(m) for the number of solutions of the system of equations

r

Z(h”’: ! h’f—i—zl) = m7

i=1

N

Z(h] hi—i-z) =0 (1 g ] k — 2)7

with |h;] < N (1 << 2r).

A standard application of the recent resolution of the main conjecture on Vinogradov’s
mean value theorem (see [6], [27], [28]) shows via orthogonality that

p(m) = /[ >

|h|<N
< 1+/ Z e(yih+ ...+ y—1h*)
0Dl cpen

< N'™* +N2r7%k(k71).

2r

e(vih+ ... +y-1th | e(—yp_1m) dy

2r

dy

Thus, we infer from (5.2) and (5.6) that

1
[ R R D DI A
0

|mg_1|<2rNk—1

A standard reciprocal sums lemma (see, for example [23, Lemma 2.2]) leads from here to
the estimate

/ ‘Gk |2rdﬁ<<N2T 1+z—:( 71+N71_'_qN7k>. (57)

We may now return to combine (5.7) with the bounds (4.9) and (4.10) already estab-
lished. Observe first that when p/(p — 1) = 2r, which is to say that p = 2r/(2r — 1), the
estimate (5.7) may be substituted into (4.9) along with (4.10) to give

Fi(a) < N¢ <N2r—1(q—1 4+ N7! _’_qN—k>)1/(27“) (Np—l)l/p
< NlJrE(qfl _i_Nfl _'_qN7k>1/(2r).
Since any weakly subconvex Li-set with ¢ < 2r/(2r —1) is also a weakly subconvex LP-set
with p = 2r/(2r — 1), and
2r 14 1
2r—1 k2 —k—1
this establishes (5.1) when £ >3 and 1 <p <1+ 1/(k* —k —1).
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The situation with 1+ 1/(k? — k — 1) < p < 2 requires more care. Applying Holder’s
inequality to (4.4), we obtain the upper bound

Ry 1 9(5) 45 " (53)

where U; and U, are defined as in (4.13), and

2 1 1
wr:(——l)m and w1:1—]—9—wr.
Notice here that since
K=k <p<?
P_k—1 P2

one has ) g o | .
0<2—9—1<W and kz—k<1—]—9<1.
It follows that w, < 1 — 1/p, whence our application of Hélder’s inequality was indeed
legitimate.
The bound U; < N again follows via orthogonality, while the bound (5.7) supplies
an estimate for U,. Consequently, on substituting these estimates along with (4.10) into

(5.8), we deduce that
Fil@) < N (N (N1 (g1 4 N1 4 gN Ry (Voo
< N1+€(q—1 +N_1 +QN_I€)(W.

Since 7,(k) = w, in present circumstances, this completes the proof of the lemma. O

The proof of Theorem 1.3 is completed by combining the conclusions of Lemmata 4.1
and 5.1. The former addresses the situations with & > 2 when o,(k) > 7,(k), and the
latter addresses those scenarios in which k£ > 3 and 7,(k) > 0,(k).

Enthusiastic readers might choose to entertain themselves by adapting these methods
to show that when £ > 6 and 1 < p < 4/3, one has an analogue of Heath-Brown’s
refinement of Weyl’s inequality for weakly subconvex LP-sets 7. Thus, when a € R, and
a € Z and q € N satisfy (a,q) = 1 and |a — a/q| < ¢72, one may adapt the proof of [11,
Theorem 1] to show that

S elan®) < NE(N(g™ + N7 4 N )52,
nes/ (N)

6. EQUIDISTRIBUTION AND SUBCONVEX LP-SETS

In order to explore the topic of equidistribution of polynomial sequences with arguments
from subconvex LP-sets, we apply Weyl’s criterion. Recall that the sequence (a,)3; is
equidistributed modulo 1 if and only if for any integer m # 0, we have

1 N
AL |2y elmen)] =0

Define the polynomial 1 (z; ) as in (1.6) with fixed coefficients @ € R¥*1. Then as a
particular consequence of work of Weyl [25], the sequence (¢(n; ))2, is equidistributed
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modulo 1 whenever one at least of the coefficients am, ..., 4 is irrational. In these cir-
cumstances, we see that for each non-zero integer m, one has

3" e(mi(n; @)

n=1

3 ‘ = o(N).

Our objective in this section is to establish an analogue of this last conclusion in which the
summands n are restricted to a subconvex LP-set. We begin with the proof of Theorem
1.4, which concerns strongly subconvex LP-sets.

The proof of Theorem 1.4. Let o/ = {aj,aq,...}, with a3 < ay < ..., be a strongly
subconvex LP-set with 1 < p < 2. In order to facilitate tidier notation, we make a modest
preliminary manoeuvre. Since o/ has positive lower density in N, we see that there exists
a positive number ¢ = ¢() having the property that when M is large, there exists an
integer N with N < e¢M for which one has {ay,as,...,ay} = &/(N). Next, let k > 2,
and define ¢ (n; &) according to (1.6). The hypotheses of the theorem permit us the
assumption that one at least of the coefficients ay, ..., ay is irrational. We may therefore
suppose that there is an integer h with 2 < h < k for which ay, ..., ap.1 are all rational,
and qy, is irrational. We may suppose in addition that r is a natural number having the
property that ra; € Z (h+1 < j < k). In this context, if h = k, then we set r = 1.

According to Weyl’s criterion, the sequence (¢ (a,; @))%, is equidistributed modulo 1
if and only if for any integer m # 0, one has

M
A}iinoo i ;e(mw(ay; a))’ = 0.

The latter holds if and only if

Y

> clmuinia)) =o.

negs/ (N)

Thus, in the notation introduced in (4.1), our goal is to show that for any integer m # 0,
one has

| Fy(mag; N)| = o(N). 6.1)

Applying the notation (4.2) and (4.3) employed in the course of the proof of Theorem 1.2,
we may infer from (4.4) that

Fy(ma; N) = / Gr(mex, B)g(—B) dp.

An application of Holder’s inequality reveals that

|Fr(ma;; N)| < ( sup \Gk(ma,ﬁ)’) 2_1(/01 |Gk(ma,5)|2d5)l_;(/ol l9(B)[” dﬂ);.

BE0,1)

Since &7 is a strongly subconvex LP-set with 1 < p < 2, we have

1
/O 9(B)P dB < N7,
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Then it follows via orthogonality that

Fi(ma: N) < (N)=5 (N7-1)3 (ﬁz%pl [Gilmer 9) o (6.2)

Thus, we may infer that the estimate (6.1) holds whenever one has

sup |Gi(mex, B)] = oN). (6.3)
pelo,1)
We establish (6.3) in a fairly routine manner via a sequence of intermediate steps. We
begin by considering an auxiliary polynomial

w(t; B) = But" + ... + Bit + Bo,

and the associated exponential sum

UB;N) = ) elw(n:B)).
1<n<N
Suppose that £, is irrational. We claim that for any fixed value of n > 1, there exists a
natural number Ny having the property that

sup  |U(B; No)| < No/n. (6.4)
Bos--sBr—1
We establish this claim by contradiction. Suppose, if possible, that for all large values of
N, one has
sup  |U(B; N)| = N/n.
Bo---Br—1

Then it follows from an appropriate version of Weyl’s inequality (see [2, Theorem 5.1])
that there exist a € Z and ¢ € N with (a,q) =1,

g <n"NY3 and lgBn — a| < 0 N/3h,

For each large natural number @, we fix N = [(Q/n")3|. Then we find that one has ¢ < Q
and |gBy — a| < Q2. Since these inequalities hold for all large values of Q, it follows
via a consideration of the continued fraction convergents to ;, that this coefficient must
be rational (compare [18, Lemma 2.7]). This deduction contradicts our assumption that
B is irrational, and so we are forced to conclude that our claim (6.4) is indeed valid.

Now we return to consider the exponential sum Gg(ma, ) and the bound (6.3) that
we seek to establish. Let 7 > 1 be arbitrary. Put 3, = mr"a;. Then since roj € Z
(h+1<j<k), we see that

mi(z +ry; o) + Bz +ry) = Bpy” + ...+ Py + Bo (mod 1),

for some real numbers (y, ..., fn_1 depending at most on r, m, z, § and a. Notice that
since qy, is presumed to be irrational, then so too is . Let Ny be the natural number
furnished in association with the upper bound (6.4) that we have established. When N
is large enough in terms of r and Ny, one has

Z e(my(n; ) + fn) — Ni() Z Z e(my(z +ry; o) + Bz +ry))| < 2rNg.

1<n<N 1<z<N 1<y<Ng
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Then we deduce from (6.4) that

1 1 2r N,
+ sup [Gulme B)| < = sup [U(B: No)| + =
Bel0,1) 0 Bo,--sBr—1
1 27”N0
n N
Therefore, for each integer m # 0, we conclude that for every real number 1 > 1, one has
1 1
limsup - sup [Gi(me, )] < -
N—o0 Be0,1) n

Since this upper bound holds for all n > 1, we infer that

1
lim — sup |Gy(me, B)| =0,
N—o0 B€[0,1)
and the desired conclusion (6.3) follows. We therefore conclude that (6.1) holds, and so
the sequence (¢(an,; )2, is equidistributed modulo 1. This completes the proof of the
theorem. ]

The reader might well be puzzled that the conclusion of Theorem 1.4 applies only to
polynomials of the shape 1 (t; &) = axt*+...+ait+ag when one at least of g, . . ., ay, is ir-
rational. It transpires that this condition is essential. Were it to be the case that am, ..., ay
are rational and oy is irrational, then it is possible that the sequence (¢(a,; @))Se; is not
equidistributed modulo 1. Consider, for example, an irrational number 6 € (0, 1) of finite
Diophantine type and the set

o ={|n/0] :n € N}.

On the one hand, this Beatty sequence {aq, as, ...}, with a; < as < ..., has the property
that {a,0} € (1 —0,1) for each n € N. On the other hand, as a consequence of Theorem
2.3, we see that &7 is a strongly subconvex LP-set whenever p > 1. It is therefore not
possible that the sequence (a,0)2; is equidistributed modulo 1. A modest adjustment of
this argument would deliver the same conclusion for the polynomial atk + ... 4+ aqt + oy
when «ay, ..., as are all rational and oy = 6.

We finish this section by noting that a conclusion similar to Theorem 1.4 may be
established in which the sequence o is assumed only to be a weakly subconvex LP-set
with 1 <p < 2.

Theorem 6.1. Suppose that o7 = {ay,as, ...}, with a; < as < ..., is a weakly subconvex
LP-set with 1 < p < 2. Let k > 2, suppose that (g, s ..., ) € R¥Y and define the
polynomial ¥(x; ) as in (1.6). Suppose in addition that one at least of the coefficients
Qg, ..., qy is of finite Diophantine type. Then the sequence (V¥(ay; @), is equidistributed
modulo 1.

Proof. We may proceed just as in the proof of Theorem 1.4, though the hypothesis that
o/ be weakly subconvex instead of strongly subconvex requires us to replace (6.2) by the

bound

Fi(ma) < (N)"# (NP~149)5 (ﬂil[lo%) G (max, 5)\) o (6.5)



28 TREVOR D. WOOLEY

Let ¢ be a small positive number. Then it follows from Baker [2, Theorem 5.1] that
whenever P > N'2" and |Gy(ma, 8)| > P, then there exist ¢ € N and ay, ..., a;, € Z
having the property that

q<NE(NP_1)k’ (C_Zaa'l?"'aak):l; (q7<127---,ak)<NE,

lgmay —a;| < (NPTH)'N*7 (2<j <)
and
lg(may + B) — a1 < (NPHENTL

We may suppose that there is an index [ with 2 < [ < k for which «a; is of finite
Diophantine type. Thus, for some natural number r and positive number ¢, it follows
that for all a € Z one has

lgmay, — a| = ¢(gm)™". (6.6)

We take ¢ = 1/(k2%r) and P = N'-1/(#2"") Then we deduce from the above discussion
that whenever

Gi(mex, B)] > N0,

there exist ¢ € N and a € Z with
q< N2/(2kr) _ <N1/r>21—k

and

lgmay — a| < (NY7)* "N
But then we find from (6.6) that

c(gm)™" < |gma; — a| < (Nl/”)QHQN_l < N732,
whence for large enough values of N, one sees that ¢ > N'/". Thus, we deduce that
217}6

NYVT < q < (NY7)>7,

leading to a contradiction. We must therefore conclude that whenever N is sufficiently
large in terms of m and «ay, one has

|Gr(mex, B)] < N'7HE,
uniformly in 5. We thus deduce from (6.5) that

Fk(ma) < Nl (7—1>/(k2kr)7
whence, for each integer m # 0, one has

lim N7 Fi(ma)| = 0.

N—oo

This shows that
N

Z m¢ Up; & ':07

lim —
N%oo

so that (Y(a,; )P is equidistrlbuted modulo 1. This completes the proof of the theo-
rem. U
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7. SUBCONVEX [P-SETS AND ARITHMETIC FUNCTIONS

We take the opportunity in this section to discuss the application of our earlier ideas to
the problem of estimating averages of arithmetic functions with arguments restricted to
subconvex LP-sets 7. In many situations of practical interest, such as when ./ consists
of square-free numbers, for example, one may apply direct approaches in which the arith-
metic structure of &7 is employed to successfully analyse such averages. Our purpose in
this section is two-fold. On the one hand, we show that the tools available for subconvex
LP-sets provided elegantly simple approaches to the estimation of such averages in which
technical tedium is avoided. On the other hand, our approach is quite general, so that it
applies to subconvex LP-sets possessing no evident arithmetic structure.

In order to describe the most general form of our conclusions, we must introduce some
fairly general notation. Consider an arithmetic function f : N — C, and introduce the
exponential sum H(a; N) defined by

H¢(o; N) :% Z f(n)e(na

1<n<N

Also, with the large real number N suppressed from the notation, write

[Hylloo = sup [Hp(c; N))
a€[0,1)

and the normalised [?-norm
1 1/2
oo = (5 2 172)
1<n<N

Theorem 7.1. Suppose that <7 is a strongly subconvex LP-set for some real number p
with 1 <p<2. Let f: N — C be any arithmetic function. Then one has

2_1 22
Z Fln) < ([ Hellso N Fllz (-

n@zf N)

Proof. Recalling our earlier notation (4.2), we see that

1

nes/ N)

Hence, by Holder’s inequality and Parseval’s identity, we find that

1 21, 1 ) -1, rt 1/p

3| 2 50| < (s e ) ([ st da) ([ ls(ap o)
ne (N) a€l0,1 0 0

2_q _ 1—% 1
< NHfE (NS ly) " (NP3,

and the desired conclusion follows. O

We now derive some corollaries of this theorem in order to illustrate the ease with which
consequences may be extracted within this framework. We first consider the situation in
which the arithmetic function f(n) is given by the Mobius function p(n).
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The proof of Theorem 1.5. 1t is a consequence of work of Davenport [10, equation (1)]
that for any positive number A, one has

1
T 3 uln)e(nd) < log A2N),
1<n<N

uniformly in #. Thus we have
1H, oo < log™(2N).

By a trivial estimate, moreover, one has

1 1/2
lalleon = (5 D )" <1,

1<n<N

Hence, we deduce from Theorem 7.1 that whenever o7 is a strongly subconvex LP-set for

some 1 < p < 2, then
1 21

3 nln) < (g 2N))P

ned/ (N)
whence for any B > 0, one has
> un) <p Nlog™?(2N).
ned (N)
This completes the proof of Theorem 1.5. 0
One can modify the summands here in a pedestrian manner. Thus, for example, one

can make use of the ideas of Davenport [10], along the lines pursued by Hua [12, Chapters
5 and 6], to show that for each A > 0 the bound

Z p(n)e(nd 4+ nB) < Nlog™*(2N)
1<n<N
holds uniformly in § and 3. Putting f(n) = u(n)e(n*@), one then has
| Hylloo < log™*(2N) and I fllzony <1,
and so the argument above, mutatis mutandis, yields the following corollary.

Corollary 7.2. Suppose that <7 is a strongly subconvex LP-set for some real number p
with 1 < p<2. Let k € N and a € R. Then, whenever A > 0 and N 1is sufficiently large
in terms of A, one has

Z p(n)e(nfa) < N(log N)=.
ne/ (N)

A modest adjustment of this example yields a conclusion useful in applications of the
circle method to additive problems involving primes restricted to subconvex LP-sets. Here,
as usual, we write A(n) for the von Mangoldt function.

Corollary 7.3. For each k € N, there is a positive number o = o(k) with the following
property. Suppose that <7 is a strongly subconvexr LP-set for some real number p with
1 <p<2. Let A be a large positive real number, and suppose that N is sufficiently large
in terms of A. Suppose also that 6 is a real number having the property that, whenever
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a € Z and q € N satisfy (a,q) = 1 and |gf — a| < log?(2N)N~Y, then q > log™(2N).
Then one has
Z A(n)e(n*8) < Nlog " (2N),

ne%
where B = (% - 1)UA— 1+ 5.

Proof. The hypotheses concerning 6 ensure that the methods of Vinogradov and Hua (see
[12, 24]) show that there is a positive number o = o(k) having the property that

> A(n)e(n*0+ Bn) < Nlog™*(2N),
1<n<N

uniformly in 8. Thus, with f(n) = A(n)e(n*0), one has || H /||« < log=7*(2N) and

1 1/2
1 llizvy < (N Z A(n)Q) < (log(2N))Y/2

1<n<N

Hence, we deduce from Theorem 7.1 that

> An)e(n*0) < N (log_”A(2N)) ' (log(2N))'~
new/(N)
The desired conclusion now follows. O

By way of illustrating the potential for applications, we note that on taking A sufficiently
large, the conclusion of Corollary 7.3 would offer minor arc estimates of use in investigating
k-th powers of prime numbers 7 in which 7 + 2 belongs to a subconvex LP-set such as
a Beatty sequence, or the set of squarefree numbers, or indeed the squarefree numbers
belonging to a Beatty sequence.

Estimates for exponential sums with cusp form coefficients exhibit non-trivial cancel-
lation when restricted to subconvex LP-sets.

Corollary 7.4. Suppose that

o

Z a(n)e(nz)

n=1
s a cusp form of weight k > 0 for a discrete group I' for which oo is a cusp of width 1.
Then, whenever o7 is a strongly subconvex LP-set for some real number p with 1 < p < 2,

one has
> aln ) < N*+175 (log(2N)) 7~

neg/ (N)

Proof. We apply Theorem 7.1 with f(n) = a(n). Here, as a consequence of Iwaniec [14,
Theorem 5.3|, one has

[1Hlloo = Sup | v Z a(n)e(fn)

1<n<N

whilst [14, Theorem 5.1] prov1des the bound

1 1/2 )
Il = (5 3 lal) - < w0

1<n<N

< N71HF210g(2N),




32 TREVOR D. WOOLEY

Consequently, we see from Theorem 7.1 that

771 . 2,%
S am) < N (Nz -1 log(2N)> (NL)
new (N)
< N5 (log(ZN))
This completes the proof of the corollary. 0

By way of comparison, the bound [14, Theorem 5.3] shows that
> a(n) < N*?1og(2N), (7.1)

1<n<N
whilst by applying the trivial estimate |a(n)| < n*/2, one finds that

> alm)|< Y la(n)] < N3

ned/ (N) 1<n<N

Thus, Corollary 7.4 saves roughly a factor N/ over the trivial estimate, and as p ap-
proaches 1 the conclusion of Corollary 7.4 approaches the strength of the bound (7.1)
applicable to unrestricted sums.

This circle of ideas also addresses character sums restricted to subconvex LP-sets. We
provide an illustration of the possible conclusions in this direction.

Corollary 7.5. Let x be a non-principal character modulo 7, with m a prime number.
Suppose that <7 is a strongly subconver LP-set for some real number p with 1 < p < 2.
Then, whenever r is a positive integer exceeding 1, one has

1 | ) %_1
> x(n) <N <ﬂm(1ogﬂ>§N7>

ned/ (N)

Proof. We apply Theorem 7.1 with f(n) = x(n). Here, as a consequence of Chamizo [9,
Theorem 1.1], one has

1y = sup\ S

1<n<N

< N rqw- 1 (log )2

whilst || f|l;z(v) < 1. Consequently, we find that the desired conclusion is immediate from
Theorem 7.1. U

Notice that the conclusion of Corollary 7.5 confirms that non-trivial cancellation occurs
in the character sum
> x(n)

new/ (N)

whenever N > 731 (log 71')%. Thus, whenever ¢ > 0, we may take r sufficiently large
in terms of € so as to ensure that non-trivial cancellation occurs provided only that
N > 7T.1/4Jrs.

We should note that, although we have restricted ourselves in this section to problems
involving strongly subconvex LP-sets, this is not an essential hypothesis. Were we to
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modify our hypotheses throughout to consider weakly subconvex LP-sets, then a self-
evident adaptation of our methods would yield the same upper bounds in every conclusion,
save that an additional factor of N® should be inserted throughout. We note further that
the examples described above provide just some of many possible applications of the ideas
within the orbit of this memoir. Moreover, more sophisticated strategies are suggested
when information concerning 4-th and higher moments of H¢(«o; N) are available, as is
often the case. The basic message to be borne away from this discussion is that subconvex
LP-sets lend themselves well to problems involving averages of arithmetic functions.

8. SUBCONVEX LP-SETS MODULO ¢

In certain applications of subconvex LP-sets in number theory, it may be convenient
to work with discrete rather than continuous moments, As a model example of such a
scenario, consider a natural number ¢ and the discrete moment

q

SN ig) =3

a=1

> e(na/q)’p. (8.1)

nes/ (N)

Our principal result in this section is the analogue of the mean value estimate (1.3) for
strongly subconvex LP-sets &7/ provided by Theorem 1.6.

The proof of Theorem 1.6. We adjust the notation (3.2) by writing

fu(@) = > e(na). (8.2)

neo/ (N)

Thus, when 1 < p < 2, one has

()P = fa ()P (=), (8.3)

Equipped with this relation, we seek to convert the discrete mean value S,(N; <7; ¢) into a
continuous analogue by applying the Sobolev-Gallagher inequality (see [20, Lemma 1.1]).
Thus, whenever a € Z and g € N, we have

1/(2q) 1 1/(2(1)
|fN(a/Q)|p<Q/ )\fN(5+a/Q)’pdﬁ+§/1/(2)
~1/(2q

—1/(2¢

When fy (5 +a/q) # 0, it follows from (8.3) that

A b FeBtafa) (=B /g
G+ )l = Blp(p + afp (500 - IS,

d
@|fzv(ﬁ+a/Q)\p

dB.

whence
516 + a0 | < pliv(5 + 0ol (5 +afo)l

Since p > 1, we therefore deduce from (8.1) that

S,(N: 5q) < / )l da+ / (@) fiy(@)] da (8.4)
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We must now bound mean values involving fj(«) in terms of mean values involving
fn(«). For this purpose, we draw inspiration from the argument following [26, equation
(3.2)]. We observe that

fn(a) =2mi Z ne(na).
neo (N)
Recall the definition (8.1). Then, on writing 7 (N) = {a1, as, ..., apn}, with

ar < ag <...<damy,

we see that the sum on the right hand side here may be rewritten via partial summation
in the form

Z ame(@ma) = alfal(a) + Z am (fam (04) - fam—1(04))

= aMfaM (CM) — Z (Clm+1 - a'm)fam (O_/)

m=1

We therefore see that for all real numbers a, one has

M
> ane(ona)| < onlfugf@ll + (| 1e(@l) Xl an

I<w<M-1
1<m<M—-1

< (am + (ap — ar)) max |f,, (@)

1<w<M
< 2N max |f, ()]

1<n<N

An application of the Carleson-Hunt theorem (see [13, Theorem 1)) in the form given by
Bombieri [5, page 12] shows that

1 . )
/0 (12855\{"]0"( )‘) da <<p/0 | fn(a)|P da.

We therefore deduce that whenever 7 is a strongly subconvex LP-set, then one has

1 1 D
/0 Ifj’v<oz)lf’oloz<<N’”/0 (fgggvlfn( )|) do

1
<« N? / (@) da

< N*71 (8.5)

We now substitute the estimate (8.5) into (8.4) following an application of Hélder’s
inequality. Thus, on applying once again the hypothesis that &7 be a strongly subconvex
LP-set, we find that

1-1/p /p
S,V ;) < NP1 (/ (o |pda) (/ f(a rpda)

<<Np 1+ (Np 1)1 1/p(N2p 1)1/p
q

< NP1 4 N?/q.
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This delivers the conclusion of the theorem. O

In order to demonstrate the utility of this mean value estimate, we note an application
to character sums that in many circumstances provides an alternative to the estimate
given in Corollary 7.5.

Corollary 8.1. Let q be a large natural number, and suppose that x is a primitive char-
acter modulo q. Let p be a real number with 1 < p < 2, and suppose that <7 is a strongly
subconvex LP-set. Then, one has

S x(n) < ¢ PNV (14 N/g) P
neg/ (N)

Proof. We recall the notation (8.2), and in addition define
q
= x(m)e(ma/q).
m=1
Then, by orthogonality, one sees that

q

S () = 32T<a>fN<—a/q>.

nes/ (N) a=1

An application of Holder’s inequality reveals, therefore, that

> ) <(3az:\fN<a/q>|p>1/p<§§|T<a>|p/<p”)H/p. (5.6)

nes/ (N)
Since we assume x to be primitive, it follows from [21, Theorem 9.7] that |T'(a)| < /q.
Thus, by orthogonality, we see that whenever 1 < p < 2, one has

q
=3 IT@ < (va w—Z|T <7
a=1

We therefore deduce from Theorem 1.6 and (8.6) that

> x(n)

ne/ (N)

< (NP7H 1+ NJg) P (g er2) 7

< q1/2N1_1/p(1 + N/q)l/p.
This yields the conclusion of the corollary. 0

Notice that as p — 1, the estimate provided by Corollary 8.1 has strength approaching
the classical estimate of Pdlya-Vinogradov (see [21, Theorem 9.18], for example). Mean-
while, our estimate remains non-trivial for all values of p smaller than 2.
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