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1. Introduction. A theorem of Ax and Kochen [3] provides conditional
confirmation of Artin’s Conjecture. Let n, t and d1, . . . , dt be natural
numbers. Then Ax and Kochen show that there is a positive integer p0

with the following property. Let K be a p-adic field with [K : Qp] =
n, and suppose that f1, . . . , ft ∈ K[x] are homogeneous with respective
degrees d1, . . . , dt, and possess s > d2

1 + · · ·+ d2
t variables. Then whenever

p > p0, these polynomials have a common non-trivial K-rational zero.
Familiar examples, involving suitable linear combinations of norm forms,
demonstrate that no such conclusion is available when the hypothesis on s
is relaxed. Investigations have consequently focused on bounding the least
permissible value of p0, an integer that we denote by M(d;n). Artin’s
conjecture, formulated around 1936 (see the preface to [2]), implies that
for all choices of d and n, one may take M(d;n) = 1. An example of
Terjanian [30] shows that M(4; 1) ≥ 2, thereby disproving this conjecture,
and more recently Chakri and Hanine [11] have established that M(d; 1) ≥
(1+o(1))

√
d for infinitely many even exponents d (see also [1], [9] and [26]

for earlier work). Reasonable upper bounds for M(d;n) are known only
in a handful of cases. The object of this paper is to obtain improvements
in two cases, namely for forms of degree 7 and 11, sufficient to place them
in the latter select category. In §3 of this paper we establish the following
theorem.

Theorem 1. Let K be a field extension of Qp with residue class field
of cardinality q. Put q0(7) = 883 and q0(11) = 8053, and suppose that
f ∈ K[x] is homogeneous of degree d = 7 or 11 in more than d2 variables.
Then f has a non-trivial K-rational zero provided only that q > q0(d).

It follows from Theorem 1 that for every natural number n, one has
M(7;n) ≤ 883 and M(11;n) ≤ 8053. For comparison, we note that Knapp
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[20] has obtained bounds slightly sharper than M(7;n) < 1.04× 1017 and
M(11;n) < 3.56× 1019. While the conclusions of Ax and Kochen do not
yield explicit estimates for M(d;n), by developing an argument stemming
from work of Cohen [12], an explicit bound for M(d; 1) has been obtained
by S. Brown [8]. Writing a ↑ b for ab, and a ↑ b ↑ c for a ↑ (b ↑ c), the
estimate of Brown takes the shape M(d; 1) ≤ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ d ↑ 11 ↑
(4d). Bounds of more terrestrial magnitude are scarce. Hasse [18] had
shown already in 1924 that M(2;n) = 1, and a quarter of a century later,
Lewis [25] proved that M(3;n) = 1 (see also [13] when the underlying
residue class field has characteristic different from 3). Shortly afterwards,
Dem′yanov [14] established that M(2, 2;n) = 1 (see also [7]), and then
Schuur [29], building on earlier work of Birch and Lewis [6], proved that
M(2, 2, 2;n) ≤ 47, and described how to obtain M(2, 2, 2;n) ≤ 9. The
only other distinct case for which a reasonable bound has been obtained
is that of a single quintic form. Leep and Yeomans [24] obtained the
estimate M(5;n) ≤ 43, and have noted also that an improvement due to
Serre yields M(5;n) ≤ 41.

Shortly before the advent of the Ax-Kochen Theorem, Laxton and
Lewis [22] (building on work of Birch and Lewis [4,5]) presented a method
that, in principle, yields an explicitly computable bound for M(d;n) when
d = 5, 7 and 11. These ideas motivate both the work of Knapp [20] on
forms of degree 7 and 11, and the earlier work of Leep and Yeomans [24].
In order to sketch this approach, consider a form F of degree d > 1
in K[x] having more than d2 variables. Laxton and Lewis develop a
p-normalisation procedure that utilises an invariant associated with the
form. By exploiting the compactness of K, they show that a non-trivial
K-rational zero of F exists whenever an associated form F , with coeffi-
cients in the residue class field k of K, and having more than d variables,
possesses a non-singular k-rational zero. Consider the factorization of F
over the algebraic closure of k. One may ensure that F possesses no
linear factor, and so whenever d fails to be represented as the sum of
two non-negative composite numbers (whence d = 2, 3, 5, 7 or 11), then
amongst the factors of F there is an absolutely irreducible one whose de-
gree is unique. This factor G is essentially fixed under conjugation, and
hence is a constant multiple of a k-rational polynomial. One now seeks a
non-singular k-rational zero of G that is not simultaneously a zero of the
quotient polynomial H defined via the relation F = GH. Such a zero may
be lifted via Hensel’s Lemma to the non-trivial K-rational zero of F that
we seek.

Laxton and Lewis [22] obtain the non-singular zero of the above polyno-
mial G by means of the Lang-Weil theorem (see [21]). Available versions of
the latter theorem remained inexplicit until the work of Schmidt [28], who
combined Bertini’s first theorem with his version of Stepanov’s method.
It is this result that Knapp employs in his work on forms of degree 7
and 11. The versions of Bertini’s theorem available to Schmidt were rela-
tively crude, and only recently have substantially sharper versions become
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available (see [19]). Cafure and Matera [10] employed these advances to
improve substantially the available estimates of Lang-Weil type, and such
already permits improvements to be made in the conclusions of Knapp.
We obtain further advantage by exploiting a flexible variant of Bertini’s
theorem (see Corollary 3.4 of Cafure and Matera [10]) that, rather than
ensuring absolute irreducibility, instead provides control of the degrees of
the absolutely irreducible factors of the polynomial resulting from a slicing
process.

Leep and Yeomans [24] bound M(5;n) following the strategy of Laxton
and Lewis [22], at least in the initial phases of their argument. Rather than
wrestle with explicit versions of the Lang-Weil theorem, however, Leep
and Yeomans exploit problematic singular solutions so as to isolate useful
structures that simultaneously ease the construction of a concrete slicing
process, and reduce the genus of the resulting curve. Such is possible owing
to the relatively low degree of a quintic form, and the rigidity this imposes
on the anatomy of the associated polynomial. Such features would appear
to be absent from septic and unidecic forms. A direct application of the
arguments of this paper, meanwhile, would yield the boundM(5;n) ≤ 137.
We note also that in common with the work of Laxton and Lewis, our
methods are inapplicable to any exponents save 2, 3, 5, 7 and 11. In
all other circumstances, the reduced k-rational form arising in the above
sketch could factor in the shape F 2

1F
3
2 , for some k-rational polynomials

F1 and F2, an eventuality that precludes the existence of a non-singular
k-rational zero to which to apply Hensel’s Lemma.

It transpires that the methods employed in our proof of Theorem 1
may be applied to address the solubility of congruences modulo p2, for
prime numbers p, thereby improving a theorem of Chakri and Hanine (see
Theorem 3.1 of [11]) that makes explicit an earlier conclusion of Ax and
Kochen [3]. In §4 we prove the following theorem.

Theorem 2. Let p be a prime number, and suppose that f ∈ Zp[x1, . . . , xs]
is homogeneous of degree d. Then the congruence f(x1, . . . , xs) ≡ 0
(mod p2) possesses a primitive zero provided only that s > 2d and p >
1
2 (3d4 − 4d3 + 5d2).

The above-cited work of Chakri and Hanine provides a conclusion of the
same shape as that of Theorem 2, but with the hypothesis on p replaced
by the more stringent condition that p > 250d5 and d(d−1)2 +(2pd5)1/2 +
2dφ ≤ p, with φ = 2dk2k

, wherein k = d(d + 1)/2. For large values of d,
the latter requires that p be rather larger than exp(exp(d2/3)), whereas
Theorem 2 above is applicable whenever p > 3d4/2.

We summarise in §2 the preliminary simplifications inherent in the ar-
gument of Laxton and Lewis, and also such details of the slicing argument
of Cafure and Matera as are required in our subsequent deliberations.
The proof of Theorem 1 is then dispatched in §3, with that of Theorem
2 following in §4 by a similar argument, on incorporating a variant of the
argument of Chakri and Hanine.
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2. Preliminary manoeuvres. We begin by introducing some notation.
Let K be a field, and consider a form (that is, a homogeneous polynomial)
F ∈ K[x]. Write var(F ) for the number of variables explicit in F . Two
forms F and G in K[x1, . . . , xn] are said to be equivalent when there exist
a ∈ K× and T ∈ GLn(K) for which F (x) = aG(Tx). When F and G are
equivalent forms, there is a bijection between their zeros, and also their
non-singular zeros, provided by the latter implicit change of variables. We
define ord(F ) to be the minimum value assumed by var(G) as we consider
all forms G equivalent to F . A form F is said to be non-degenerate if
ord(F ) = var(F ), and otherwise is said to be degenerate. Plainly, any
degenerate form in K[x] possesses a non-trivial K-rational zero.

Our initial manoeuvres follow the path laid by Laxton and Lewis [22].
Suppose that K is a field extension of Qp, let o be its ring of integers, and
write p = (π) for the prime ideal of o. Let q denote the cardinality of the
residue class field k ' o/p, and write k for the algebraic closure of k. We
define the valuation | · |p for α ∈ K× by putting |α|p = p−h, where h is the
unique rational integer for which π−hα is a unit of K. When F ∈ o[x], the
image of F under the natural map from o[x] to k[x] will be denoted by F ∗.
Next, given a form F in K[x1, . . . , xn], define I(F ) to be the resultant of
the partial derivatives ∂F/∂xi (1 ≤ i ≤ n). The element I(F ) of K is an
invariant amongst the forms equivalent to F under the action of SLn(K).
We say that a form F ∈ o[x] is reduced when I(F ) 6= 0, and if, in addition,
whenever G ∈ o[x] is equivalent to F , one has |I(F )|p ≥ |I(G)|p. We next
recall a consequence of Hensel’s Lemma. In this context, we say that a
zero y of a form F is non-singular when some partial derivative of F is
non-zero at y.

Lemma 3. Suppose that F ∈ o[x], and that F ∗ has a non-singular k-
rational zero. Then F has a non-singular zero with coefficients in o.

Proof. This is a standard application of Hensel’s lemma (see, for example,
Greenberg [16]).

We restrict attention in §3 to the set Fd of forms F ∈ o[x] of degree
d = 7 or 11, satisfying the property that ord(F ∗) > d and F ∗ has no
k-rational linear factor. The following lemma summarises the conclusions
of Laxton and Lewis relevant to our discussion.

Lemma 4. Suppose that every form F lying in Fd possesses a non-
singular K-rational zero. Then every form G ∈ K[x] of degree d, with
var(G) > d2, possesses a non-trivial K-rational zero.

Proof. Consider a form G ∈ K[x] of degree d with var(G) > d2. We have
already noted that the existence of a non-trivial K-rational zero of G is
self-evident whenever G is degenerate. We may therefore suppose that G
is non-degenerate, and then it follows from the Corollary to Lemma 6 of
[22] that in order to establish that G has a non-trivial K-rational zero, it
suffices to establish such for non-degenerate formsH with var(H) > d2 and
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I(H) 6= 0. Any such form H is equivalent to a reduced form F ∈ o[x] with
ord(F ) > d2. It follows from Lemma 7 of [22] that ord(F ∗) ≥ ord(F )/d >
d (see also Lemma 1 of [27]). In addition, Lemma 9 of [22] shows that
F ∗ has no k-rational linear factor. Thus we find that F ∈ Fd, so by
hypothesis we may assume that F possesses a non-singular K-rational
zero. This completes the proof of the lemma.

We approach Theorem 1 via a modified Bertini Theorem. We record
next both the latter result and such additional estimates as are required in
order to dispose of residual cases. The first lemma concerns the properties
of certain polynomials following a slicing process. Let L be a field, and
consider a polynomial f ∈ L[x0, x1, . . . , xn]. When ξ = (ξ0, ξ1, . . . , ξ3n) ∈
L3n+1, we write f |ξ = f |ξ(X,Y ) for the sliced polynomial

f(ξ0 +X, ξ1 + ξn+1X + ξ2n+1Y, . . . , ξn + ξ2nX + ξ3nY ).

Lemma 5. Let f ∈ k[x0, . . . , xn] be an absolutely irreducible polynomial
of degree δ ≥ 2.

(i) The number of slices ξ ∈ k3n+1, for which the polynomial f |ξ is not
absolutely irreducible, is at most 1

2 (3δ4 − 4δ3 + 5δ2)q3n.
(ii) Let D be an integer satisfying 1 ≤ D ≤ δ−1. Then the number of slices

ξ ∈ k3n+1, for which the polynomial f |ξ possesses a k-rational factor
of positive degree at most D, does not exceed

1
8

(
δD(D + 1)(D + 2)(8δ −D − 3) + 16δ2

)
q3n.

Proof. The conclusions of the lemma are immediate from Corollaries 3.2
and 3.4 of [10].

Next we recall a version of Weil’s estimate valid for singular curves.
Here we make use of the familiar notation of writing [β] for the largest
integer not exceeding β.

Lemma 6. Let F,G ∈ k[x, y] be non-zero polynomials of respective de-
grees d1 ≥ 1 and d2 ≥ 0. Suppose that F is absolutely irreducible, and
that the absolutely irreducible factors of G each have degree distinct from
d1. Then the number, N , of non-singular k-rational zeros of FG satisfies

N ≥ q + 1− 1
2 (d1 − 1)(d1 − 2)[2

√
q]− d1d2.

Proof. Let F and G satisfy the hypotheses of the statement of the lemma.
We consider first the situation in which G is a non-zero constant polyno-
mial. Write S for the number of k-rational singular zeros of F . Then if
the curve defined by the equation F (x, y) = 0 has genus g, it follows from
Corollary 1 to Theorem 1 of Leep and Yeomans [23] that

|N + S − (q + 1)| ≤ g[2
√
q] + 1

2 (d1 − 1)(d1 − 2)− g.
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On applying the latter estimate together with the bound g ≤ 1
2 (d1 −

1)(d1−2)−S supplied by the genus formula (see p.201 of [15]), we obtain
the lower bound

N ≥ q + 1− 1
2 (d1 − 1)(d1 − 2)[2

√
q]. (1)

Suppose next that G is not a constant polynomial, so that G takes the
shape G1G2 . . . Gt, with each factor Gi absolutely irreducible of positive
degree ei 6= d1. Since F is absolutely irreducible, and the degree of each
factor Gi is distinct from that of F , the polynomials F and G possess no
common factor in k[x, y]. The equation F (x, y) = 0 defines an irreducible
curve, moreover, and so it follows from Bézout’s Theorem (see Corollary
7.8 of Chapter I of [17]) that the number of common k-rational zeros of F
and G is at most d1d2. The lower bound on the number of non-singular
k-rational zeros of FG asserted in the statement of the lemma now follows
on applying (1) to estimate the number of non-singular k-rational zeros of
F , and accounting for those that are simultaneously zeros of G.

3. The proof of Theorem 1. We now apply the slicing procedure
implicit in §2 within a modification of the argument developed by Laxton
and Lewis, treating the cases with degree 7, and with degree 11, separately.
It is convenient in our discussion to adopt the following convention. We
say that a polynomial G ∈ k[x] has type d = (d1, d2, . . . , dt) when (i) one
has d1 ≥ d2 ≥ . . . ≥ dt ≥ 1, and (ii) the polynomial G factors over k[x]
in the shape G = G1G2 . . . Gt, where for 1 ≤ i ≤ t, each factor Gi is
absolutely irreducible of degree di. Plainly, the type of a polynomial is
uniquely defined. In addition we refer to a polynomial f ∈ k[X,Y ] as being
amenable with profile (g, h) when f factors in the shape f = gh, in which
(i) the polynomials g and h are k-rational, (ii) g is absolutely irreducible
of degree at least 2, and (iii) the absolutely irreducible factors of h over
k[X,Y ] each have degree distinct from that of g.

The proof of Theorem 1 for septic forms. Suppose that q > 883, and
consider a form F ∈ o[x0, x1, . . . , xn] lying in the set F7, so that F ∗

satisfies ord(F ∗) > 7 and possesses no k-rational linear factor. Suppose
that F ∗ has type d. A modicum of computation reveals that d must be
one of (7), (5, 2), (4, 3) or (3, 2, 2). We consider these cases in turn.
(a) d = (5, 2), (4, 3) or (3, 2, 2). In these situations the polynomial F ∗

factors in the shape F ∗ = G1G2 . . . Gt, where Gi is absolutely irreducible
of degree di (1 ≤ i ≤ t). Note that in each case, the polynomial G1

is the only absolutely irreducible factor of F ∗ of its degree, and so by
conjugation, there is no loss in supposing that G1 is k-rational. Since
q > 750, we may apply Lemma 5(i) to G1 with δ = d1 to deduce that
a slice ξ ∈ k3n+1 exists for which G1|ξ is absolutely irreducible. Fix any
one such slice, and fix any choice of Ξ ∈ o3n+1 with Ξ ≡ ξ (mod p).
Write f = F |∗Ξ and gi = Gi|ξ (1 ≤ i ≤ t). Then it follows that f = gh,
where g = g1 is absolutely irreducible of degree d1, and h = g2 . . . gt is
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a product of polynomials whose absolutely irreducible factors each have
degree smaller than d1. We may conclude, therefore, that f is amenable
with profile (g, h).

Suppose now that f ∈ k[X,Y ] is any amenable polynomial of degree 7,
whether or not it is associated with a polynomial F ∗ of type d = (5, 2),
(4, 3) or (3, 2, 2). Writing N for the number of non-singular k-rational
zeros of f, it follows from Lemma 6 that N ≥ q + 1 − 15[2

√
q]. Since q

is a prime power, our hypothesis on its value ensures that q > 884, and
so f possesses a non-singular k-rational zero. We therefore deduce from
Lemma 3 that F |Ξ, whence also F , possesses a non-singular K-rational
zero.
(b) d = (7). Since q > 371, we may apply Lemma 5(ii) to F ∗, with δ = 7
and D = 1, to deduce that a slice ξ ∈ k3n+1 exists with the property that
F ∗|ξ has no k-rational linear factor. Fix any such slice, and a choice of
Ξ ∈ o3n+1 with Ξ ≡ ξ (mod p). It follows that the polynomial f = F |∗Ξ
does not possess a k-rational linear factor, and so has type (7), (5, 2), (4, 3)
or (3, 2, 2). In each case, the absolutely irreducible factor of f over k[X,Y ]
of highest degree is the only one of that degree, hence may be supposed to
be k-rational. One consequently finds that f is amenable with some profile
(g, h), and so it follows as in the final paragraph of part (a) above that F
possesses a non-singular K-rational zero.

We have demonstrated that whenever q > 883, then every polynomial
F in F7 necessarily possesses a non-singular K-rational zero. Under the
same hypothesis on q, we infer from Lemma 4 that every septic form
G ∈ K[x], with var(G) > 49, possesses a non-trivial K-rational zero. This
completes the proof of Theorem 1 for septic forms.

The proof of Theorem 1 for unidecic forms. Suppose now that q > 8053,
and consider a form F ∈ o[x0, x1, . . . , xn] lying in the set F11, so that F ∗

satisfies ord(F ∗) > 11 and possesses no k-rational linear factor. A smidgen
of computation in this instance reveals that the type d of F ∗ is one of
(11), (9, 2), (4, 4, 3), (3, 3, 3, 2), or else lies in the set D consisting of the
elements (8, 3), (7, 4), (7, 2, 2), (6, 5), (6, 3, 2), (5, 4, 2), (5, 3, 3), (5, 2, 2, 2),
(4, 3, 2, 2), (3, 2, 2, 2, 2). We examine these cases in turn.
(c) d ∈ D. Since q > 5280, in these cases the argument of part (a) may be
applied, mutatis mutandis, to show that a slice Ξ ∈ o3n+1 exists for which
the polynomial f = F |∗Ξ is amenable with some profile (g, h). Suppose
that f ∈ k[X,Y ] is any amenable polynomial of degree 11, whether or
not it derives from a polynomial F ∗ of type d ∈ D. Writing N for the
number of non-singular k-rational zeros of f, it follows from Lemma 6 that
N ≥ q+1−45[2

√
q]. Since q is a prime power, our hypothesis on its value

ensures that q > 8054, and so f possesses a non-singular k-rational zero.
We thus conclude from Lemma 3 that F |Ξ, whence also F , possesses a
non-singular K-rational zero.
(d) d = (9, 2). In this situation F ∗ factors in the shape F ∗ = G1G2,
where G1 has degree 9 and G2 has degree 2. The polynomial G1 is the
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only absolutely irreducible factor of its degree, and so by conjugation there
is no loss in supposing that it is k-rational. Since q > 4617, we may apply
Lemma 5(ii) to G1, with δ = 9 and D = 3, to show that a slice ξ ∈ k3n+1

exists for which G1|ξ has no absolutely irreducible factor over k[X,Y ] of
degree 3 or less. Fix any one such slice, and observe that G1|ξ must have
type (9) or (5, 4). A choice of Ξ ∈ o3n+1 therefore exists, with Ξ ≡ ξ
(mod p), for which the polynomial f = F |∗Ξ is of type (9, 2), (9, 1, 1),
(5, 4, 2) or (5, 4, 1, 1). In each case, the absolutely irreducible factor of f

over k[X,Y ] of highest degree is the only one of that degree, hence may
be supposed to be k-rational. Thus we find that f is amenable with some
profile (g, h), and hence as in case (c) above we conclude that F possesses
a non-singular K-rational zero.
(e) d = (11). Since q > 7007, we may apply Lemma 5(ii) to F ∗, with
δ = 11 and D = 3, to deduce that a slice ξ ∈ k3n+1 exists for which F ∗|ξ
has no absolutely irreducible factor over k[X,Y ] of degree 3 or less. We
may therefore suppose that there is a choice of Ξ ∈ o3n+1 for which the
polynomial f = F |∗Ξ is of type (11), (7, 4) or (6, 5). In each of these cases
we deduce as in case (d) that f is amenable with some profile (g, h). Thus,
as in case (c), we conclude that F possesses a non-singular K-rational
zero.
(f) d = (4, 4, 3) or (3, 3, 3, 2). In these cases the polynomial F ∗ factors
in the shape F ∗ = G1G2 . . . Gt, where Gi has degree di (1 ≤ i ≤ t), and
Gt is the only absolutely irreducible factor of its degree. By conjugation,
therefore, there is no loss in supposing that Gt is k-rational. Since Gt has
lowest degree amongst the absolutely irreducible factors of F ∗, a slicing
argument of the type previously employed might decompose one or more
of the remaining factors so that no isolated factor remains. Such would
obstruct the existence of a non-singular k-rational point. We instead pro-
ceed without slicing. Let the number of k-rational zeros of the polynomial
Gt be M0. Then according to Theorem 5.2 of [10], one has

|M0−qn−1| ≤ (dt−1)(dt−2)qn−3/2+5d13/3
t qn−2 ≤ 2qn−3/2+585qn−2. (2)

Since we are analysing quadratic and cubic polynomials, rather sharper
estimates are achievable with greater effort, of course, but it transpires
that such is unnecessary.

Write f1 = Gt and f2 = G1G2 . . . Gt−1. Since each factor Gi is abso-
lutely irreducible, it follows that f1 and f2 are non-zero polynomials of
degree at most 9 without a common factor in k[x]. Lemma 2.2 of [10]
therefore ensures that the number of common k-rational zeros of f1 and
f2 is at most 81qn−2. Next we bound the number of singular zeros of Gt.
The latter polynomial is absolutely irreducible of degree dt ≤ 3, and at
least one of the partial derivatives of Gt, say ∂Gt/∂xi, is not identically
zero and has degree dt − 1 ≤ 2. Thus, again by Lemma 2.2 of [10], we see
that the number of common k-rational zeros of Gt and ∂Gt/∂xi is at most
9qn−2, whence Gt has at most 9qn−2 singular k-rational zeros. Write M1
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for the number of non-singular k-rational zeros of F ∗. Then in view of the
above discussion, one has M1 ≥M0−90qn−2, and thus it follows from (2)
that M1 ≥ qn−1 − 2qn−3/2 − 675qn−2. Since q > 729, we conclude that
F ∗ possesses a non-singular k-rational zero, and so Lemma 3 delivers a
non-singular K-rational zero of F .

We have demonstrated that whenever q > 8053, then every polynomial
F in F11 necessarily possesses a non-singular K-rational zero. Under the
same hypothesis on q, we infer from Lemma 4 that every unidecic form
G ∈ K[x], with var(G) > 121, possesses a non-trivial K-rational zero.
This completes the proof of Theorem 1 for unidecic forms.

4. The proof of Theorem 2. We now turn our attention to the refine-
ment of Theorem 3.1 of Chakri and Hanine [11] embodied in Theorem 2
above. Let f ∈ Zp[x0, . . . , xn] be homogeneous of degree d, and suppose
that n ≥ 2d and p > 1

2 (3d4 − 4d3 + 5d2). An inspection of the proof
of [11, Theorem 3.1] reveals that the conclusion of Theorem 2 follows at
once whenever f∗ fails to be absolutely irreducible, even in the absence
of the hypothesis on p. Henceforth, therefore, we may suppose that f∗ is
absolutely irreducible. Given our hypothesis on p, we may apply Lemma
5(i) to f∗ with δ = d to deduce that a slice ξ ∈ F3n+1

p exists for which
f∗|ξ is absolutely irreducible. It follows that there is a slice Ξ ∈ Z3n+1

p

for which f |∗Ξ is absolutely irreducible. Next let N denote the number of
non-singular zeros of f |∗Ξ. Then as a consequence of Lemma 6, one has
N ≥ p+1− (d−1)(d−2)

√
p. Since p > (d−1)2(d−2)2, we conclude that

f |∗Ξ possesses a non-singular Fp-rational zero. An application of Lemma 3
now shows that f |Ξ, and hence also f , possesses a non-trivial p-adic zero,
whence, in particular, the congruence f(x0, . . . , xn) ≡ 0 (mod p2) has a
primitive zero. This completes the proof of Theorem 2.

The condition p > 1
2 (3d4 − 4d3 + 5d2) in the statement of Theorem 2

can be improved, for certain smaller values of d, by employing a strategy
similar to that underlying the proof of Theorem 1 in §3. The cases d = 2,
3, 5, 7 or 11 having already been dispatched by Theorem 1, we illustrate
ideas with the case d = 13. As in our proof of Theorem 2, we consider
a polynomial f ∈ Zp[x0, . . . , xn] homogeneous of degree d = 13, and we
suppose that n ≥ 2d and p > 17357. We may again suppose that f∗ is
absolutely irreducible, but now we apply Lemma 5(ii) with δ = d and
D = 3. Since p > 9893, there is a slice ξ ∈ Z3n+1

p for which f |∗ξ has
no absolutely irreducible factor over Fp[X,Y ] of degree 3 or less. We may
therefore suppose that f |∗ξ is of type d, where d is one of (13), (9, 4), (8, 5),
(7, 6) or (5, 4, 4). In each case, the polynomial f |∗ξ factorises over Fp[X,Y ]
in such a manner that that there is an absolutely irreducible factor that
is the only factor of its degree. There is no loss, therefore, in supposing
that this factor is Fp-rational. The argument deployed to prove Theorem
1 in §3 above may consequently be applied to establish that whenever
p+1 > 1

2 (d−1)(d−2)[2
√
p], then f |∗ξ possesses a non-singular Fp-rational
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zero. The existence of a non-singular zero of f lying in Zn+1
p now follows

from Lemma 3. We conclude that the condition p > 1
2 (3d4 − 4d3 + 5d2)

may be replaced when d = 13 by the sharper condition p > 17357. Similar
observations hold for further smaller values of d.
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