
THE CUBIC CASE OF THE MAIN CONJECTURE IN
VINOGRADOV’S MEAN VALUE THEOREM

TREVOR D. WOOLEY

Abstract. We apply a variant of the multigrade efficient congruencing
method to estimate Vinogradov’s integral of degree 3 for moments of order
2s, establishing strongly diagonal behaviour for 1 6 s 6 6. Consequently,
the main conjecture is now known to hold for the first time in a case of
degree exceeding 2.

1. Introduction

When k and s are natural numbers, and X is a large real number, denote
by Js,k(X) the number of integral solutions of the system

xj1 + . . .+ xjs = yj1 + . . .+ yjs (1 6 j 6 k), (1.1)

with 1 6 xi, yi 6 X (1 6 i 6 s). The main conjecture in Vinogradov’s mean
value theorem asserts that for each ε > 0, one has

Js,k(X)� Xε(Xs +X2s− 1
2
k(k+1)), (1.2)

an estimate that, but for the presence of the factor Xε, would be best possible
(see [5, equation (7.4)]). Despite eighty years of intense investigation, such
an estimate has been established only in two cases, namely the (trivial) linear
case with k = 1, and the quadratic case with k = 2 in which the elementary
theory of quadratic forms can be brought to bear. Our goal in this paper is
the first proof of the main conjecture (1.2) in a case with k > 2.

Theorem 1.1. For each ε > 0, one has Js,3(X)� Xε(Xs +X2s−6).

The estimate for Js,3(X) recorded in this theorem, which establishes the
main conjecture in Vinogradov’s mean value theorem in the cubic case k =
3, goes substantially beyond the estimates available hitherto. By means of
Newton’s formulae concerning the roots of polynomials, it is apparent that
Js,3(X) = s!Xs + O(Xs−1) for 1 6 s 6 3, since the solutions of (1.1) are then
simply the diagonal ones with {x1, . . . , xs} = {y1, . . . , ys}. Moreover, from [6,
Theorem 1.5] one has

J4,3(X) = 4!X4 +O(X10/3(log 2X)35).

These estimates confirm (1.2) for 1 6 s 6 4 in a particularly strong form when
k = 3, though in the latter range the estimate (1.2) has been known since at

2010 Mathematics Subject Classification. 11L15, 11L07, 11P55.
Key words and phrases. Exponential sums, Hardy-Littlewood method.

1



2 TREVOR D. WOOLEY

least the time of Hua [3]. Meanwhile, it follows from [3, Theorem 7] that when
s > 8, then one has

Js,3(X)� X2s−6+ε, (1.3)

a conclusion very recently improved in [10, Corollary 1.2] to the extent that
(1.3) is now known to hold for s > 7. The situations with s = 5 and 6 have,
however, thus far defied resolution.

Our strategy for proving Theorem 1.1 is based on the multigrade efficient
congruencing method introduced in our recent work [10], and further developed
in [11]. Indeed, the second of these papers shows that, when k is sufficiently
large, one has the bound Js,k(X) � Xs+ε for 1 6 s 6 1

2
k(k + 1)− 1

3
k + o(k),

narrowly missing a proof of the main conjecture (1.2) throughout the critical
interval 1 6 s 6 1

2
k(k + 1). A careful inspection of the methods underlying

the proof of this result shows, however, that these methods can be adapted to
the case k = 3, and would narrowly miss a proof of the estimate

J6,3(X)� X6+ε. (1.4)

Suitable application of Hölder’s inequality in fact leads from such an estimate
to the proof of the main conjecture in full for k = 3. In this paper, we are
able to devise some modifications to the basic method that circumvent these
implicit difficulties, leading to a proof of the estimate (1.4), and hence the proof
of Theorem 1.1. We consequently economise in our exposition by reference to
[11] in several places, though we aim to be transparent where confusion might
otherwise occur.

Our account of the proof of Theorem 1.1 is split up into digestible stages
spanning §§2–7. Aficionados of recent developments concerning Vinogradov’s
mean value theorem will recognise the basic structural features of this plan
of attack, although novel elements must be incorporated as we proceed. We
finish in §8 by noting a couple of applications of our new estimate. Further
applications are available associated with the related exponential sums∑

16x6X

e(αx3 + βx) and
∑

16x6X

e(αx3 + βx2),

where, as usual, we write e(z) for e2πiz. However, these applications require
somewhat elaborate arguments that preclude their inclusion in this paper,
and so we defer accounts of such developments to forthcoming papers [12, 13]
elsewhere. The proof of the cubic case of the main conjecture seems worthy in
its own right as the highlight of this memoir.

Finally, we note that a modification of the argument that we engineer here
to establish Theorem 1.1 can in fact be adapted so as to establish a new bound
for Js,k(X) when k > 3. We take this opportunity to announce this new result.

Theorem 1.2. Suppose that k > 3 and s > k(k − 1). Then for each ε > 0,

one has Js,k(X)� X2s− 1
2
k(k+1)+ε.

This estimate improves on [10, Corollary 1.2], where we show that the esti-
mate presented in Theorem 1.2 holds for s > k2 − k + 1. Details of the proof
of this new estimate will appear in a forthcoming paper.
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2. The basic infrastructure

We prepare for the proof of Theorem 1.1 by introducing the notation and
apparatus required in the iterative method that we ultimately engineer. This
is based on our recent work [11], though we deviate somewhat in order to
circumvent a number of technical difficulties. We abbreviate Js,3(X) to Js(X),
and also J6,3(X) to J(X), without further comment, and we define λ ∈ R by
means of the relation

λ = lim sup
X→∞

log J(X)

logX
.

It follows that for each ε > 0, and any X ∈ R sufficiently large in terms of ε,
one has J(X)� Xλ+ε.

Next we recall some standard notational conventions. The letter ε denotes
a sufficiently small positive number. Our basic parameter is X, a large real
number depending at most on ε, unless otherwise indicated. Whenever ε
appears in a statement, we assert that the statement holds for each ε > 0.
As usual, we write bψc to denote the largest integer no larger than ψ, and
dψe to denote the least integer no smaller than ψ. We make sweeping use of
vector notation. Thus, with t implied from the ambient environment, we write
z ≡ w (mod p) to denote that zi ≡ wi (mod p) (1 6 i 6 t), or z ≡ ξ (mod p)
to denote that zi ≡ ξ (mod p) (1 6 i 6 t). Finally, we employ the convention
that whenever G : [0, 1)3 → C is integrable, then∮

G(α) dα =

∫
[0,1)3

G(α) dα.

Thus, on writing

f(α;X) =
∑

16x6X

e(α1x+ α2x
2 + α3x

3), (2.1)

it follows from orthogonality that

Js(X) =

∮
|f(α;X)|2s dα. (2.2)

We next introduce the parameters appearing in our iterative method. We
consider a positive number ∆ with 12∆ < 1 to be chosen in due course. Put

a = 2
3
(7 + 2∆) and b = 8

3
(1 + ∆), (2.3)

and then define

θ+ = 1
2
(a +

√
a2 − 4b) and θ− = 1

2
(a−

√
a2 − 4b). (2.4)

Notice here that

θ± = 1
3

(
7 + 2∆±

√
25 + 4∆ + 4∆2

)
,

so that our choice of ∆ ensures that

θ+ > 4 + 2
3
∆ and θ− <

2
3

+ 2
3
∆ < 1. (2.5)
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Our goal is to establish that λ 6 6 + ∆. Since we are at liberty to take ∆
to be an arbitrarily small positive number, it then follows that one has

J6(X)� X6+ε. (2.6)

By applying Hölder’s inequality to the right hand side of (2.2), we deduce from
this estimate that whenever 1 6 t 6 6, one has

Jt(X) 6
(∮
|f(α;X)|12 dα

)t/6
� X t+ε.

Moreover, by applying the trivial estimate |f(α;X)| 6 P in combination with
(2.2) and (2.6), we find that when t > 6, one has

Jt(X) 6 X2t−12

∮
|f(α;X)|12 dα� X2t−6+ε.

Thus the main conjecture in the cubic case of Vinogradov’s mean value theorem
does indeed follow from (2.6).

Let R be a natural number sufficiently large in terms of ∆. Specifically, we
choose R as follows. Since θ+ > 4, we may put ν = θ+− 4 > 0. Then we have

4n = θn+(1− ν/θ+)n 6 θn+e
−νn/θ+ .

Consequently, if we take R = dWθ+/νe, with W a large enough integer, then
we ensure that

4R 6 e−W θR+ <
θR+1

+ − θR+1
−

θ+ − θ−
− 1

2
θ+θ−

(
θR+ − θR−
θ+ − θ−

)
. (2.7)

The significance of this condition will become apparent in due course (see the
discussion surrounding (6.1) below). Having fixed R satisfying this condition,
we take N to be a natural number sufficiently large in terms of R, and put

B = 3NN, θ = (200N2)−3RN , δ = (10N)−12RNθ. (2.8)

In view of the definition of λ, there exists a sequence of natural numbers
(Xl)

∞
l=1, tending to infinity with l, and with the property that J(Xl) > Xλ−δ

l

(l ∈ N). Also, provided that Xl is sufficiently large, one has the corresponding

upper bound J(Y ) < Y λ+δ for Y > X
1/2
l . We consider a fixed element X = Xl

of the sequence (Xl)
∞
l=1, which we may assume to be sufficiently large in terms

of N . We put M = Xθ, and note from (2.8) that Xδ < M1/N . Throughout,
implicit constants may depend on N and ε, but not on any other variable.

We next introduce the cast of exponential sums and mean values appearing
in our arguments. Let p be a prime number with M < p 6 2M to be fixed in
due course. When c and ξ are non-negative integers, and α ∈ [0, 1)3, we define

fc(α; ξ) =
∑

16x6X
x≡ξ (mod pc)

e(α1x+ α2x
2 + α3x

3). (2.9)

When m ∈ {1, 2}, denote by Ξm
c (ξ) the set of integral m-tuples (ξ1, . . . , ξm),

with 1 6 ξ 6 pc+1 and ξ ≡ ξ (mod pc), and in the case m = 2 satisfying the
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property that ξ1 6≡ ξ2 (mod pc+1). We then put

Fmc (α; ξ) =
∑

ξ∈Ξm
c (ξ)

m∏
i=1

fc+1(α; ξi).

Next, when a and b are positive integers, we define

Ima,b(X) = max
16ξ6pa

max
16η6pb

η 6≡ξ (mod p)

∮
|Fma (α; ξ)2fb(α; η)12−2m| dα,

Km
a,b(X) = max

16ξ6pa
max

16η6pb

η 6≡ξ (mod p)

∮
|Fma (α; ξ)2F2

b(α; η)2fb(α; η)8−2m| dα.

The implicit dependence on p in the above notation will be rendered irrelevant
in §4, since we fix the choice of this prime following Lemma 4.2.

We next align the definition of Km
a,b(X) when a = 0 with the conditioning

idea. When ξ is an integer and ζ is a tuple of integers, we denote by Ξm(ζ)
the set of m-tuples (ξ1, . . . , ξm) ∈ Ξm

0 (0) such that ξi 6≡ ζj (mod p) for all i
and j. Recalling (2.9), we put

Fm(α; ζ) =
∑

ξ∈Ξm(ζ)

m∏
i=1

f1(α; ξi),

and then define

Km
0,c(X) = max

16η6pc

∮
|Fm(α; η)2F2

c(α; η)2fc(α; η)8−2m| dα.

As in our earlier work, we make use of an operator that indicates the size of
a mean value in relation to its anticipated magnitude. In the present circum-
stances, we adopt the convention that

[[J(X)]] = J(X)/X6+∆, (2.10)

[[Ima,b(X)]] =
Ima,b(X)

(X/Ma)m+∆(X/M b)6−m , (2.11)

[[Km
a,b(X)]] =

Km
a,b(X)

(X/Ma)m+∆(X/M b)6−m . (2.12)

Using this notation, our earlier bounds for J(X) may be written in the form

[[J(X)]] > XΛ−δ and [[J(Y )]] < Y Λ+δ (Y > X1/2), (2.13)

where Λ is defined by Λ = λ− (6 + ∆).

Finally, we recall a simple estimate associated with the system (1.1).

Lemma 2.1. Suppose that c and d are non-negative integers with c 6 θ−1 and
d 6 θ−1. Then whenever u, v ∈ N satisfy u+ v = 6, and ξ, ζ ∈ Z, one has∮

|fc(α; ξ)2ufd(α; ζ)2v| dα� (J(X/M c))u/6(J(X/Md))v/6.

Proof. This is immediate from [2, Corollary 2.2]. �
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3. Auxiliary systems of congruences

We must modify slightly our previous work concerning auxiliary congru-
ences so as to accommodate behaviour that deviates slightly from the diagonal.
When a and b are integers with 1 6 a < b, we denote by Bna,b(m; ξ, η) the set
of solutions of the system of congruences

n∑
i=1

(zi − η)j ≡ mj (mod pjb) (1 6 j 6 3), (3.1)

with 1 6 z 6 p3b and z ≡ ξ (mod pa+1) for some ξ ∈ Ξn
a(ξ). We define

an equivalence relation R(λ) on integral n-tuples by declaring x and y to be

R(λ)-equivalent when x ≡ y (mod pλ). We then write Cn,ha,b (m; ξ, η) for the set

of R(hb)-equivalence classes of Bna,b(m; ξ, η), and define Bn,h
a,b (p) by putting

Bn,h
a,b (p) = max

16ξ6pa
max

16η6pb

η 6≡ξ (mod p)

max
16m6p3b

card(Cn,ha,b (m; ξ, η)). (3.2)

When a = 0 we modify these definitions, so that Bn0,b(m; ξ, η) denotes the

set of solutions of the system of congruences (3.1) with 1 6 z 6 p3b and
z ≡ ξ (mod p) for some ξ ∈ Ξn

0 (ξ), and for which in addition z 6≡ η (mod p).

As in the situation in which one has a > 1, we write Cn,h0,b (m; ξ, η) for the set

of R(hb)-equivalence classes of Bn0,b(m; ξ, η), but we define Bn,h
0,b (p) by putting

Bn,h
0,b (p) = max

16η6pb
max

16m6p3b
card(Cn,h0,b (m; 0, η)). (3.3)

We recall a version of Hensel’s lemma made available in [8].

Lemma 3.1. Let f1, . . . , fd be polynomials in Z[x1, . . . , xd] with respective de-
grees k1, . . . , kd, and write

J(f ;x) = det

(
∂fj
∂xi

(x)

)
16i,j6d

.

When $ is a prime number, and l is a natural number, let N (f ;$l) denote
the number of solutions of the simultaneous congruences

fj(x1, . . . , xd) ≡ 0 (mod $l) (1 6 j 6 d),

with 1 6 xi 6 $l (1 6 i 6 d) and (J(f ;x), $) = 1. Then N (f ;$l) 6 k1 . . . kd.

Proof. This is [8, Theorem 1]. �

We now present the key result on congruences utilised in this paper.

Lemma 3.2. Suppose that a and b are integers with 0 6 a < b, and that h is
a natural number with 2b− a 6 h 6 2b− a+ ∆(b− a). Then one has

B1,3
a,b (p) 6 6 and B

2,h/b
a,b (p) 6 6ph−2b+a.
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Proof. The estimate B1,3
a,b (p) 6 6 is immediate from the case h = 3b, k = 3

of [11, Lemma 3.1]. We therefore focus on establishing the second estimate
asserted in the statement of the lemma. We begin by considering the situation
with a > 1, the remaining cases with a = 0 being easily accommodated within
our argument for the former case. Consider fixed natural numbers a, b and h
with 1 6 a 6 b and

2b− a 6 h 6 2b− a+ ∆(b− a),

and fixed integers ξ and η with 1 6 ξ 6 pa, 1 6 η 6 pb and η 6≡ ξ (mod p).
Write ω = h − (2b − a), so that 0 6 ω 6 ∆(b − a). We denote by D1(n) the
set of R(h)-equivalence classes of solutions of the system of congruences

(z1 − η)j + (z2 − η)j ≡ nj (mod p2b+ω) (j = 2, 3), (3.4)

with 1 6 z 6 p3b and z ≡ ξ (mod pa+1) for some ξ ∈ Ξ2
a(ξ). Fix an integral

triple m. To any solution z of (3.4) there corresponds a unique pair n = (n2, n3)
with 1 6 n 6 p2b+ω for which (3.4) holds and

nj ≡ mj (mod pσ(j)) (j = 2, 3),

where σ(j) = min{jb, 2b+ ω}. We therefore infer that

C2,h/b
a,b (m; ξ, η) ⊆

⋃
16n26p2b+ω

n2≡m2 (mod p2b)

⋃
16n36p2b+ω

n3≡m3 (mod p2b+ω)

D1(n).

The number of pairs n in the union is equal to pω. Consequently, one has

card(C2,h/b
a,b (m; ξ, η)) 6 pω max

16n6p2b+ω
card(D1(n)). (3.5)

Observe that for any solution z′ of (3.4) there is an R(h)-equivalent solution
z satisfying 1 6 z 6 p2b+ω. We next rewrite each variable zi in the shape
zi = payi + ξ. One finds from the hypothesis z ≡ ξ (mod pa+1) for some
ξ ∈ Ξ2

a(ξ) that y1 6≡ y2 (mod p). Write ζ = ξ−η, note that p - ζ, and write the
multiplicative inverse of ζ modulo p2b+ω as ζ−1. Then we deduce from (3.4)
that card(D1(n)) is bounded above by the number of R(h − a)-equivalence
classes of solutions of the system of congruences

(pay1ζ
−1 + 1)j + (pay2ζ

−1 + 1)j ≡ nj(ζ
−1)j (mod p2b+ω) (j = 2, 3), (3.6)

with 1 6 y 6 ph−a. Recall that h = 2b− a+ω, and let y = w be any solution
of the system (3.6), if any one such exists. Then we find that all other solutions
y satisfy the system

2∑
i=1

(
(payiζ

−1 + 1)j − (pawiζ
−1 + 1)j

)
≡ 0 (mod p2b+ω) (j = 2, 3). (3.7)

When 1 6 j 6 3, write

sj(y,w) = yj1 + yj2 − w
j
1 − w

j
2.
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Then by applying the Binomial theorem, it follows that the system (3.7) is
equivalent to the new system

2(ζ−1pa)s1(y,w)+(ζ−1pa)2s2(y,w) ≡ 0 (mod p2b+ω)

3(ζ−1pa)s1(y,w)+3(ζ−1pa)2s2(y,w) + (ζ−1pa)3s3(y,w) ≡ 0 (mod p2b+ω)

}
.

By employing the quadratic congruence to eliminate the linear term in the
cubic congruence here, one finds that this system is in turn equivalent to

s1(y,w) + (2ζ)−1pas2(y,w) ≡ 0 (mod ph)

s2(y,w) + 2(3ζ)−1pas3(y,w) ≡ 0 (mod ph−a)

}
.

Denote by D2(u) the set of R(h− a)-equivalence classes of solutions of the
system of congruences

y1 + y2 + (2ζ)−1pa(y2
1 + y2

2) ≡ u2 (mod ph−a)

y2
1 + y2

2 + 2(3ζ)−1pa(y3
1 + y3

2) ≡ u3 (mod ph−a)

}
,

with 1 6 y1, y2 6 ph−a satisfying y1 6≡ y2 (mod p). Then we have shown thus
far that

card(D1(n)) 6 max
16u6ph−a

card(D2(u)). (3.8)

Next define the determinant

J(y) = det

(
1 + 2(2ζ)−1pay1 1 + 2(2ζ)−1pay2

2y1 + 6(3ζ)−1pay2
1 2y2 + 6(3ζ)−1pay2

2

)
.

One has

J(y) ≡ 2(y2 − y1) 6≡ 0 (mod p),

and hence we deduce from Lemma 3.1 that card(D2(u)) 6 6. In combination
with (3.5) and (3.8), this estimate delivers the bound

card(C2,h/b
a,b (m; ξ, η)) 6 6pω.

We thus conclude from (3.2) that B
n,h/b
a,b (p) 6 6ph−2b+a, and this completes the

proof of the lemma when a > 1.

The proof presented above requires little modification to handle the situation
in which a = 0. In this case, we denote by D1(n; η) the set of solutions of the
system of congruences (3.4) with 1 6 z 6 p3b and z ≡ ξ (mod p) for some
ξ ∈ Ξ2

0(0), and for which in addition zi 6≡ η (mod p) for i = 1, 2. Then as in
the opening paragraph of our proof, it follows from (3.4) that

card(C2,h/b
0,b (m; 0, η)) 6 pω max

16n6p2b+ω
card(D1(n; η)). (3.9)

But card(D1(n; η)) = card(D1(n; 0)), and card(D1(n; 0)) counts the solutions
of the system of congruences

y3
1 + y3

2 ≡ n3 (mod p2b+ω)

y2
1 + y2

2 ≡ n2 (mod p2b+ω)

}
,
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with 1 6 y 6 p2b+ω satisfying y1 6≡ y2 (mod p) and p - yi (i = 1, 2). Write

J(y) = det

(
3y2

1 3y2
2

2y1 2y2

)
.

Then since p > 3, we have

J(y) = 6y1y2(y1 − y2) 6≡ 0 (mod p).

We therefore conclude from Lemma 3.1 that card(D1(n; 0)) 6 6. In view of
(3.3), the conclusion of the lemma therefore follows from (3.9) when a = 0. �

4. The conditioning and pre-congruencing processes

We recall a consequence of a lemma from [11] which permits the mean value
I2
a,b(X) to be bounded in terms of K2

c,d(X), for suitable parameters c and d.

Lemma 4.1. Let a and b be integers with 1 6 a < b, and let H be any integer
with H > 15. Suppose that b + H 6 (2θ)−1. Then there exists an integer h
with 0 6 h < H having the property that

I2
a,b(X)� (Mh)8/3K2

a,b+h(X) +M−H(X/M b)4(X/Ma)λ−4.

Proof. This is simply a special case of [11, Lemma 4.2]. �

Next we recall a lemma from [11] which initiates the iterative process.

Lemma 4.2. There exists a prime number p, with M < p 6 2M , and an
integer h with 0 6 h 6 4B, for which one has

J(X)�M8B+8h/3K2
0,B+h(X).

Proof. Again, this is simply a special case of [11, Lemma 5.1]. �

We now fix the prime number p, once and for all, in accordance with the
conclusion of Lemma 4.2.

5. Efficient congruencing and the multigrade combination

We adapt the treatment of [11, §6] to the present cubic situation.

Lemma 5.1. Suppose that a and b are integers with 0 6 a < b 6 θ−1, and
suppose further that b > (1 + 2

3
∆)a. Then one has

K1
a,b(X)�M3b−a(I2

b,3b(X))1/4(J(X/M b))3/4. (5.1)

Moreover, whenever b′ is an integer with

2b− a 6 b′ 6 2b− a+ ∆(b− a),

one has

K2
a,b(X)�M b′−2b+a(M b′−a)4/3(I2

b,b′(X))1/3(K1
a,b(X))2/3. (5.2)
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Proof. The estimate (5.1) is the special case s = 4, m = 0 of [11, Lemma 6.1]
corresponding to exponent k = 3, in which one takes b′ = 3b. We focus, there-
fore, on the proof of the estimate (5.2). Even in this situation, however, the
argument of the proof of [11, Lemma 6.1] applies without serious modification.
Applying the latter with s = 4 and m = 1, we find that the final conclusion
must be modified only to reflect the fact that, in view of Lemma 3.2, one has
in present circumstances the bound

card(C2,b′/b
a,b (m; ξ, η)) 6 6pb

′−2b+a,

whereas in the discussion following [11, equation (6.5)] one had the sharper

bound card(C2,b′/b
a,b (m; ξ, η)) 6 6, owing to the stronger constraint on b′ therein.

On accounting for the presence of the additional factor pb
′−2b+a in the analogue

of the discussion leading from [11, equation (6.6)] to the conclusion of the proof
of [11, Lemma 6.1], the upper bound (5.2) follows at once. This completes the
proof of the lemma. �

We note that when a and b are sufficiently large in terms of ∆, then the
hypothesis b > (1 + 2

3
∆)a in the statement of Lemma 5.1 ensures that

2b− a+ ∆(b− a) = (2 + ∆)b− (1 + ∆)a >

(
2 + ∆− 1 + ∆

1 + 2
3
∆

)
b

=

(
1 + ∆−

1
3
∆

1 + 2
3
∆

)
b > d(1 + 2

3
∆)be.

We are therefore at liberty to apply Lemma 5.1 with a choice for b′ satisfying
the condition b′ > (1 + 2

3
∆)b, thereby preparing appropriately for subsequent

applications of Lemma 5.1.

We next combine the estimates supplied by Lemma 5.1 so as to bound
K2
a,b(X) in terms of the mean values I2

b,kmb
(X) (m = 0, 1), in which k0 = 3 and

2− a/b 6 k1 6 2− a/b+ ∆(1− a/b).

Lemma 5.2. Suppose that a and b are integers with 0 6 a < b 6 θ−1, and
suppose further that b > (1 + 2

3
∆)a. Then whenever d is an integer with

0 6 d 6 ∆(b− a), one has

[[K2
a,b(X)]]�

(
(X/M b)Λ+δ

)1/2
[[I2
b,3b(X)]]1/6[[I2

b,b′(X)]]1/3,

where b′ = 2b− a+ d.

Proof. By substituting the estimate for K1
a,b(X) provided by equation (5.1) of

Lemma 5.1 into (5.2), we find that

K2
a,b(X)�Md

(
(M b′−a)4I2

b,b′(X)
)1/3(

(M3b−a)4I2
b,3b(X)

)1/6 (
J(X/M b)

)1/2
.

On recalling (2.10) to (2.12), therefore, we deduce that

[[K2
a,b(X)]]�MΩ[[I2

b,3b(X)]]1/6[[I2
b,b′(X)]]1/3

(
(X/M b)Λ+δ

)1/2
,

where
Ω = d+ ∆(a− b) 6 ∆(b− a) + ∆(a− b) = 0.



VINOGRADOV’S MEAN VALUE THEOREM 11

Since Ω 6 0, the conclusion of the lemma is now immediate. �

We next study a multistep multigrade combination stemming from Lemma
5.2. We begin by introducing some additional notation. We recall that R is
a positive integer sufficiently large in terms of ∆. We consider R-tuples of
integers (m1, . . . ,mR) ∈ {0, 1}R, to each of which we associate an R-tuple of
integers h = (h1(m), . . . , hR(m)) ∈ [0,∞)R. The integral tuples h(m) will be
fixed as the iteration proceeds, with hn(m) depending at most on the first n
coordinates of (m1, . . . ,mR). We may abuse notation in some circumstances
by writing hn(m,mn) or hn(m1, . . . ,mn−1,mn) in place of hn(m1, . . . ,mR),
reflecting the latter implicit dependence. We suppose that a positive integer b
has already been fixed. We then define the sequences (an) = (an(m;h)) and
(bn) = (bn(m;h)) by putting

a0 = bb/(1 + 2
3
∆)c and b0 = b, (5.3)

and then applying the iterative relations, for 1 6 n 6 R, given by

an = bn−1 (5.4)

and

bn =

{
3bn−1 + hn(m), when mn = 0,

2bn−1 − an−1 + b∆(bn−1 − an−1)c+ hn(m), when mn = 1.
(5.5)

Next, we define the quantity Θn(m;h) for 0 6 n 6 R by writing

Θn(m;h) = (X/M b)−Λ−δ[[K2
an,bn(X)]] +M−12·3Rb. (5.6)

Finally, we put

φ0 = 1/6 and φ1 = 1/3.

Lemma 5.3. Suppose that a and b are integers with 0 < a < b 6 (16·32RRθ)−1,
and suppose further that a 6 b/(1+ 2

3
∆). Then there exists a choice for h(m) ∈

{0, 1}R, satisfying the condition that 0 6 hn(m) 6 15 · 3Rb (1 6 n 6 R), and
for which one has

(X/M b)−Λ−δ[[K2
a,b(X)]]�

∏
m∈{0,1}R

ΘR(m;h)φm1 ...φmR .

Proof. A comparison of Lemma 5.2 above with [11, Lemma 7.2] reveals that
the argument of the proof of [11, Lemma 7.3] applies in the present situation,
mutatis mutandis, to establish the conclusion of the lemma. We note here
that our Lemma 4.1 above serves as a substitute for [11, Lemma 4.2] for this
purpose. �

6. The latent monograde process

We next convert the block estimate encoded in Lemma 5.3 into a single
monograde estimate that can be incorporated into our iterative method. We
begin by recalling an elementary lemma from our previous work [10].
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Lemma 6.1. Suppose that z0, . . . , zl ∈ C, and that βi and γi are positive real
numbers for 0 6 i 6 l. Put Ω = β0γ0 + . . .+ βlγl. Then one has

|zβ00 . . . zβll | 6
l∑

i=0

|zi|Ω/γi .

Proof. This is [10, Lemma 8.1]. �

Before proceeding further, we introduce some additional notation. Define
the positive number s0 by means of the relation

sR0 =
θR+1

+ − θR+1
−

θ+ − θ−
− θ+θ−

2(1 + 2
3
∆)

(
θR+ − θR−
θ+ − θ−

)
, (6.1)

in which θ± are defined as in (2.4). We recall that, in view of (2.7), one has
s0 > 4. Next we make use of a new pair of sequences (ãn) = (ãn(m)) and

(b̃n) = (b̃n(m)) defined by means of the relations

ã0 = 1/(1 + 2
3
∆) and b̃0 = 1, (6.2)

and then, when 1 6 n 6 R, by

ãn = b̃n−1 (6.3)

and

b̃n =

{
3b̃n−1, when mn = 0,

2b̃n−1 − ãn−1 + ∆(b̃n−1 − ãn−1), when mn = 1.
(6.4)

We then define

km = b̃R(m) and ρm = b̃R(m)(4/s0)R for m ∈ {0, 1}R. (6.5)

Lemma 6.2. Suppose that Λ > 0, let a and b be integers with

0 6 a < b 6 (20 · 32RRθ)−1,

and suppose further that a 6 b/(1 + 2
3
∆). Suppose in addition that there are

real numbers ψ, c and γ, with

0 6 c 6 (2δ)−1θ, γ > −4b and ψ > 0,

such that

XΛMΛψ � XcδM−γ[[K2
a,b(X)]]. (6.6)

Then, for some m ∈ {0, 1}R, there is a real number h with 0 6 h 6 16 · 32Rb,
and positive integers a′ and b′ with a′ 6 b′/(1 + 2

3
∆), such that

XΛMΛψ′ � Xc′δM−γ′ [[K2
a′,b′(X)]], (6.7)

where ψ′, c′, γ′ and b′ are real numbers satisfying the conditions

ψ′ = ρm(ψ + 1
2
b), c′ = ρm(c+ 1), γ′ = ρmγ, b′ = kmb+ h.

Moreover, the real number km satisfies (1 + 2
3
∆)R 6 km 6 3R.



VINOGRADOV’S MEAN VALUE THEOREM 13

Proof. We deduce from the postulated bound (6.6) and Lemma 5.3 that there
exists a choice of the tuple h = h(m), with 0 6 hn(m) 6 15 ·3Rb (1 6 n 6 R),
such that

XΛMΛψ � X(c+1)δM−γ(X/M b)Λ
∏

m∈{0,1}R
ΘR(m;h)φm1 ...φmR .

Consequently, one has∏
m∈{0,1}R

ΘR(m;h)φm1 ...φmR � X−(c+1)δMΛ(ψ+b)+γ.

Note that φ0 + φ1 = 1
2
, so that∑
m∈{0,1}R

φm1 . . . φmR
=
(

1
2

)R
6 1

2
.

Then we deduce from the definition (5.6) of Θn(m;h) that∏
m∈{0,1}R

(
X−Λ[[K2

aR,bR
(X)]] +M−12·3Rb

)φm1 ...φmR � X−(c+1)δMΛ(ψ+ 1
2
b)+γ.

(6.8)

In preparation for our application of Lemma 6.1, we examine the exponents
φm1 . . . φmR

. Put

β(n)
m = φm1 . . . φmn and γ(n)

m = b̃n(m) (m ∈ {0, 1}n).

In addition, we define

Bn =
∑

m∈{0,1}n
β(n)
m b̃n(m) and An =

∑
m∈{0,1}n

β(n)
m ãn(m),

and then put Ω = BR. From the iterative formulae (6.2) to (6.4), we obtain

Bn+1 =
1

6

∑
m∈{0,1}n

3b̃n(m)φm1 . . . φmn

+
1

3

∑
m∈{0,1}n

(2b̃n(m)− ãn(m) + ∆(b̃n(m)− ãn(m))φm1 . . . φmn ,

so that

Bn+1 = 1
2
Bn + (2

3
+ 1

3
∆)Bn − (1

3
+ 1

3
∆)An

= (7
6

+ 1
3
∆)Bn − (1

3
+ 1

3
∆)An.

Similarly, one finds that

An+1 =
1

2

∑
m∈{0,1}n

b̃n(m)φm1 . . . φmn = 1
2
Bn.

Thus we conclude via (2.3) that

42Bn+2 = a(4Bn+1)− bBn (n > 1). (6.9)
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In addition, one has the initial data

4B1 = 4
(

1
6
(3b̃0) + 1

3
(2b̃0 − ã0 + ∆(b̃0 − ã0))

)
= a− 1

2
b/(1 + 2

3
∆), (6.10)

4A1 = 4(1
2
b̃0) = 2,

and hence

42B2 = 42
(
(7

6
+ 1

3
∆)B1 − 1

3
(1 + ∆)A1

)
= a(a− 1

2
b/(1 + 2

3
∆))− b. (6.11)

The recurrence formula (6.9) has a solution of the shape

4nBn = σ+θ
n
+ + σ−θ

n
− (n > 1),

where, in view of (6.10) and (6.11), one has

σ+θ+ + σ−θ− = 4B1 = a− 1
2
b/(1 + 2

3
∆)

and
σ+θ

2
+ + σ−θ

2
− = 42B2 = a(a− 1

2
b/(1 + 2

3
∆))− b.

Since a = θ+ + θ− and b = θ+θ−, we therefore deduce that

4nBn =
θn+1

+ − θn+1
−

θ+ − θ−
− θ+θ−

2(1 + 2
3
∆)

(
θn+ − θn−
θ+ − θ−

)
.

In particular, on recalling (6.1), we find that 4RBR = sR0 , so that BR = (s0/4)R.
Also, therefore, it follows from (2.7) that BR > 1.

Returning now to the application of Lemma 6.1, we note first that Ω = BR,
and hence (6.8) yields the relation∑

m∈{0,1}R

(
X−Λ[[K2

aR,bR
(X)]] +M−12·3Rb

)BR/b̃R(m)

� X−(c+1)δMΛ(ψ+ 1
2
b)+γ.

But in view of (6.5), one has b̃R(m)/BR = ρm, and thus we find that for some
tuple m ∈ {0, 1}R, one has

X−Λ[[K2
aR,bR

(X)]] +M−12·3Rb � X−ρm(c+1)δMΛρm(ψ+ 1
2
b)+ρmγ,

whence
X−Λ[[K2

aR,bR
(X)]] +M−12·3Rb � X−c

′δMΛψ′+γ′ . (6.12)

We next remove the term M−12·3Rb on the left hand side of (6.12). We

observe that the relations (6.4) ensure that b̃R(m) 6 3R, and hence (2.7)

and (6.5) together reveal that ρm 6 b̃R(m) 6 3R. By hypothesis, we have

Xcδ < M1/2, whence Xc′δ �M3R . Thus we deduce from (2.8) that

X−c
′δMΛψ′+γ′ >M−3R+ρmγ >M−3R−4·3Rb.

Since
M−12·3Rb < M−3R−8·3Rb,

it follows from (6.12) that

X−Λ[[K2
aR,bR

(X)]]� X−c
′δMΛψ′+γ′ . (6.13)

Our final task consists of extracting appropriate constraints on the parame-
ters aR and bR. Here, a comparison of (5.3) to (5.5) with (6.2) to (6.4) reveals



VINOGRADOV’S MEAN VALUE THEOREM 15

that we may follow the argument leading from [11, equation (8.16)] to the
conclusion of the proof of [11, Lemma 8.2], but substituting 1 + 2

3
∆ in place of√

k throughout. The reader should experience little difficulty in adapting the
argument given therein to show that

kmb 6 bR 6 kmb+ 16 · 32Rb,

and further that

aR = bR−1 < bR/(1 + 2
3
∆).

Moreover, one may also verify that (1 + 2
3
∆)R 6 km 6 3R, just as in the con-

clusion of the proof of [11, Lemma 8.2]. The estimate (6.7), with all associated
conditions, therefore follows from (6.13) on taking a′ = aR and b′ = bR. This
completes our account of the proof of the lemma. �

7. The iterative process

We begin with a crude estimate of use at the conclusion of our argument.

Lemma 7.1. Suppose that a and b are integers with 0 6 a < b 6 (2θ)−1.
Then provided that Λ > 0, one has

[[K2
a,b(X)]]� XΛ+δ.

Proof. On considering the underlying Diophantine equations, we deduce from
Lemma 2.1 that

K2
a,b(X)� (J(X/Ma))1/3(J(X/M b))2/3,

whence

[[K2
a,b(X)]]�

Xδ
(
(X/Ma)1/3(X/M b)2/3

)6+∆+Λ

(X/Ma)2+∆(X/M b)4

� XΛ+δM
2
3

∆(a−b) � XΛ+δ.

This completes the proof of the lemma. �

We now come to the crescendo of our argument.

Theorem 7.2. Suppose that ∆ is a positive number with ∆ < 1
12

. Then for
each ε > 0, one has J(X)� X6+∆+ε.

Proof. We prove that Λ 6 0, for then the conclusion of the lemma follows at
once from (2.13). Assume then that Λ > 0, for otherwise there is nothing to
prove. We begin by noting that as a consequence of Lemma 4.2, one finds from
(2.10) and (2.12) that there exists an integer h−1 with 0 6 h−1 6 4B such that

[[J(X)]]�M4B−4h−1/3[[K2
0,B+h−1

(X)]].

We therefore deduce from (2.13) that

XΛ � Xδ[[J(X)]]� XδM4B−4h−1/3[[K2
0,B+h−1

(X)]]. (7.1)
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Next we define sequences (κn), (hn), (an), (bn), (cn), (ψn) and (γn), for
0 6 n 6 N , in such a way that

(1 + 2
3
∆)R 6 κn−1 6 3R, 0 6 hn−1 6 16 · 32Rbn−1 (n > 1), (7.2)

and

XΛMΛψn � XcnδM−γn [[K2
an,bn(X)]]. (7.3)

We note here that the sequences (an) and (bn) are not directly related to our
earlier use of these letters. Given a fixed choice for the sequences (an), (κn)
and (hn), the remaining sequences are defined by means of the relations

bn+1 = κnbn + hn, (7.4)

cn+1 = (4/s0)Rκn(cn + 1), (7.5)

ψn+1 = (4/s0)Rκn(ψn + 1
2
bn), (7.6)

γn+1 = (4/s0)Rκnγn. (7.7)

We put

κ−1 = 3R, b−1 = 1, a0 = 0, b0 = B + h−1

ψ0 = 0, c0 = 1, γ0 = 4
3
h−1 − 4B,

so that both (7.2) and (7.3) hold with n = 0 as a consequence of our initial
choice of κ−1 and b−1, together with (7.1). We prove by induction that for
each non-negative integer n with n < N , the sequences (am)nm=0, (κm)nm=0 and
(hm)nm=−1 may be chosen in such a way that

1 6 bn 6
(
20 · 32RRθ

)−1
, ψn > 0, γn > −4bn, 0 6 cn 6 (2δ)−1θ, (7.8)

0 6 an 6 bn/(1 + 2
3
∆), (7.9)

and so that (7.2) and (7.3) both hold with n replaced by n+ 1.

Let 0 6 n < N , and suppose that (7.2) and (7.3) both hold for the index
n. We have already shown such to be the case for n = 0. We observe first
that from (7.2) and (7.4), we find that bn 6 4(17 · 32R)nB, whence by invoking
(2.8), we find that for 0 6 n 6 N , one has bn 6 (20 · 32RRθ)−1. It is apparent
from (7.5) and (7.6) that cn and ψn are non-negative for all n. Observe also
that since s0 > 4 and κm 6 3R, then by iterating (7.5) we obtain the bound

cn 6 3Rn + 3R
(

3Rn − 1

3R − 1

)
6 3Rn+1, (7.10)

and by reference to (2.8), we discern that cn 6 (2δ)−1θ for 0 6 n < N .

In order to bound γn, we recall that s0 > 4 and iterate the relation (7.7) to
deduce that

γm = (4/s0)Rmκ0 . . . κm−1γ0 > −4(4/s0)Rmκ0 . . . κm−1B. (7.11)

In addition, we find from (7.4) that for m > 0 one has bm+1 > κmbm, so that
an inductive argument yields the lower bound

bm > κ0 . . . κm−1b0 > κ0 . . . κm−1B. (7.12)
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Hence we deduce from (7.11) that γm > −4(4/s0)Rmbm > −4bm. Assembling
this conclusion together with those of the previous paragraph, we have shown
that (7.8) holds for 0 6 n 6 N .

At this point in the argument, we may suppose that (7.3), (7.8) and (7.9)
hold for the index n. An application of Lemma 6.2 therefore reveals that there
exist numbers κn, hn and an satisfying the constraints implied by (7.2) with
n replaced by n + 1, for which the upper bound (7.3) holds for some an with
0 6 an 6 bn/(1 + 2

3
∆), also with n replaced by n + 1. This completes the

inductive step, so that in particular (7.3) holds for 0 6 n 6 N .

We now exploit the bound just established. Since we have the upper bound
bN 6 4(17 · 32R)N 6 (2θ)−1, it is a consequence of Lemma 7.1 that

[[K2
aN ,bN

(X)]]� XΛ+δ.

By combining this with (7.3) and (7.11), we obtain the bound

XΛMΛψN � XΛ+(cN+1)δM4κ0...κN−1B(4/s0)RN

. (7.13)

Meanwhile, an application of (7.10) in combination with (2.8) shows that
X(cN+1)δ < M . We therefore deduce from (7.13) that

ΛψN 6 4(4/s0)RNκ0 . . . κN−1B + 1.

On recalling (2.5) and (6.1), we see that

sR0 6
θR+1

+

θ+ − θ−
<

(4 + 2
3
∆)θR+

(4 + 2
3
∆)− (2

3
+ 2

3
∆)

< 4
3
θR+.

Thus, since R is sufficiently large, one finds that s0 < 4+2∆. Notice here that
κn > (1 + 2

3
∆)R and

4/s0 > 4/(4 + 2∆) = 1/(1 + 1
2
∆).

Hence we deduce that

4(4/s0)RNκ0 . . . κN−1B > 4

(
1 + 2

3
∆

1 + 1
2
∆

)RN
B > 1,

so that

ΛψN 6 9(4/s0)RNκ0 . . . κN−1B. (7.14)

A further application of the lower bound bn > κ0 . . . κn−1B, available from
(7.12), leads from (7.6) and the bound s0 > 4 to the relation

ψn+1 = (4/s0)R(κnψn + 1
2
κnbn)

> (4/s0)Rκnψn + 1
2
(4/s0)Rκ0 . . . κnB

> (4/s0)Rκnψn + 1
2
(4/s0)R(n+1)κ0 . . . κnB.

An inductive argument therefore delivers the lower bound

ψN > 1
2
N(4/s0)RNκ0 . . . κN−1B.
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Thus we deduce from (7.14) that

Λ 6
9(4/s0)RNκ0 . . . κN−1B

1
2
N(4/s0)RNκ0 . . . κN−1B

=
18

N
.

Since we are at liberty to take N as large as we please in terms of ∆, we
are forced to conclude that Λ 6 0. In view of our opening discussion, this
completes the proof of the theorem. �

Corollary 7.3. For each ε > 0, one has J(X)� X6+ε.

Proof. We apply Theorem 7.2 with ∆ = 1
2
ε. Then for each ε′ > 0, one has

J(X)� X6+ 1
2
ε+ε′ ,

and the desired conclusion follows by taking ε′ = 1
2
ε. �

As we discussed following (2.6) above, the conclusion of Corollary 7.3 estab-
lishes the main conjecture in full for Js,3(X), and thus the proof of Theorem
1.1 is complete.

8. Applications

We take the opportunity to report on some immediate applications of Theo-
rem 1.1, with brief notes on the necessary arguments. In all cases, the methods
of proof are standard for those with a passing familiarity with the area, the
hard work having been accomplished with the proof of Theorem 1.1.

We begin by discussing the anticipated asymptotic formula for Js(X). Define
the singular series

Ss =
∞∑
q=1

q∑
a1=1

q∑
a2=1

q∑
a3=1

(q,a1,a2,a3)=1

∣∣∣q−1

q∑
r=1

e((a1r + a2r
2 + a3r

3)/q)
∣∣∣2s,

and the singular integral

Js =

∫
R3

∣∣∣∫ 1

0

e(β1γ + β2γ
2 + β3γ

3) dγ
∣∣∣2s dβ.

Theorem 8.1. When s > 7, one has Js(X) ∼ SsJsX
2s−6.

Proof. On recalling (2.1), it follows from orthogonality that the bound pre-
sented in Theorem 1.1 delivers the estimate∮

|f(α;X)|12 dα� X6+ε,

we find that the argument of the proof of [9, Theorem 1.2] detailed in [9, §9]
applies without modification to establish the claimed asymptotic formula. �

We note that the elementary lower bound Js(X)� X2s−6 (see [5, equation
(7.4)]), suffices to confirm that Ss > 0 and Js > 0, since one has also the
estimates Ss � 1 and Js � 1 for s > 7.
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For comparison, the methods of [3, Chapter V] and [5, Chapter 7] would
combine to yield a conclusion analogous to Theorem 8.1, but subject to the
hypothesis s > 9. Our recent work [10, Corollary 1.2] would permit this
condition to be sharpened slightly to s > 8. Meanwhile, one may conjecture
that for 1 6 s 6 5, one should have Js(X) ∼ s!Xs. Such is known for 1 6 s 6 4
(see especially [6]), but remains unproven for s = 5. The remaining even
moment would be expected to satisfy a different asymptotic formula. Here,
the philosophy underlying [6, Appendix] would suggest that J6(X) ∼ CX6,
with C = 6! + S6J6, this corresponding to a sum of the anticipated major arc
contribution together with the solutions on linear spaces accounted for by the
expected minor arc contribution. This seems presently to be far beyond our
reach. Perhaps it is worth emphasising in this context that one has

0 < S6 � 1 and 0 < J6 � 1.

The second of these estimates is plain from the standard theory. For the first,
one should use the quasi-multiplicative property of

q∑
r=1

e((a1r + a2r
2 + a3r

3)/q)

in order to divide the problem into a consideration of the situation where q
is a prime p, or a prime power ph with h > 2. In the latter case, standard
estimates (see the proof of [5, Theorem 7.1]) show that

ph∑
a1=1

ph∑
a2=1

ph∑
a3=1

(ph,a1,a2,a3)=1

∣∣∣p−h ph∑
r=1

e((a1r + a2r
2 + a3r

3)/ph)
∣∣∣12

� p3h(p−h/3)12 � p−h.

Meanwhile, when h = 1, one finds from [7] that

p−1

p∑
r=1

e((a1r + a2r
2 + a3r

3)/p)� p−1/2(p, a1, a2, a3)1/2,

whence
p∑

a1=1

p∑
a2=1

p∑
a3=1

(p,a1,a2,a3)=1

∣∣∣p−1

p∑
r=1

e((a1r + a2r
2 + a3r

3)/p)
∣∣∣12

� p−3.

Thus we deduce that for a suitable fixed A > 0 one has

S6 �
∏
p

(1 + Ap−2)� 1.

Finally, we consider a diagonal Diophantine system consisting of a cubic,
quadratic and linear equation. When s is a natural number, and aij are integers
for 1 6 i 6 3 and 1 6 j 6 s, we write

φi(x) =
s∑
j=1

aijx
i
j (1 6 i 6 3),
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and we consider the Diophantine system

φi(x) = 0 (1 6 i 6 3). (8.1)

We write N(B) for the number of integral solutions of the system (8.1) with
|x| 6 B. We next define the (formal) real and p-adic densities associated with
the system (8.1), following Schmidt [4]. When L > 0, define

λL(η) =

{
L(1− L|η|), when |η| 6 L−1,

0, otherwise.

We then put

µL =

∫
|ξ|61

3∏
i=1

λL(φi(ξ)) dξ.

The limit σ∞ = lim
L→∞

µL, when it exists, is called the real density. Meanwhile,

given a natural number q, we write

M(q) = card{x ∈ (Z/qZ)s : φi(x) ≡ 0 (mod q) (1 6 i 6 3)}.
For each prime number p, we then put

σp = lim
H→∞

pH(3−s)M(pH),

provided that this limit exists, and we refer to σp as the p-adic density.

Theorem 8.2. Let s be a natural number with s > 13. Suppose that aij
(1 6 i 6 3, 1 6 j 6 s) are non-zero integers. Suppose, in addition, that the
system of equations (8.1) possess non-singular real and p-adic solutions for
each prime number p. Then one has

N(B) ∼ σ∞

(∏
p

σp

)
Bs−6.

In particular, the system (8.1) satisfies the Hasse principle.

The argument of the proof here is essentially standard, mirroring that of
the proof of Theorem 8.1, and we therefore offer no details. Here, the work
of [3, Chapter V] combines with the methods of [5, Chapter 7] to deliver such
a conclusion for s > 17. Our present work, in which we require only s > 13,
achieves the limit imposed by the convexity barrier in this problem (see [1]).
The latter is a practical requirement in applications of the circle method for
higher degree problems imposed by square-root cancellation considerations for
exponential sums, and in this instance requires the number of variables s to
exceed twice the sum of degrees in the problem.
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