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1. Introduction

In analytic number theory there are many situations in which, for certain ex-
ponents kj satisfying 1 ≤ k1 < k2 < · · · < kt, one requires good estimates for the
number, Ss(P ;k), of solutions to the system of equations

s∑
i=1

(
x
kj
i − y

kj
i

)
= 0 (j = 1, . . . , t), (1.1)

with xi, yi ∈ [1, P ] ∩ Z. Thus, in the case kj = j, estimates for Ss(P ;k), usually
referred to as “Vinogradov’s Mean Value Theorem”, are central to the establishment
of rather general estimates for exponential sums. These in turn lead to a number of
theorems which, in the current state of knowledge, provide the best results available
to us. For example, the best zero free region for the Riemann zeta function is
obtained in this way, as is the best upper bound, when the exponent k is large, for
the smallest number G̃(k) of variables for which the asymptotic formula holds in
Waring’s problem.

Besides their rôle in analytic number theory, estimates for the number of solu-
tions of such systems as (1.1) provide useful insights into the distribution of rational
points on certain algebraic varieties. For while the Hardy-Littlewood method will
establish an asymptotic formula for the number of rational points, up to a given
large height, lying on a variety satisfying suitable conditions (see Schmidt [29], and
also Birch [3] for weaker results), such conditions are usually somewhat restrictive.
In particular, the number of variables in the defining equations must be sufficiently
large in terms of their degrees, and also sufficiently large in terms of the dimension
of the singular locus. Thus in the present state of knowledge, the Hardy-Littlewood
method fails, by a considerable margin, to resolve the conjectures of Manin et al.
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concerning the distribution of rational points on algebraic varieties, and in partic-
ular Fano varieties (see [1], [12], [27] and also [26, Chapter X, Conjecture 4.3]).
Moreover, as will be apparent from a brief perusal of the latter references, the
classes of varieties which supply evidence for such conjectures are mostly of a spe-
cial type. In the light of such observations, we wish to promote the systems (1.1) as
generating interesting varieties with which to test ideas concerning the distribution
of rational points. While standard conjectures on exponential sums lead, via the
circle method, to an asymptotic formula for the number of integer solutions, when
s > k1 + · · ·+kt, of the system (1.1) inside a large box (which can be proved uncon-
ditionally when s is sufficiently large compared to kt), the situation in the contrary
case is far less clear. One strongly suspects that the diagonal solutions, in which the
xi are a permutation of the yj , should provide the majority of the solutions. We are
therefore led to consider the quasi-projective variety defined by the system of equa-
tions (1.1) under the condition that xi = yj for no i and j. In general such varieties
have interesting and non-trivial behaviour in the context of the above-mentioned
conjectures, and yet their inherent symmetry enhances our prospects of providing
a useful analysis of the distribution of rational points. In particular, these varieties
remain at least partially accessible to examination through the Hardy-Littlewood
method (as will become clear in the Appendix).

The majority of this paper will be devoted to an analysis of one of the simplest
non-trivial systems of the form (1.1), namely the case with s = 3, t = 2, k1 = 1
and k2 = 3. Thus we shall be concerned with estimates for S3(P ; 1, 3), the number
of solutions of the system of equations

x31 + x32 + x33 = y31 + y32 + y33 ,

x1 + x2 + x3 = y1 + y2 + y3,
(1.2)

with
1 ≤ xi, yi ≤ P (1 ≤ i ≤ 3). (1.3)

Hua [24, Lemma 5.2] has shown that

S3(P ; 1, 3)� P 3(logP )9, (1.4)

and Heath-Brown [17] makes fundamental use of a slightly weaker estimate in im-
portant work leading to improvements in classical results of Weyl (see [32, Lemma
2.4]) and Hua (see [32, Lemma 2.5]). In particular, by obtaining new estimates for
the exponential sum

∑
1≤x≤P e(αx

k), Heath-Brown establishes the upper bound

G̃(k) ≤ 7
82k + 1 for k ≥ 6. More recently Boklan [4], in work showing inter alia

that G̃(k) ≤ 7
82k when k ≥ 6, has required an inequality sharper than (1.4).

We shall say that a solution x,y to the system (1.2) is trivial when (y1, y2, y3) is
a permutation of (x1, x2, x3). It follows that the number, T (P ), of trivial solutions
of (1.2) with (1.3) satisfies

T (P ) = 6P 3 +O(P 2). (1.5)
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Our interest, therefore, lies in bounding the number, U(P ), of non-trivial solutions
of (1.2) with (1.3). In §§2 and 3 we provide a comparatively easy argument which
shows that U(P ) is substantially smaller than T (P ), an immediate consequence of
which is the following theorem.

Theorem 1.1. S3(P ; 1, 3) = 6P 3 +O
(
P 7/3(log 2P )11

)
.

Having established an asymptotic formula for S3(P ; 1, 3), we are naturally led
to speculate concerning the nature of an asymptotic formula (should one exist)
for the number of non-trivial solutions, U(P ). In line with our general philosophy
on the nature of the Hardy-Littlewood method, we conjecture that the number of
non-trivial solutions of a system of equations inside a large box should be given
by the major arc contribution from the circle method. Precisely what we mean by
“non-trivial” and “major arc contribution” is made clear in the Appendix, where
we show that our conjecture implies that for large P ,

U(P ) � P 2(logP )5. (1.6)

In §§4, 5 and 6 we develop a treatment which establishes an upper bound of the
same order of magnitude as that predicted in (1.6). Moreover, in §7 we are able
to establish a lower bound for U(P ), also of the same order of magnitude as that
predicted in (1.6). These two estimates we summarise in the following theorem.

Theorem 1.2. The number U(P ) of non-trivial solutions of (1.2) with (1.3) sat-
isfies

P 2(logP )5 � U(P )� P 2(logP )5. (1.7)

It seems likely that the methods we develop to establish (1.7) could be refined
so as to obtain an asymptotic formula for U(P ). However, such an undertaking is
likely to be one of great complexity, and must be deferred to another occasion in
the interest of containing our circumlocutions. The determination of an asymptotic
formula of the form (1.6) would, nonetheless, be of considerable importance in
ascertaining the extent to which our conjectures concerning the behaviour of the
circle method may be true. In this context we note that it transpires that the
non-trivial solutions of (1.2) are related to the solutions of the nonary cubic form

det (aij)1≤i,j≤3 = 0, (1.8)

with the entries constrained to lie in peculiar hyperbolical regions. Moreover
Katznelson [25] has developed a method which establishes an asymptotic formula
for the number of solutions of (1.8) with the variables constrained to lie in a homoth-
etically expanding convex set. As it stands, unfortunately, Katznelson’s treatment
is insufficient to obtain (1.7), but there may well be improvements which might
lead to an explicit asymptotic formula.

We are able to apply the ideas of §§2 and 3 to certain systems of equations more
general than (1.2), thereby showing that the number of non-trivial solutions is of
smaller order of magnitude than the number of trivial solutions. By developing
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a method which better exploits the intermediate equations, we are able to draw
stronger conclusions. Thus, in §8, we consider the system of the form (1.1) with
k = a(s), where a(s) denotes the (s − 1)-tuple (k1, . . . , ks−1) with kj = j (1 ≤
j ≤ s − 2), and with ks−1 = s. We are able to establish the asymptotic formula
contained in the following theorem.

Theorem 1.3. Let Ts(P ) denote the number of solutions of (1.1) counted by
Ss(P ;a(s)) in which the xi are a permutation of the yj, so that, in particular,
Ts(P ) = s!P s +Os(P

s−1). Then for each s ≥ 3,

Ss(P ;a(s))− Ts(P )�ε,s P
s−1+1/s+ε, (1.9)

and
Ss(P ;a(s))− Ts(P )�ε,s P

(s+3)/2+ε. (1.10)

We remark that the estimate (1.10) is superior to (1.9) when s ≥ 5. For com-
parison, Hua [24, Lemma 5.2] had previously obtained the upper bound

Ss(P ;a(s))�s P
s(logP )s(2

s−1−1).

We remark that with some additional effort, the factors of P ε occurring in the
estimates (1.9) and (1.10) could be replaced by a power of logP .

A second class of systems of the type (1.1) in which our methods apply is a
special case of Vinogradov’s Mean Value Theorem. Consider the system of the
form (1.1) with k = b(s), where b(s) denotes the (s− 1)-tuple (1, 2, . . . , s− 1). In
§9 we establish the following asymptotic formula.

Theorem 1.4. Let Ts(P ) denote the number of solutions of (1.1) counted by
Ss(P ;b(s)) in which the xi are a permutation of the yj, so that, in particular,
Ts(P ) = s!P s +Os(P

s−1). Then for each s ≥ 4,

Ss(P ;b(s))− Ts(P )�ε,s P
(s+4)/2+ε.

For comparison, Hua [24, Lemma 5.4] had previously obtained the upper bound

Ss(P ;b(s))�s P
s(logP )2

s−1−1.

In addition, Rogovskaya [28], improving on work of Bykovskii, has shown that

S3(P ; 1, 2) =
18

π2
P 3 logP +O(P 3).

Once again, the P ε occurring in the statement of Theorem 1.4 may be replaced by
a power of logP with little difficulty. In §10 we obtain sharper conclusions in the
case s = 4.
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Theorem 1.5. Let T4(P ) denote the number of solutions of (1.1) counted by
S4(P ; 1, 2, 3) in which the xi are a permutation of the yj. Then

P 2 logP � S4(P ; 1, 2, 3)− T4(P )� P 10/3(log 2P )35.

There are other situations in which one might expect that the number of non-
trivial solutions should be relatively small, and possibly zero. Perhaps the simplest
example to which our methods are not obviously applicable is the system of the
form (1.1) with s = 3, t = 2, k1 = 1 and k2 = 4. In an interesting development,
so as to tackle this and associated situations, Greaves [15] has developed a quite
different method, related to the sieving methods of Greaves [14] and Hooley [18,
19, 20, 21]. For each h ≥ 4, Greaves obtains the asymptotic formula

S3(P ; 1, h) = 6P 3 +Oε,h

(
P 17/6+ε

)
.

It is possible that in the systems of the type (1.1) with k = a(s) or b(s), there are
many values of s for which there are no non-diagonal solutions, so that the xi are
simply a permutation of the yj in any such solution of (1.1). Indeed, it is possible
that such is the case for all large s, but this is not at all clear. It is plain that each
non-diagonal solution (x,y) = (u,v) generates V (P ;u,v) non-diagonal solutions in
a box of the form (1.3), where V (P ;u,v)�u,v P , simply by considering the points
(λu, λv) (λ ∈ N). Thus the current state of knowledge concerning the problem of
Prouhet and Tarry (see Theorem 411 and the note on page 339 of [16]) suffices to
show that the number of non-diagonal solutions counted by Ss(P ;b(s)) is �s P
when 3 ≤ s ≤ 10. In §11 we make some further comments concerning lower bounds
for the number of non-diagonal solutions of several other systems of the type (1.1).

The authors thank the many people with whom they have had stimulating discus-
sions concerning rational points on algebraic varieties, and in particular Professors
E. Bombieri, Z. Rudnick and P. Sarnak. The authors also thank Professor Kent
Boklan, whose work initially drew us into the topics described above, and Professor
J. Thunder, who brought to our attention the work of Katznelson.

Throughout, � and � denote Vinogradov’s well-known notation, and we write
f � g to denote that f � g and f � g. For the sake of conciseness, we make
frequent use of vector notation. Thus, for example, we abbreviate (c1, . . . , ct) to
c. We write d(·) for the divisor function, φ(·) for the Euler totient function, and
(a1, . . . , as) for the greatest common divisor of a1, . . . , as. Finally, we write e(u) for
e2πiu, and eq(u) for e(u/q).

2. The nonary cubic form

As our first step in the analysis of the non-trivial solutions of the system (1.2),
we make a transformation which generates the “nonary cubic form” of the title.
In addition to merely defining this transformation, in this section we shall also
determine precisely the region in which the transformed variables lie.
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Let us first observe that if in (1.2) we have xi = yj for some i and j with 1 ≤
i, j ≤ 3, then it follows that (x1, x2, x3) is a permution of (y1, y2, y3). Thus, in the
analysis of the non-trivial solutions of the system (1.2), we may suppose that xi = yj
for no i and j. Next, on factorising the polynomial x31 + x32 + x33 − (x1 + x2 + x3)3,
we deduce that the system (1.2) is equivalent to the pair of equations

(x2 + x3)(x3 + x1)(x1 + x2) = (y2 + y3)(y3 + y1)(y1 + y2),

x1 + x2 + x3 = y1 + y2 + y3.

Write s(z) = z1 + z2 + z3, and make the substitutions Xi = s(x) − xi and Yi =
s(y)− yi (i = 1, 2, 3). Then we find that the solutions of (1.2) subject to (1.3) are
in one-to-one correspondence with the solutions of the system

X1X2X3 = Y1Y2Y3,

X1 +X2 +X3 = Y1 + Y2 + Y3 ≡ 0 (mod 2)
(2.1)

subject to
0 < s(α)− 2αi ≤ 2P (i = 1, 2, 3;α = X,Y ). (2.2)

Moreover the condition that a solution x,y be non-trivial corresponds to the con-
dition that Xi = Yj for no i and j with 1 ≤ i, j ≤ 3. For if Xi = Yj for some i and
j, then it follows that (X1, X2, X3) is a permutation of (Y1, Y2, Y3), and hence that
xi = yj for some i and j.

The multiplicative structure of the cubic equation in (2.1) leads us to a very
natural reduction, namely the removal of common factors between the variables.
Let us therefore write

d1 = (Y1, X1), d2 = (Y1/d1, X2), d3 = Y1/(d1d2),
e1 = (Y2, X1/d1), e2 = (Y2/e1, X2/d2), e3 = Y2/(e1e2),
f1 = (Y3, X1/(d1e1)), f2 = (Y3/f1, X2/(d2e2)), f3 = Y3/(f1f2).

 (2.3)

Then the first equation of (2.1) becomes

X1X2

d1e1f1d2e2f2
X3 = d3e3f3.

But we have (
X1X2

d1e1f1d2e2f2
, d3e3f3

)
= 1,

and thus we deduce that

X1 = d1e1f1, X2 = d2e2f2, X3 = d3e3f3. (2.4)

Furthermore, from (2.3),

Y1 = d1d2d3, Y2 = e1e2e3, Y3 = f1f2f3. (2.5)
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On substitution, the linear equation in (2.1) reduces to the nonary cubic form

d1e1f1 + d2e2f2 + d3e3f3 = d1d2d3 + e1e2e3 + f1f2f3 ≡ 0 (mod 2), (2.6)

and the conditions (2.2) lead to the inequalities

0 < d1e1f1 + d2e2f2 + d3e3f3 − 2dieifi ≤ 2P (i = 1, 2, 3), (2.7)

and
0 < d1d2d3 + e1e2e3 + f1f2f3 − 2α1α2α3 ≤ 2P (α = d, e, f), (2.8)

on the positive variables di, ei and fi (i = 1, 2, 3). Moreover the condition that a
solution be non-trivial is equivalent to the condition that

dieifi 6= α1α2α3 (i = 1, 2, 3;α = d, e, f), (2.9)

and the definitions (2.3) imply that

(d2d3, e1f1) = (d3, e2f2) = (e2e3, f1) = (e3, f2) = 1. (2.10)

It is a simple matter to check that the solutions of (2.6) satisfying the conditions
(2.7)-(2.10) are in one-to-one correpsondence with the non-trivial solutions of (1.2)
subject to (1.3). As we shall explain in the next section, this observation alone is
sufficient to obtain a non-trivial estimate for U(P ).

As our concluding remark in this section, we note that the equation in (2.6) may
be written in the form

det

 d1 f2 e3
f3 e1 d2
e2 d3 f1

 = 0,

justifying our comment in the introduction concerning the equation (1.8).

3. The simplest upper bound

In this section we prove Theorem 1.1 by establishing an upper bound for U(P ).
Consider first the number of non-trivial solutions, U1(P ), of the system (2.1) satis-
fying (2.2), subject to the additional conditions

Y1 = max
i=1,2,3

{Xi, Yi}, (Y1, X1) = max
j=1,2,3

(Y1, Xj), (3.1)

and (
Y1

(X1, Y1)
, X2

)
≥
(

Y1
(X1, Y1)

, X3

)
. (3.2)

By relabelling variables, we find that

U(P )� U1(P ). (3.3)
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Further, by following through the reduction (2.3), it follows that

U1(P ) ≤ U2(P ), (3.4)

where U2(P ) denotes the number of solutions of (2.6) with the parity condition
discarded, and with the variables satisfying the inequalities

1 ≤ dieifi ≤ 2P (i = 1, 2, 3) and 1 ≤ α1α2α3 ≤ 2P (α = d, e, f). (3.5)

Moreover the conditions (3.1) and (3.2), together with (2.9), impose the additional
restrictions

d1d2d3 > dieifi (i = 1, 2, 3), (3.6)

and
d1 ≥ d2 ≥ d3. (3.7)

We take P to be a real number with P ≥ 1, and write Q = 2P . On multiplying
the equation in (2.6) through by d3 and rearranging terms, we obtain

(d1d3 − e2f2)(d2d3 − e1f1) = (e3d3 − f1f2)(f3d3 − e1e2). (3.8)

In view of (3.6), given d1,d2, d3, e1, e2, f1 and f2 in any solution d, e, f counted
by U2(P ), the number of choices for e3 and f3 is at most

d ((d1d3 − e2f2)(d2d3 − e1f1)) ≤ d(d1d3 − e2f2) · d(d2d3 − e1f1).

We now note that since d1d2d3 ≤ Q, it follows from (3.7) that

d3 ≤ Q1/3. (3.9)

Therefore, from (3.3) and (3.4) we have

U(P )�
∑

d1e1f1≤Q

∑
d2e2f2≤Q

∑
d3≤Q1/3

d(d1d3 − e2f2) · d(d2d3 − e1f1),

where the summation is restricted to those values of d3 satisfying (3.6). Then by
Cauchy’s inequality, and symmetry,

U(P )�
∑

d1e1f1≤Q

∑
d2e2f2≤Q

∑
d3≤Q1/3

d1d3>e2f2

d(d1d3 − e2f2)2

≤
∑

e1f1≤Q

∑
d2e2f2≤Q

∑
e2f2<m≤Q4/3/(e1f1)

d(m)d(m− e2f2)2.

Thus, by Hölder’s inequality, symmetry, and standard estimates for divisor sums,

U(P )�
∑

e1f1≤Q

∑
d2e2f2≤Q

∑
m≤Q4/3/(e1f1)

d(m)3

�
∑

e1f1≤Q

∑
n≤Q

d3(n)
Q4/3

e1f1
(logQ)7

� Q7/3(logQ)9
∑

e1f1≤Q

(e1f1)−1.

Thus U(P )� P 7/3(log 2P )11, and Theorem 1.1 follows immediately.
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4. A refined upper bound: preliminaries

The object of the next three sections will be to refine the argument of §§2 and 3
so as to provide the upper bound contained in Theorem 1.2. We first note that it
follows from those sections that U(P )� U3(2P ), where U3(Q) denotes the number
of solutions of (3.8) subject to (3.5), (3.6), (3.7), (3.9), (2.10), and the additional
conditions

2dieifi < d1e1f1 + d2e2f2 + d3e3f3, (4.1)

and
d1d2d3 < min{e1e2e3 + f1f2f3, Q}. (4.2)

Note that the last two conditions follow from (2.7) and (2.8). For each solution d,
e, f counted by U3(Q), write

u = d1d3 − e2f2, v = d2d3 − e1f1, w = e3d3 − f1f2, x = f3d3 − e1e2. (4.3)

Then the equation (3.8) becomes

uv = wx, (4.4)

and (2.10) may be replaced by the condition

(d3, e1e2f1f2) = (v, e1f1) = (w, f1f2) = (e2, f1) = 1. (4.5)

Moreover the first of these coprimality conditions implies that

(uv, d3) = 1. (4.6)

We now use the idea of removing common factors between the variables in equa-
tion (4.4). First observe that (3.6) implies that u and v are both positive. Let

r = (u,w), y = u/r, z = |w|/r, and z∗ = w/r. (4.7)

On substituting into (4.4), we deduce that yv = z|x|. But (y, z) = 1, and so z|v.
We therefore write

s = v/z, and s∗ = v/z∗, (4.8)

in view of which |x| = ys and x = ys∗. By (4.7) and (4.8), since u and v are both
positive, the variables y, r, s and z are also positive. Moreover from (4.3), the
latter variables satisfy the equations

yr+ e2f2 = d1d3, zs+ e1f1 = d2d3, z∗r+f1f2 = e3d3, ys∗+ e1e2 = f3d3. (4.9)

On substituting from (4.9), we deduce from (4.5) and (4.6) that

(d3, e1e2f1f2yrzs) = (zs, e1f1) = (zr, f1f2) = (e2, f1) = 1. (4.10)
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Furthermore, the inequality (4.2) implies that

(yr + e2f2)(zs+ e1f1) < f1f2(ys∗ + e1e2) + e1e2(z∗r + f1f2),

and consequently

yrzs+ (re1 − s∗f2)(yf1 − z∗e2) < e1e2f1f2. (4.11)

Finally, we observe that the condition (3.6) together with (4.9) leads to the inequal-
ity

(yr + e2f2)(zs+ e1f1) > (z∗r + f1f2)(ys∗ + e1e2).

Thus,
yre1f1 + zse2f2 > z∗re1e2 + ys∗f1f2,

and we deduce that
(re1 − s∗f2)(yf1 − z∗e2) > 0. (4.12)

It is clear from the last line of the preceding paragraph that the solutions counted
by U3(Q) may be classified according to the signs of s∗ and z∗. Thus we deduce
that

U(P )� U+(2P ) + U−(2P ), (4.13)

where U+(Q) denotes the number of positive solutions d, e, f , y, r, z, s of (4.9)
satisfying (3.5), (3.6), (3.7), (3.9), (4.1), (4.2), (4.10), (4.11), (4.12), and s∗ and z∗

positive, and U−(Q) denotes the corresponding number of solutions with s∗ and z∗

negative.
The argument we use to bound U±(Q) depends for its success on suitable esti-

mates for certain divisor sums of special type, these arising through the equations
(4.9). We record here a number of estimates for such sums.

Lemma 4.1. Suppose that X ≥ 1, Y ≥ 1, Z ≥ 1, a ∈ Z, b ∈ Z and d ∈ N. Let
S(d) denote the number of ordered pairs of natural numbers x and y with xy ≤ Z,
d ≤ x ≤ X, d ≤ y ≤ Y , x ≡ a (mod d) and y ≡ b (mod d). Then

S(d)� d−2 min{Z,XY } log

(
2 min{Zd−1, X}min{Zd−1, Y }

min{Z,XY }

)
. (4.14)

Proof. We may plainly suppose that 0 ≤ a, b < d. Then on writing u = (x − a)/d
and v = (y − b)/d, we have

1 ≤ u ≤ Xd−1, 1 ≤ v ≤ Y d−1 and uv ≤ Zd−2. (4.15)

A comparison of the definition of S(d) with (4.15) reveals that (4.14) holds for
arbitrary d so long as it holds for d = 1, which we henceforth assume. Also, since
when Z ≥ XY and d = 1 the estimate (4.14) is trivial, we may suppose that
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Z < XY . Moreover, by dividing into cases according to whether x ≤ Z/Y or
x > Z/Y , in this latter case we have

S(1) =
∑

1≤x≤Z/Y

∑
1≤y≤Y

1 +
∑

Z/Y <x≤min{Z,X}

∑
1≤y≤Z/x

1

� Z + Z log

(
2 min{Z,X}
max{Z/Y, 1}

)
,

whence the lemma follows once again.

Lemma 4.2. Suppose that X > 0, Y > 0, Z ≥ 1, a ∈ Z, b ∈ Z and d ∈ N. Let
T (d) denote the number of ordered pairs of natural numbers x and y with xy ≤ Z,
x > X, y > Y , min{x, y} ≥ d, x ≡ a (mod d) and y ≡ b (mod d). Then

T (d)� Zd−2 log

(
2 max{Z,XY }

XY

)
. (4.16)

Proof. Again we may suppose that 0 ≤ a, b < d. On writing u = (x − a)/d and
v = (y − b)/d, we have

uv ≤ Zd−2, (1 + u)d > X, (1 + v)d > Y, u ≥ 1 and v ≥ 1. (4.17)

Thus
u > X/(2d) and v > Y/(2d), (4.18)

and a comparison of the definition of T (d) with (4.17) and (4.18) reveals that (4.16)
holds for d so long as it holds for d = 1, which we henceforth assume. Also, since
when Z ≤ XY the number T (1) is zero, we may suppose that XY < Z. Then
in order to be counted by T (1), the pair (x, y) must satisfy X < x < Z/Y and
Y < y ≤ Z/x. Hence

T (1) ≤
∑

X<x<Z/Y

Z/x� Z log
2Z

XY
,

and the proof of the lemma is complete.

Lemma 4.3. When n is a natural number, let U(n,X) denote the number of pos-
itive integral solutions of the equation xy + zt = n with xy ≤ X. Then

U(n,X)� (Xn)1/2 + (log 2X)(log 2n) min{n,X}
∑
u|n

u−1.

Proof. By symmetry we may suppose that x ≤
√
X and z ≤

√
n. Thus, on taking

u = (x, z), we have

U(n,X)�
∑
u|n

∑
v≤
√
X/u

∑
w≤
√
n/u

(v,w)=1

M(n;u, v, w), (4.19)
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where M(n;u, v, w) denotes the number of integral solutions of the equation

vy + wt = n/u (4.20)

with
1 ≤ y ≤ X/(uv) and 1 ≤ t ≤ n/uw. (4.21)

If a solution of (4.20) exists, say (y0, t0), then any other solution satisfies v(y−y0) =
w(t0 − t). Since (v, w) = 1, the solutions are therefore given by y = y0 + λw and
t = t0−λv, for some integer λ. In view of (4.21), λ must lie in an interval of length
at most (uvw)−1 min{n,X}, and consequently

M(n;u, v, w)� 1 + (uvw)−1 min{n,X}. (4.22)

The lemma now follows immediately from (4.19) and (4.22).

Lemma 4.4. Let

V =
∑
x,y,z,t
xy+zt=n

log

(
2n

xy

)
.

Then
V � n(log 2n)2

∑
u|n

u−1.

Proof. By using Riemann-Stieltjes integration, and integrating by parts, we obtain,
in the notation of Lemma 4.3,

V =

∫ 2n

1

U(n,X)X−1dX.

Hence, by that lemma,

V � n+
∑
u|n

u−1
∫ 2n

1

(log 2X)(log 2n) min{n,X}X−1dX

� n(log 2n)2
∑
u|n

u−1,

which completes the proof.

Before we proceed to estimate U±(Q), we shall record a useful inequality which
is satisfied by solutions counted by U±(Q). By (3.5) and (3.6) we have

e1e2f1f2 =
(d1e1f1)(d2e2f2)d3

d1d2d3
< Qd3. (4.23)
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5. A refined upper bound: the negative case

We now estimate the number of solutions counted by U−(Q), so that both s∗

and z∗ are negative. In this case the inequality (4.11) becomes

yrzs+ (re1 + sf2)(yf1 + ze2) < e1e2f1f2, (5.1)

and consequently

yr < e2f2, zs < e1f1, ys < e1e2, zr < f1f2. (5.2)

Also, in view of (4.9),

e2f2 < d1d3 < 2e2f2 and e1f1 < d2d3 < 2e1f1. (5.3)

The proof now divides into a number of subcases.

(A)(i) y > d3 and s > d3, or (ii) r > d3 and z > d3. Since the analysis in each
case is similar, we shall restrict attention to the solutions of type (i). From (4.9)
and (4.10), we have

y ≡ −r−1e2f2 (mod d3) and s ≡ −z−1e1f1 (mod d3).

Further, on combining (5.2) with our initial hypothesis,

d3 < y < e2f2/r, d3 < s < e1f1/z and sy < e1e2.

Then given d3, r, z, e1, e2, f1, f2, we may apply Lemma 4.1, making use of the last
inequality in (5.2), to show that the number of possible choices for s and y is

� d−23 e1e2 log

(
2f1f2
rz

)
. (5.4)

On recalling (4.9) and (4.23) we deduce from (5.4) that the number of solutions in
this case, U−A (Q), satisfies

U−A (Q)�
∑
f1≤Q

∑
f2≤Q

∑
d3,e3,r,z

d3e3+rz=f1f2

log

(
2f1f2
rz

) ∑
e1e2<

Qd3
f1f2

e1e2d
−2
3 . (5.5)

The last sum in (5.5) is

�
∑

e1<
Qd3
f1f2

Q2

e1(f1f2)2
� (f1f2)−2Q2 log

(
Qd3
f1f2

)
.
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Therefore, on applying Lemma 4.4, and noting (3.9), we deduce that

U−A (Q)� Q2(logQ)3
∑
f1≤Q

∑
f2≤Q

(f1f2)−1
∑
u|f1f2

u−1. (5.6)

But ∑
f1≤Q

∑
f2≤Q

(f1f2)−1
∑
u|f1f2

u−1 �
∑
u≤Q2

∑
t|u

∑
g1≤Q/t

∑
g2≤Qt/u

(
g1g2u

2
)−1

� (logQ)2
∑
u≤Q2

d(u)u−2,

and so by (5.6), we have U−A (Q)� Q2(logQ)5.

(B)(i) r > d3 and s > d3, or (ii) y > d3 and z > d3. The analysis in each case
is again similar, and so we restrict attention to the solutions of type (i). By (5.1)
and our initial hypothesis,

d3 < r <
e2f1f2

yf1 + ze2
and d3 < s <

e1e2f1
yf1 + ze2

.

Further, from (4.9) and (4.10) we have

r ≡ −y−1e2f2 (mod d3) and s ≡ −z−1e1f1 (mod d3).

Then given d3, e1, e2, f1, f2, y, z, the number of possible choices for r and s is

� e1f2e
2
2f

2
1

d23(yf1 + ze2)2
. (5.7)

Next we note that by (4.9) we have

f1(yr + e2f2) + e2(zr − f1f2) = d3(d1f1 − e2e3).

Thus by (4.10), d3|yf1 + ze2, and moreover on applying (3.5) we obtain (yf1 +
ze2)/d3 ≤ Q. Therefore, on recalling (4.23) we deduce from (5.7) and (4.9) that
the number of solutions in this case, U−B (Q), satisfies

U−B (Q)�
∑
d3≤Q

∑
m≤Q

∑
y,z,f1,e2

yf1+ze2=d3m

∑
e1f2<Qd3(e2f1)−1

e1f2e
2
2f

2
1

d43m
2

� Q2 logQ
∑
d3≤Q

∑
m≤Q

(d3m)−2
∑

y,z,f1,e2
yf1+ze2=d3m

1.

By Lemma 4.4, therefore, we may conclude that

U−B (Q)� Q2(logQ)3
∑
d3≤Q

∑
m≤Q

(d3m)−1
∑
u|d3m

u−1,

whence, as in case (A), we find that U−B (Q)� Q2(logQ)5.
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(C)(i) y > d3 and max{z, s} ≤ d3, or (ii) r > d3 and max{s, z} ≤ d3. In the
second case we can proceed in the same manner as in the first case, but with r
and y interchanged. Thus we shall restrict attention to the solutions of type (i).
On recalling equations (3.9), (4.23), (5.3), (3.7), (4.10), (5.2), (4.9), and the initial
hypothesis, we find that the number of solutions in this case, U−C (Q), satisfies

U−C (Q)�
∑

d3≤Q1/3

∑
e1e2f1f2<Qd3

2e1f1>d
2
3

(e1e2f1f2,d3)=1

∑
r<e2f2

∑
d3<y<e2f2/r
d3|ry+e2f2

∑
z≤d3

d3|zr−f1f2

∑
s≤d3

d3|sy−e1e2

1.

On observing that the innermost triple sum here is � e2f2(d3r)
−1, we find that

U−C (Q)� logQ
∑

d3≤Q1/3

d−13

∑
e1e2f1f2<Qd3

2e1f1>d
2
3

e2f2

� Q2(logQ)2
∑

d3≤Q1/3

d3
∑

1
2d

2
3<e1f1<Qd3

(e1f1)−2

� Q2(logQ)3
∑

d3≤Q1/3

d−13 .

Thus U−C (Q)� Q2(logQ)4.

(D)(i) z > d3 and max{y, r} ≤ d3, or (ii) s > d3 and max{r, y} ≤ d3. In the
first case we may argue in the same way as in (C)(i) after interchanging z and y,
and r and s, and reversing the rôles of e1f1 and e2f2. In the second case we may
proceed likewise on interchanging z and s. Thus we deduce that the number of
solutions in this case, U−D (Q), is � Q2(logQ)4.

(E) max{r, s, y, z} ≤ d3. By (3.9), (4.23), (4.9), (4.10) and our initial hypothesis,
the number of solutions in this case, U−E (Q), satisfies

U−E (Q)�
∑

d3≤Q1/3

∑
e1e2f1f2<Qd3
(e1e2f1f2,d3)=1

∑
r≤d3

∑
y≤d3

d3|yr+e2f2

∑
s≤d3

d3|sy−e1e2

∑
z≤d3

d3|zs+e1f1

1

� Q(logQ)3
∑

d3≤Q1/3

d23,

and thus U−E (Q)� Q2(logQ)3.
We now observe that every solution counted by U−(Q) may be classified as one

of the types (A)-(E), and thus we may summarise the deliberations of this section
in the following lemma.

Lemma 5.1. The number of solutions in the negative case satisfies

U−(Q)� Q2(logQ)5.
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6. A refined upper bound: the positive case

In this section we estimate the number of solutions counted by U+(Q). Again
the proof divides into a series of subcases. We observe, for future reference, that in
this case

s = s∗ and z = z∗, (6.1)

so that by (4.11),

yrzs+ yre1f1 + zse2f2 < ysf1f2 + e1e2zr + e1e2f1f2. (6.2)

We first explore the situation in which either two at least of r, s, y and z exceed
d3, or two at least of e1, e2, f1 and f2 exceed d3.

(A)(i) sf2 > re1 and either (a) min{s, z} > d3 or (b) min{e2, f2} > d3,
or (ii) re1 > sf2 and either (a) min{r, y} > d3 or (b) min{e1, f1} > d3.

In the second case we can proceed in the same manner as in the first case, following
a suitable interchange of variables. Furthermore, the case (i)(b) may be disposed
of in the same manner as (i)(a), again following a suitable interchange of variables.
Thus we restrict attention to the solutions of type (i)(a). By our initial hypothesis,
(4.12) and (6.1), we have ze2 > yf1, and hence

s > re1/f2 and z > yf1/e2. (6.3)

Further, from (4.9) and (4.10) we have

s ≡ −y−1e1e2 (mod d3) and z ≡ −r−1f1f2 (mod d3). (6.4)

Moreover, (4.9) yields zs(yr+ e2f2) = (d2d3 − e1f1)d1d3, and hence by using (3.5)
we obtain

zs < Qd3(yr + e2f2)−1. (6.5)

Then given d3, e1, e2, f1, f2, r, y, we may apply Lemma 4.2 with (6.3), (6.4), (6.5)
and the initial hypothesis, to show that the number of possible choices for s and z
is

� Q

d3(yr + e2f2)
log

(
2Qd3e2f2

rye1f1(yr + e2f2)

)
. (6.6)

Next we note that by (6.3) and (6.5),

Qd3e2f2 > e2f2zs(yr + e2f2) > yre1f1(yr + e2f2), (6.7)

and by (3.5) and (4.9),

e1f1 < Qd3(d1d3)−1 = Qd3(yr + e2f2)−1. (6.8)

Thus, on recalling (6.6), we deduce that given d3, e2, f2, y and r, the number of
possible choices, S1, for e1, f1, s and z satisfies

S1 �
∑
e1,f1

Q

d3(yr + e2f2)

(
log

(
M∗Qd3

e1f1(yr + e2f2)

)
+ log

(
2e2f2
yrM∗

))
,
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where, by (6.7) and (6.8), the summation is over e1 and f1 satisfying

e1f1 <M∗Qd3(yr + e2f2)−1,

and M∗ is defined by
M∗ = min

{
1, e2f2(yr)−1

}
. (6.9)

Consequently, on using (3.5) we obtain

S1 �
∑
e1≤Q

Q2M∗

e1(yr + e2f2)2
log

(
2e2f2

min{yr, e2f2}

)

� Q2 logQ

(yr + e2f2)2
log

(
2(yr + e2f2)

yr

)
. (6.10)

Now, on substituting from (4.9) into (6.10), we find that the number of solutions
in this case, U+

A (Q), satisfies

U+
A (Q)� Q2 logQ

∑
d1≤Q

∑
d3≤Q

(d1d3)−2
∑

y,r,e2,f2
yr+e2f2=d1d3

log

(
2d1d3
yr

)
.

By Lemma 4.4, therefore,

U+
A (Q)� Q2(logQ)3

∑
d1≤Q

∑
d3≤Q

(d1d3)−1
∑
u|d1d3

u−1,

and thus U+
A (Q)� Q2(logQ)5.

(B)(i) re1 > sf2 and either (a) min{s, z} > d3 or (b) min{e2, f2} > d3,
or (ii) sf2 > re1 and either (a) min{r, y} > d3 or (b) min{e1, f1} > d3.

Once again, by a suitable interchange of variables, we may restrict attention to
the solutions of type (i)(a). By our initial hypothesis, (4.12) and (6.1), we have
ze2 < yf1, and hence

s < re1/f2 and z < yf1/e2. (6.11)

Moreover, as in (A), we have (6.4) and (6.5). Then on recalling our intial hypothesis
and (6.11), we may apply Lemma 4.1 to deduce that given d3, e1, e2, f1, f2, r, y,
the number of possible choices, S1, for s and z satisfies

S1 �
Q

d3(yr + e2f2)
log

(
2(yr + e2f2)rye1f1

Qd3e2f2

)
, (6.12)

when Qd3e2f2 < rye1f1(yr + e2f2), and otherwise satisfies

S1 � rye1f1(d23e2f2)−1. (6.13)
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We now sum S1 over the possible choices of e1 and f1, noting that the inequality
(6.8) remains valid in this case. On recalling the notation defined in (6.9), we find
from (6.13) and (3.5) that the contribution, S2, of those terms with

e1f1 ≤ Qd3(yr + e2f2)−1M∗

satisfies

S2 �
∑
e1≤Q

(
Qd3M∗

e1(yr + e2f2)

)2
rye1
d23e2f2

� Q2 logQ
M∗2

(yr + e2f2)2
ry

e2f2
.

Thus

S2 �
Q2 logQ

(yr + e2f2)2
. (6.14)

Meanwhile, when e2f2 < yr, there may be an additional contribution, S3, from
those terms with

Qd3e2f2
yr(yr + e2f2)

< e1f1 ≤
Qd3

yr + e2f2
.

In this circumstance, by (6.12) and (3.5) we have

S3 �
∑
e1≤Q

Q2

(yr + e2f2)2e1
log

(
2yr

e2f2

)

� Q2 logQ

(yr + e2f2)2
log

(
2yr

e2f2

)
. (6.15)

Collecting together (6.15), (6.14) and (4.9), we conclude that the total number of
solutions in this case, U+

B (Q), satisfies

U+
B (Q)� Q2 logQ

∑
d1≤Q

∑
d3≤Q

(d1d3)−2
∑

y,r,e2,f2
yr+e2f2=d1d3

log

(
2d1d3
e2f2

)
,

whence, using the same argument as in case (A), U+
B (Q)� Q2(logQ)5.

(C)(i) sf2 < re1 and either (a) min{s, y} > d3 or (b) min{f1, f2} > d3,
or (ii) re1 < sf2 and either (a) min{r, z} > d3 or (b) min{e1, e2} > d3.

Again, by a suitable interchange of variables, we may restrict attention to the
solutions of type (i)(a). By (4.9) and (3.5), we have yre1f1 < (d1e1f1)d3 ≤ Qd3,
which together with the initial hypothesis gives

s < re1/f2 and y < Qd3(re1f1)−1. (6.16)
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Further, from (4.9) and (4.10) we have

s ≡ −z−1e1f1 (mod d3) and y ≡ −r−1e2f2 (mod d3). (6.17)

Moreover, (4.9) and (6.1) yield sy(zr + f1f2) < e3d3(f3d3 − e1e2), and hence by
using (3.5) we obtain

sy < Qd3/(zr + f1f2). (6.18)

Then on recalling our initial hypothesis, we may apply Lemma 4.1 with (6.16),
(6.17) and (6.18) to deduce that given d3, e1, e2, f1, f2, r, z, the number, S1, of
permissible s and y satisfies

S1 � Qd−13 (zr + f1f2)−1 log

(
2(zr + f1f2)

f1f2

)
. (6.19)

In view of (3.5) the permissible e1 and e2 satisfy e1e2 < Q/e3, and so by (3.5), (4.9)
and (6.19), the total number of solutions in this case, U+

C (Q), satisfies

U+
C (Q)� Q2 logQ

∑
d3≤Q

∑
e3≤Q

(d3e3)−2
∑

z,r,f1,f2
zr+f1f2=d3e3

log

(
2d3e3
f1f2

)
.

Therefore, by applying the same argument as in case (A), we obtain U+
C (Q) �

Q2(logQ)5.

(D)(i) sf2 > re1 and either (a) min{s, y} > d3 or (b) min{f1, f2} > d3,
or (ii) re1 > sf2 and either (a) min{r, z} > d3 or (b) min{e1, e2} > d3.

Once again we may restrict attention to the solutions of type (i)(a). By our initial
hypothesis, (4.12) and (6.1), we have yf1 < ze2. Moreover by (4.9) and (3.5),
sze2f2 < (d2e2f2)d3 ≤ Qd3. Thus

y < ze2/f1 and s < Qd3(ze2f2)−1. (6.20)

Further, following the same argument as in (C) we find that (6.17) and (6.18) remain
valid. Then on recalling our initial hypothesis, we may apply Lemma 4.1 with (6.20)
to deduce that given d3, e1, e2, f1, f2, r, z, the number, S1, of permissible s and y
satisfies (6.19). Thus we may argue as in (C) to deduce that the number of solutions
in this case, U+

D (Q), satisfies U+
D (Q)� Q2(logQ)5.

To summarise the progress so far, we have treated the contribution from all
solutions in which two at least of r, s, y, z exceed d3, or two at least of e1, e2, f1,
f2 exceed d3, except those solutions with

min{r, s} > d3, min{y, z} > d3, min{e1, f2} > d3 or min{e2, f2} > d3.
(6.21)

We now attend to those solutions for which (6.21) holds, dividing into two cases.
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(E)(i) min{r, s, e1, f2} > d3 and max{y, z, e2, f1} ≤ d3,
or (ii) min{y, z, e2, f1} > d3 and max{r, s, e1, f2} ≤ d3.

Once again we may restrict attention to solutions of type (i), without loss of gen-
erality. We may also assume that sf2 < re1, since if re1 < sf2, then we may apply
a kindred argument, but with the rôles of r, e1 and s, f2 reversed, and likewise y,
f1 and z, e2. Consider then those solutions of type (i) with

sf2 < re1. (6.22)

By (4.9) and (3.5), yrsz < d1d2d
2
3 ≤ Qd3, so that on recalling (4.23) we obtain

s < Qd3(yrz)−1 and f2 < Qd3(e1e2f1)−1. (6.23)

Further, from (4.9) and (4.10) we have

s ≡ −z−1e1f1 (mod d3) and f2 ≡ −e−12 yr (mod d3). (6.24)

We note also that by (4.9) and (6.1) we have r2e21yze2f1 < (d1e1f1)(e1e2e3)d23, and
hence

re1 <
Q2d23

yrze1e2f1
. (6.25)

Then on recalling our initial hypothesis, we may apply Lemma 4.1 with (6.22),
(6.23) and (6.24), noting (6.25), to deduce that given d3, e1, e2, f1, r, y, z, the
number, S1, of permissible s and f2 satisifes

S1 � re1d
−2
3 log

(
2Q2d23

r2e21yze2f1

)
. (6.26)

Next we observe that by (4.9) and (3.5), re1 < Qd3(yf1)−1. Moreover, by (6.22),
(4.12) and (6.1), we have yf1− ze2 > 0. Then in view of (6.26) and (3.5), given d3,
e2, f1, y, z, the number, S2, of permissible r, s, e1, f2 satisfies

S2 �
∑

re1<Qd3/(yf1)

re1
d23

(
log

(
2Q2d23
r2e21y

2f21

)
+ log

(
yf1
ze2

))

�
∑
e1≤Q

Q2

y2f21 e1

(
1 + log

(
yf1
ze2

))

� Q2 logQ

(y1f1)2
log

(
2yf1
ze2

)
. (6.27)

Next we note that by (4.9) and (6.1) we have

f1(yr + e2f2)− e2(zr + f1f2) = d3(d1f1 − e2e3).

Thus by (4.10),
d3|yf1 − ze2. (6.28)
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Therefore, by (4.9), (6.27) and (3.5), we deduce that the number of solutions in
this case, U+

E (Q), satisfies

U+
E (Q)� Q2 logQ

∑
y≤Q

∑
f1≤Q

(yf1)−2
∑

a,d3,z,e2
ze2+ad3=yf1

log

(
2yf1
ze2

)
,

and by applying Lemma 4.4 once again, we find that U+
E (Q)� Q2(logQ)5.

(F)(i) min{r, s, e2, f1} > d3 and max{y, z, e1, f2} ≤ d3,
or (ii) min{y, z, e1, f2} > d3 and max{r, s, e2, f1} ≤ d3.

Once again we may restrict attention to solutions of type (i), and start by consid-
ering those such solutions with sf2 < re1. Thus, on recalling (4.12) and (6.1), we
have also ze2 < yf1. Hence, on substitution into (6.2),

zsyr + zse2f2 + yre1f1 < 2yre1f1 + e1e2f1f2,

and so sz < e1f1. Moreover, (4.9), (6.1) and (3.5) yield (sy + e1e2)f1f2 =
(f1f2f3)d3 ≤ Qd3. Thus, in view of our initial hypothesis, we have

d3 < s < min
{
e1f1z

−1, Qd3(yf1f2)−1
}
. (6.29)

Also, (4.9) and (3.5) yield (yr+ e2f2)e1f1 = (d1e1f1)d3 ≤ Qd3, and so on recalling
our initial hypothesis we obtain

d3 < r < Qd3(e1f1y)−1. (6.30)

Further, from (4.9) and (4.10) we have

s ≡ −z−1e1f1 (mod d3) and r ≡ −y−1e2f2 (mod d3). (6.31)

Hence, on collecting together (6.29), (6.30) and (6.31), we deduce that given d3, e1,
e2, f1, f2, y, z, the number, S1, of permissible choices for r and s with r ≤ f1f2z−1
satisfies

S1 � d−23 min
{
e1f

2
1 f2z

−2, Q2d23(e1f
2
1 f2y

2)−1
}
. (6.32)

Similarly, the corresponding number, S2, of permissible choices with r > f1f2z
−1,

which in view of (6.30) occur only when

e1f2 < Qd3z(f
2
1 y)−1, (6.33)

satisfies
S2 � Q(d3zy)−1. (6.34)

We now estimate the number, S3, of permissible choices for s, r, e1, f2 for given
d3, e2, f1, y, z. By summing (6.34) over e1 and f2 satisfying (6.33), we find that
the contribution to S3 due to S2 is

� Q2 logQ(yf1)−2.
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Similarly from (6.32), the contribution to S3 due to S1 when (6.33) is satisfied is,
by (3.5),

�
∑
e1≤Q

f21 e1
z2d23

(
Qd3z

f21 ye1

)2

� Q2 logQ(yf1)−2.

In view of (4.23), it remains only to estimate the contribution to S3 due to S1 when

Qd3z(f
2
1 y)−1 ≤ e1f2 < Qd3(f1e2)−1.

Since the latter contribution is

�
∑
e1≤Q

Q2

e1f21 y
2

(
log

(
Qd3
f1e1e2

)
− log

(
Qd3z

e1f21 y

)
+ 1

)

� Q2 logQ(f1y)−2 log

(
2yf1
ze2

)
, (6.35)

we conclude that S3 is bounded by (6.35). We now observe that (6.28) remains
valid, and hence by (3.5), (4.9) and the initial hypothesis, the number of solutions
of this type, U+

F1
(Q), satisfies

U+
F1

(Q)� Q2 logQ
∑
f1≤Q

∑
y≤Q

(yf1)−2
∑

z,e2,a,d3
ze2+ad3=yf1

log

(
2yf1
ze2

)
.

An application of Lemma 4.4 once again leads to the conclusion that U+
F1

(Q) �
Q2(logQ)5.

It remains to consider the solutions of type (i) for which re1 < sf2. But for
such solutions we may deduce, from (4.12) and (6.1), that yf1 < ze2. Thus, on
substitution into (6.2),

yrzs+ yre1f1 + zse2f2 < 2sze2f2 + e1e2f1f2,

and so yr < e2f2. We may now follow an argument similar to that above, after an
interchange of variables which swaps r and s. Thus the number of solutions of this
type is also � Q2(logQ)5, and the total number of solutions of type (F), U+

F (Q),

satisfies U+
F (Q)� Q2(logQ)5.

In order to complete the analysis in the positive case, we have merely to dispose
of those solutions in which at most one of r, s, y and z exceed d3, or likewise for
e1, e2, f1 and f2.
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(G)(i) max{s, z} ≤ d3 or (ii) max{e1, f1} ≤ d3. By a suitable interchange of
variables we may restrict attention to the solutions of type (i). We note that by
(4.9), (4.10) and (6.1) we have

s ≡ −y−1e1e2 (mod d3) and z ≡ −r−1f1f2 (mod d3),

and hence, in view of our initial hypothesis, s and z are determined uniquely. Thus
by (4.9), (3.5) and (3.7), the total number of solutions in this case, U+

G (Q), satisfies

U+
G (Q)�

∑
d3≤Q

∑
d1≤Qd−2

3

∑
e1,f1

e1f1<Qd
−1
1

∑
y,r,e2,f2

yr+e2f2=d1d3

1

� Q logQ
∑
d3≤Q

∑
d1≤Qd−2

3

d−11

∑
y,r,e2,f2

yr+e2f2=d1d3

1.

By Lemma 4.4, therefore,

U+
G (Q)� Q(logQ)3

∑
d3≤Q

d3
∑

d1≤Qd−2
3

∑
u|d1d3

u−1. (6.36)

But ∑
d3≤Q

d3
∑

d1≤Qd−2
3

∑
u|d1d3

u−1 =
∑
u≤Q

∑
t|u

∑
g3≤Qt−1

∑
g1≤Q(g23tu)

−1

g3tu
−1

≤
∑
u≤Q

∑
t|u

∑
g3≤Qt−1

Q(g3u
2)−1

� Q logQ
∑
u≤Q

d(u)u−2.

Then we may conclude from (6.36) that U+
G (Q)� Q2(logQ)4.

If at most one of r, s, y, z exceeds d3, and max{s, z} > d3, then necessarily
max{r, y} ≤ d3. Thus to complete our treatment of the positive case we have
only to consider the solutions of the latter type, together with those for which
max{e2, f2} ≤ d3.

(H)(i) max{r, y} ≤ d3 or (ii) max{e2, f2} ≤ d3. By a suitable interchange of
variables we may restrict attention to the solutions of type (i). By imitating the
argument at the start of case (G), we deduce that the total number of solutions in
this case, U+

H (Q), satisfies

U+
H (Q)�

∑
d3≤Q1/3

∑
d2≤(Q/d3)1/2

∑
e2,f2

e2f2<Qd
−1
2

∑
z,s,e1,f1

zs+e1f1=d2d3

1

� Q(logQ)3
∑

d3≤Q1/3

d3
∑

d2≤(Q/d3)1/2

∑
u|d2d3

u−1, (6.37)
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again by employing Lemma 4.4. But∑
d3≤Q1/3

d3
∑

d2≤(Q/d3)1/2

∑
u|d2d3

u−1 =
∑
u≤Q

∑
t|u

∑
g3≤Q1/3t−1

∑
g2≤(Qtg−1

3 )1/2u−1

g3tu
−1

≤
∑
u≤Q

∑
t|u

∑
g3≤Q1/3t−1

(Qt3g3)1/2u−2

� Q
∑
u≤Q

d(u)u−2.

Then we may conclude from (6.37) that U+
H (Q)� Q2(logQ)3.

We may now summarise the conclusions of this section in the following lemma.

Lemma 6.1. The number of solutions in the positive case satisfies

U+(Q)� Q2(logQ)5.

Plainly, Lemmata 5.1 and 6.1, together with (4.13), yield the upper bound of
Theorem 1.2.

7. A lower bound

In this section we derive a lower bound for U(P ) by establishing a lower bound
for the number of non-trivial solutions of (2.1) subject to (2.2). We begin by making
a series of changes of variable which convert the original problem into one which
is easier to handle. We satisfy the condition (2.2) by restricting the variables to
satisfy the inequalities

4
5P < αi ≤ 6

5P (i = 1, 2, 3;α = X,Y ).

We may also conveniently satisfy the parity condition in (2.1) by further restricting
our variables to be even. Thus we put Xi = 2xi and Yi = 2yi (1 ≤ i ≤ 3), and
estimate from below the number of solutions of the system

x1x2x3 = y1y2y3

x1 + x2 + x3 = y1 + y2 + y3
(7.1)

with xi = yj for no i and j, and satisfying

2
5P < αi ≤ 3

5P (i = 1, 2, 3;α = x, y). (7.2)

We now follow the analysis of §2, but applied to our new variables. In this way we
find that the non-trivial solutions of the system (7.1) with (7.2) are in one-to-one
correspondence with the solutions of the nonary cubic equation

d1e1f1 + d2e2f2 + d3e3f3 = d1d2d3 + e1e2e3 + f1f2f3, (7.3)
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subject to (2.9), (2.10) and

2
5P < dieifi ≤ 3

5P (i = 1, 2, 3),
2
5P < α1α2α3 ≤ 3

5P (α = d, e, f).
(7.4)

We now proceed as at the start of §5, our aim at this stage being to remove any
explicit reference to d1, d2, e3 and f3. We rewrite (7.3) in the form (3.8) with (4.3),
and then make the substitutions (4.7) and (4.8). Since we are interested only in a
lower bound for U(P ), we may restrict attention to the situation in which y, r, z∗

and s∗ are all positive. Then (4.9) reduces to

ry+e2f2 = d1d3, sz+e1f1 = d2d3, rz+f1f2 = d3e3, sy+e1e2 = d3f3, (7.5)

and the conditions (2.10), and those implicit in the substitutions (4.7) and (4.8),
become

(d3, e1e2f1f2) = (e2, f1) = (sz, e1f1) = (rz, f1f2) = (y, z) = 1. (7.6)

On substituting from (7.5), we find that (7.4) becomes the condition that each of
the expressions

(rz + f1f2)(sy + e1e2), e1f1(ry + e2f2), e1e2(rz + f1f2),

(ry + e2f2)(sz + e1f1), f1f2(sy + e1e2), e2f2(sz + e1f1)
(7.7)

lies in the interval (2
5Q,

3
5Q], where for the sake of brevity here, and in what follows,

we write
Q = Pd3. (7.8)

Also, in view of (7.5) and the positivity of y, r, z and s, the condition (2.9) may
be replaced by the five inequalities

(sz + e1f1)f2 6= e1(rz + f1f2), (sz + e1f1)e2 6= f1(sy + e1e2),

(ry + e2f2)f1 6= e2(rz + f1f2), (ry + e2f2)e1 6= f2(sy + e1e2),

and
(rz + f1f2)(sy + e1e2) 6= (ry + e2f2)(sz + e1f1).

Fortunately, the latter inequalities reduce to

sf2 6= re1 and ze2 6= yf1. (7.9)

Thus, in order to establish a lower bound for U(P ), it suffices to bound from below
the number of d3, e1, e2, f1, f2, y, r, z, s with

d3|(ry + e2f2, sz + e1f1, rz + f1f2, sy + e1e2), (7.10)
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for which (7.6) and (7.9) hold, and such that each of the expressions in (7.7) lies in
the interval ( 2

5Q,
3
5Q].

It is the last condition above which is most awkward to handle. Our strategy is
to choose e1, e2, f1, f2 so that e1e2f1f2 is close to 1

2Q, and then to choose y, r, z, s
so that the other terms arising in (7.7) are somewhat smaller. To achieve this aim
we proceed as follows. Let δ be a sufficiently small positive constant, and suppose
that P is sufficiently large in terms of δ. Then we suppose that

d3 ≤ P δ, P 1/4 < e1, e2, f1 ≤ P 2/7, (7.11)(
1
2 − δ

)
Q < e1e2f1f2 ≤

(
1
2 + δ

)
Q, (7.12)(

δQ

e1f1

) 1
2−δ

< y ≤
(
δQ

e1f1

) 1
2+δ

, (7.13)

δQ

2ye1f1
< r ≤ δQ

ye1f1
,

δQ

20re1e2
< z ≤ δQ

10re1e2
, 0 < s ≤ δQ

100ze2f2
, (7.14)

yr ≡ −e2f2 (mod d3), zr ≡ −f1f2 (mod d3), sz ≡ −e1f1 (mod d3), (7.15)

and

(d3, e1e2f1f2) = (e2, f1) = (y, d3) = (r, f1f2) = (z, e1f1f2y) = (s, e1f1) = 1.
(7.16)

Lemma 7.1. Let N0(P ) denote the number of d3, e1, e2, f1, f2, y, r, z, and s
satisfying (7.11)-(7.16). Then U(P )� N0(P ).

Proof. First note that the coprimality conditions (7.16) immediately imply those
of (7.6). Next we observe that (7.15) implies that

yrzs ≡ e1e2f1f2 ≡ −e1e2rz (mod d3). (7.17)

Then by (7.16) we have (d3, yrzs) = (d3, e1e2f1f2) = 1, and hence ys ≡ −e1e2
(mod d3). Consequently (7.15) and (7.16) together imply (7.10). We now consider
the expressions (7.7). By (7.12) and (7.14),

ry ≤ 2δ

1− 2δ
· e2f2, rz ≤ 2δ

1− 2δ
· f1f2

10
, sz ≤ 2δ

1− 2δ
· e1f1

100
. (7.18)

Further, by (7.14) we have y ≤ δQ(e1f1r)
−1, so that by incorporating (7.12) we

obtain

sy ≤ δQ

100ze2f2
· δQ

e1f1r
<

2δ

1− 2δ
· e1e2

5
. (7.19)

On applying (7.18) and (7.19), we find that when δ is sufficiently small, each of the
expressions in (7.7) lies in the interval ( 2

5Q,
3
5Q]. Further, again by (7.14),

sf2 ≤
δQ

100ze2
< 1

5re1 and ze2 ≤
δQ

10re1
< 1

5yf1,

so that (7.9) is satisfied. This completes the proof of the lemma.

In order to exploit this lemma, we must provide estimates for certain counting
functions.
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Lemma 7.2. Suppose that d3, e1, e2, f1, f2 and y satisfy (7.11), (7.12), (7.13)
and

(d3, e1e2f1f2) = (e2, f1) = (y, d3) = 1.

Then the number, N1(P ), of possible choices for r, z and s subject to (7.14), (7.15)
and (7.16) satisfies

N1(P )� φ(e1f1)φ(e1f1f2y)φ(f1f2)

d3e31e2f
4
1 f

3
2 y

2
P 2.

Proof. Suppose that we are given d3, e1, e2, f1, f2, y, r and z satisfying the
conditions of (7.11)-(7.16) independent of s. Write

R =
δQ

100ze2f2
, (7.23)

and denote by N2 the number of integers s with

0 < s ≤ R, (s, e1f1) = 1 and sz ≡ −e1f1 (mod d3).

Then we have
N2 =

∑
m|e1f1

µ(m)
∑

1≤t≤R/m
tmz≡−e1f1 (mod d3)

1. (7.24)

For the values of m occurring in the first summation, we have m|e1f1, so that in
view of (7.16), the congruence condition in the final summation can be replaced by
t ≡ −(mz)−1e1f1 (mod d3). On substitution into (7.24) we deduce that

N2 =
∑
m|e1f1

µ(m)

(
R

md3
+O(1)

)
=
Rφ(e1f1)

d3e1f1
+Oε ((e1f1)ε) . (7.25)

Moreover, by (7.23) and (7.12)-(7.14),

R ≥ re1
10f2

>
δQe1e2

20(e1e2f1f2)y
≥ δ

1
2−δ

20( 1
2 + δ)

e1e2(e1f1/Q)
1
2+δ.

Therefore, by (7.8) and (7.11),

R >
δ
1
2−δ

20( 1
2 + δ)

(
P 1/4

)3+2δ (
P 1+δ

)− 1
2−δ > P 2δ.

Consequently the error term in (7.25) is of smaller order than the main term, and
so by (7.8),

N2 �
Pφ(e1f1)

ze1f1e2f2
. (7.26)
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Suppose now that we are given d3, e1, e2, f1, f2, y and r satisfying the conditions
of (7.11)-(7.16) independent of s and z. Write

X =
δQ

10re1e2
, (7.27)

and denote by N3 the number of permissible choices for s and z. Thus by (7.26)
and (7.14)-(7.16), we have

N3 �
Pφ(e1f1)

e1e2f1f2
S1, (7.28)

where S1 =
∑
z z
−1, and the summation is over those values of z satisfying

1
2X < z ≤ X, (z, e1f1f2y) = 1 and zr ≡ −f1f2 (mod d3).

But we have

S1 =
∑

m|e1f1f2y

µ(m)

m

∑
X
2m<u≤

X
m

umr≡−f1f2 (mod d3)

u−1. (7.29)

For the values of m occurring in the first summation, we have m|e1f1f2y, so that
in view of (7.16), the congruence condition in the final summation can be replaced
by u ≡ −(mr)−1f1f2 (mod d3). On substitution into (7.29) we deduce that

S1 =
∑

m|e1f1f2y

µ(m)

m

(
d−13 log 2 +O(mX−1)

)
=
φ(e1f1f2y)

d3e1f1f2y
log 2 +O

(
(e1f1f2y)εX−1

)
. (7.30)

Moreover, by (7.27), (7.13), (7.14), together with (7.8) and (7.11),

X ≥ yf1
10e2

> 1
10 (δQ/e1)

1
2−δ e−12 f

1
2+δ

1 > 1
10

(
δP 5/7

) 1
2−δ

P−2/7
(
P 1/4

) 1
2+δ

.

Therefore X > P 2δ, and so the error term in (7.30) is of smaller order than the
main term. Thus, by (7.28) and (7.30),

N3 �
Pφ(e1f1)φ(e1f1f2y)

d3e2(e1f1f2)2y
. (7.31)

Next we suppose that we are given d3, e1, e2, f1, f2 and y satisfying the conditions
of (7.11)-(7.16) independent of s, z and r. Write

Y =
δQ

ye1f1
,

and denote by N4 the number of integers r with 1
2Y < r ≤ Y , (r, f1f2) = 1 and

yr ≡ −e2f2 (mod d3). Then by following the argument applied in the treatment
of N2 above, we obtain

N4 �
Pφ(f1f2)

e1f21 f2y
. (7.32)

On collecting together (7.31) and (7.32), the lemma follows immediately.

We shall find it useful to record here an estimate for certain sums involving the
Euler function φ.
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Lemma 7.3. Suppose that 1 ≤ A ≤ B, q ∈ N and α ≥ 0. Define the sum Tα by

Tα =
∑

A<x≤B
(x,q)=1

φ(x)α

xα+1
.

Further, take gα(m) to be the multiplicative function of m which, when p is prime,
is defined by

gα(pt) =

{
(1− 1/p)α − 1, when t = 1,

0, when t > 1.

Then

Tα =
φ(q)

q
log (B/A)

∞∑
m=1

(m,q)=1

gα(m)

m
+Oα,ε

(
(qB)εA−1

)
, (7.33)

and there is a positive number γα, independent of q, such that

∞∑
m=1

(m,q)=1

gα(m)

m
≥ γα.

Proof. We begin by observing that

0 < −gα(p) < min{1, αp−1}. (7.34)

Thus gα(m) �α,ε m
ε−1, and so the infinite series in (7.33) converges absolutely.

Moreover, since (
φ(x)

x

)α
=
∑
m|x

gα(m),

we have

Tα =
∑
m≤B

(m,q)=1

gα(m)

m

∑
A/m<y≤B/m

(y,q)=1

y−1. (7.35)

But an elementary argument shows that∑
X<y≤Y
(y,q)=1

y−1 =
φ(q)

q
log (Y/X) +O

(
qεX−1

)
. (7.36)

The conclusion (7.33) therefore follows easily by substituting (7.36) into (7.35).
For the final assertion of the lemma we note that by the absolute convergence of

the infinite series, together with the multiplicative property of gα, we have

∞∑
m=1

(m,q)=1

gα(m)

m
=
∏
p-q

(
1 +

gα(p)

p

)
≥
∏
p

(
1 +

gα(p)

p

)
, (7.37)
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the last inequality following from (7.34). Moreover, from the standard theory of
such infinite products, together with (7.34) once again, the last product in (7.37) is
positive (and evidently independent of q). This completes the proof of the lemma.

We now estimate N0(P ) by summing N1(P ) over the permissible choices of d3,
e1, e2, f1, f2 and y. During this process we shall frequently make use of the
elementary inequality

φ(nm) ≥ φ(n)φ(m).

We start by considering the sum

S2 =
∑

Z−<y≤Z+

(y,d3)=1

φ(y)

y2
,

in which we have written

Z± =

(
δQ

e1f1

) 1
2±δ

. (7.38)

In view of (7.8) and (7.11) we have Q/(e1f1) ≥ P 3/7, and hence by Lemma 7.3
together with (7.13) and (7.38),

S2 =
φ(d3)

d3
log(Z+/Z−)

∞∑
m=1

(m,d3)=1

g1(m)

m
+Oε

(
(d3Z

+)ε(Z−)−1
)

� φ(d3)

d3
logP.

Thus, by Lemma 7.2, for each d3, e1, e2, f1 and f2 satisfying (7.11), (7.12) and
(d3, e1e2f1f2) = (e2, f1) = 1, the number, N5, of permissible choices for y, r, z and
s subject to (7.13)-(7.16) satisfies

N5 �
φ(d3)φ(e1)2φ(f1)3φ(f2)2

d23e
3
1e2f

4
1 f

3
2

P 2 logP. (7.39)

Next we consider the sum

S3 =
∑

W−<f2≤W+

(f2,d3)=1

φ(f2)2

f32
,

in which we have written

W± =
(
1
2 ± δ

)
Q(e1e2f1)−1. (7.40)
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In view of (7.11) we have e1e2f1 ≤ P 6/7, and hence by Lemma 7.3 together with
(7.8) and (7.40),

S3 =
φ(d3)

d3
log

( 1
2 + δ
1
2 − δ

) ∞∑
m=1

(m,d3)=1

g2(m)

m
+Oε

(
P εe1e2f1Q

−1)� φ(d3)

d3
.

Thus, by (7.39), for each d3, e1, e2 and f1 satisfying (7.11) and (d3, e1e2f1) =
(e2, f1) = 1, the number, N6, of permissible choices for y, r, z, s and f2 subject to
(7.12)-(7.16) satisfies

N6 �
φ(d3)2φ(e1)2φ(f1)3

d33e
3
1e2f

4
1

P 2 logP. (7.41)

Following a similar argument using Lemma 7.3, we next show that the sum

S4 =
∑

P 1/4<f1≤P 2/7

(f1,d3e2)=1

φ(f1)3

f41

satisfies

S4 �
φ(d3e2)

d3e2
logP.

Thus, by (7.41), for each d3, e1 and e2 satisfying (7.11) and (d3, e1e2) = 1, the
number N7, of permissible choices for y, r, z, s, f1 and f2 subject to (7.11)-(7.16)
satisfies

N7 �
φ(d3)3φ(e1)2φ(e2)

d43e
3
1e

2
2

P 2(logP )2. (7.42)

Similarly, the sums

S
(i)
5 =

∑
P 1/4<ei≤P 2/7

(d3,ei)=1

φ(ei)
3−i

e4−ii

(i = 1, 2)

satisfy

S
(i)
5 �

φ(d3)

d3
logP.

Therefore, by (7.42) and Lemma 7.1, we have

U(P )�
∑

P δ/2<d3≤P δ

φ(d3)5

d63
P 2(logP )4,

so that by Lemma 7.3 once again, we have U(P ) � P 2(logP )5. This completes
the proof of Theorem 1.2.
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8. The general case

In this section we prove Theorem 1.3, our first task being the proof of the estimate
(1.9). Let Uk(P ) denote the number of solutions of the simultaneous diophantine
equations

k∑
i=1

Xj
i =

k∑
i=1

Y ji (j = 1, 2, . . . , k − 2 and k), (8.1)

with
1 ≤ Xi, Yi ≤ P (1 ≤ i ≤ k), (8.2)

and satisfying the additional condition that (X1, . . . , Xk) is not a permutation of
(Y1, . . . , Yk). Then on recalling Theorem 1.2, in order to establish estimate (1.9) of
Theorem 1.3 it suffices to prove that

Uk(P )�ε,k P
k−1+1/k+ε (8.3)

whenever k > 3.
We start by observing that if, for some i and j with 1 ≤ i, j ≤ k, we have

Xi = Yj , then by elementary properties of symmetric polynomials, it follows that
(X1, . . . , Xk) is a permutation of (Y1, . . . , Yk). We henceforth assume the contrary,
that Xi = Yj for no i and j.

We next attend to the problem of constructing an identity analogous to that
obtained at the start of §2. Let us write, for convenience, l(Z) = Z1 + · · · + Zk.
Then as in the proof of [24, Lemma 5.2] (see, in particular, equation (4)), for each
solution X, Y of the system (8.1) we have

k∏
i=1

(l(X)−Xi) =
k∏
i=1

(l(Y)− Yi).

Make the substitution

xi = l(X)−Xi and yi = l(Y)− Yi (1 ≤ i ≤ k). (8.4)

Then we find that the solutions of (8.1) subject to (8.2) are in one-to-one corre-
spondence with a subset of the set of solutions of the system

k∏
i=1

xi =

k∏
i=1

yi, (8.5)

k∑
i=1

(l(x)− (k − 1)xi)
j

=

k∑
i=1

(l(y)− (k − 1)yi)
j

(1 ≤ j ≤ k − 2),
(8.6)

subject to
0 < αi ≤ kP (1 ≤ i ≤ k;α = x, y). (8.7)
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Furthermore, on noting that l(x) = l(y) and expanding the equations (8.6), we
discover that they are equivalent to the system

k∑
i=1

xji =

k∑
i=1

yji (1 ≤ j ≤ k − 2). (8.8)

Now observe that by solving the equations implicit in (8.4), if for some i and j we
have xi = yj , then we also have Xi = Yj . In consequence we have

Uk(P )� Vk(P ), (8.9)

where Vk(P ) denotes the number of solutions of the system (8.5) and (8.8), subject
to (8.7), and

xi 6= yj (1 ≤ i, j ≤ k). (8.10)

At this stage in the proceedings we establish that the solutions of the system
(8.5) and (8.8) satisfy an identity, this facilitating our later analysis.

Lemma 8.1. Suppose that the integers x,y satisfy the equations (8.5) and (8.8).
Then

x−11

k−1∏
j=1

(yj − x1) = y−1k

k∏
i=2

(xi − yk). (8.11)

Proof. We require some notation. When i and s are positive integers, we define the
polynomial φi,s(u) ∈ Z[u1, . . . , us] by

φi,s(u) = ui1 + · · ·+ uis. (8.12)

Also, we define the polynomial f(x, z) ∈ Z[x, z] by

f(x, z) = x−1

k−1∏
j=1

(zj − x)− (z1 . . . zk−1)

 . (8.13)

By using elementary properties of symmetric polynomials, we can find a polynomial
Ψ(ξ) ∈ Z[ξ1, . . . , ξk−2] such that, for some non-zero integer A, the polynomial

Av1 . . . vk−2 + Ψ(φ1,k−2(v), . . . , φk−2,k−2(v))

is identically zero. Then by (8.12) and (8.13), for each i with 1 ≤ i ≤ k − 1, we
have

Af(zi, z)−Ψ(φ1,k−1(z)− zi, . . . , φk−2,k−1(z)− zk−2i ) = 0,

and hence the polynomial

Af(x, z)−Ψ(φ1,k−1(z)− x, . . . , φk−2,k−1(z)− xk−2) (8.14)
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is divisible by (x− z1) . . . (x− zk−1). But in view of (8.13), and an argument based
on homogeneity, the polynomial (8.14) has degree k − 2. Consequently, the latter
polynomial must be zero, since it is divisible by a polynomial of degree k−1, which
leads to a contradiction.

For the sake of convenience, write x̃ for (x2, . . . , xk), and ỹ for (y1, . . . , yk−1).
Then we observe that the equations (8.8) are equivalent to

φj,k−1(x̃)− yjk = φj,k−1(ỹ)− xj1 (1 ≤ j ≤ k − 2). (8.15)

Thus, since the polynomial (8.14) is zero, we deduce from (8.15) that

Af(x1, ỹ) = Ψ(φ1,k−1(ỹ)− x1, . . . , φk−2,k−1(ỹ)− xk−21 )

= Ψ(φ1,k−1(x̃)− yk, . . . , φk−2,k−1(x̃)− yk−2k )

= Af(yk, x̃).

In view of (8.13), this completes the proof of the lemma.

The multiplicative structure of the equation (8.5) may be exploited, as in the case
k = 3, by the removal of common factors between the variables. When 1 ≤ i, j ≤ k,
we define the integer aij inductively by

aij =

(
xi
bij
,
yj
cij

)
,

where

bij =

j−1∏
m=1

aim and cij =

i−1∏
m=1

amj ,

and here we adopt the convention that the empty product is unity. A little consid-
eration of the respective common factors reveals that

xi =
k∏

m=1

aim and yj =
k∏

m=1

amj (1 ≤ i, j ≤ k). (8.16)

On substitution into (8.5), (8.7), (8.8) and (8.10), we deduce that

Vk(P )�Wk(P ), (8.17)

where Wk(P ) denotes the number of solutions of the equations

k∑
i=1

aji∗ =

k∑
i=1

aj∗i (1 ≤ j ≤ k − 2), (8.18)

subject to
0 < ai∗, a∗j ≤ kP and ai∗ 6= a∗j (1 ≤ i, j ≤ k). (8.19)
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Here, for the sake of transparency, we write

ai∗ =
k∏

m=1

aim and a∗j =
k∏

n=1

anj . (8.20)

Furthermore, on substituting (8.16) and (8.20) into (8.11), we deduce from Lemma
8.1 that for each solution counted by Wk(P ), we have

k−1∏
j=1

(
a∗j
a1j
− a1∗
a1j

)
=

k∏
i=2

(
ai∗
aik
− a∗k
aik

)
. (8.21)

Now observe, from inequality (8.19), that by a suitable rearrangement of vari-
ables we have

a11 ≥ a12 ≥ · · · ≥ a1k ≥ 1.

Thus

1 ≤ a1k ≤ (kP )1/k. (8.22)

Consider any solution of (8.18) counted by Wk(P ). By (8.19), (8.20) and (8.22)
there are at most Ok,ε(P

k−1+1/k+ε) possible choices for aij (2 ≤ i ≤ k, 1 ≤ j ≤ k)
and a1k. Fix any such choice. Observe that a∗j/a1j is independent of a1h (1 ≤ h ≤
k). Then for some non-zero integers m1, . . . ,mk−1, and an integer M , we have

k−1∏
j=1

(
mj −

a1∗
a1j

)
= M.

Moreover by (8.19), M is non-zero. Then by using elementary estimates for the
divisor function, there are Oε,k(P ε) possible choices for integers dj (1 ≤ j ≤ k− 1)
with

mj − a1∗/a1j = dj .

But for each possible choice for d1, . . . , dk−1, there are at most Oε,k(P ε) possible
choices for a1j (1 ≤ j ≤ k− 1), again by using elementary estimates for the divisor
function. Thus

Wk(P )�ε,k P
k−1+1/k+ε,

and so (8.3) follows from (8.9) and (8.17). This completes the proof of estimate
(1.9) of Theorem 1.3.

We now turn our attention to estimate (1.10). Initially, we argue as above, noting
that it suffices to prove that when k ≥ 3, we have

Uk(P )�ε,k P
(k+3)/2+ε. (8.23)
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Observe that if the integers x, y satisfy the equations (8.5) and (8.8), then by
Lemma 8.1 and a rearrangement of variables, for any u with 1 ≤ u ≤ k,

x−1u

k−1∏
j=1

(yj − xu) = y−1k

∏
1≤i≤k
i 6=u

(xi − yk).

Consequently,

x−1u

k∏
j=1

(yj − xu) = −y−1k
k∏
i=1

(xi − yk),

and thus for each u and v with 1 ≤ u < v ≤ k,

xv

k∏
i=1

(yi − xu) = xu

k∏
j=1

(yj − xv). (8.24)

Consider first the solutions of (8.5) and (8.6) counted by Vk(P ) with xi = xj
for every i and j with 1 ≤ i < j ≤ k. Fix any one such choice, say with xi = x
(1 ≤ i ≤ k), and consider the equation (8.5). By using standard estimates for the
divisor function there are Oε,k(P ε) possible choices for the integers y1, . . . , yk. Con-
sequently the total number of solutions of this type counted by Vk(P ) is Oε,k(P 1+ε).
We may therefore restrict attention to the situation with x1 6= x2. But given x1, x2
and y1, . . . , yk satisfying (8.7), we may combine standard estimates for the divisor
function with (8.5) to deduce that there are Oε,k(P ε) possible choices for x3, . . . , xk.
Thus, on substituting u0 = x2, v0 = x1,

ui = yi − x1 and vi = yi − x2 (1 ≤ i ≤ k),

we deduce from (8.24) and (8.7) that

Vk(P )�ε,k P
εWk(P ) + P 1+ε, (8.25)

where Wk(P ) denotes the number of solutions of the system

k∏
i=0

ui =
k∏
j=0

vj , (8.26)

with

v0 + ui = u0 + vi (1 ≤ i ≤ k), (8.27)

1 ≤ ui, vi ≤ kP (0 ≤ i ≤ k), (8.28)

and u0 6= v0.
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We now prosecute an argument parallel to that applied to reach (8.16) and (8.18).
When 0 ≤ i, j ≤ k, we define the integers αij inductively by

αij =

(
ui
βij

,
vj
γij

)
,

where

βij =

j−1∏
m=0

αim and γij =
i−1∏
n=0

αnj ,

and again we adopt the convention that the empty product is unity. Writing, for
the sake of transparency,

αi∗ =
k∏

m=0

αim and α∗j =
k∏

n=0

αnj ,

we find that ui = αi∗ and vj = α∗j (0 ≤ i, j ≤ k). Thus, on substitution into
(8.26), (8.27) and (8.28), we deduce from (8.25) that

Vk(P )�ε,k P
εRk(P ) + P 1+ε, (8.29)

where Rk(P ) denotes the number of solutions of the system

α∗0 + αi∗ = α0∗ + α∗i (1 ≤ i ≤ k), (8.30)

with α0∗ 6= α∗0, and
1 ≤ αi∗, α∗i ≤ kP (0 ≤ i ≤ k). (8.31)

Write

X =
∏

1≤i<j≤k

αij , Y =
∏

1≤j<i≤k

αij , and Z =
k∏
i=1

αii.

Then we have (
α−100 α∗0α0∗

)2
XY Z = α−100 α∗0α0∗

k∏
i=0

k∏
j=0

αij .

We therefore deduce from (8.31) that

(
α−100 α∗0α0∗

)2
XY ≤ (kP )2

k∏
i=0

αi∗ ≤ (kP )k+3,

and hence that in any solution counted by Rk(P ), one at least of the inequalities

α−100 α∗0α0∗X ≤ (kP )(k+3)/2 and α−100 α∗0α0∗Y ≤ (kP )(k+3)/2
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must hold. By symmetry, therefore, we have

Rk(P )� R∗k(P ), (8.32)

where R∗k(P ) denotes the number of solutions of the system (8.30) subject to (8.31),
and the additional condition

α∗0
∏

0≤i<j≤k

αij ≤ (kP )(k+3)/2. (8.33)

We claim that for a fixed choice of the variables αij with

0 ≤ i < j ≤ k or j = 0 and 0 ≤ i ≤ k, (8.34)

there are Oε,k(P ε) possible choices for the remaining variables satisfying (8.30) and
(8.31). If such is the case, then by (8.32) and (8.33) we have

Rk(P )�ε,k P
(k+3)/2+ε,

and so estimate (1.10) of Theorem 1.3 follows from (8.9) and (8.29).
It remains to establish the latter claim, which we prove inductively as follows.

For a fixed choice of the αij with i and j satisfying (8.34), we suppose at step t
that there are Oε,k(P ε) possible choices for the variables αij with i < t or j < t.
This inductive hypothesis is plainly satisfied for t = 1, since α0∗ and α∗0 are fixed
from the beginning. Suppose then that the hypothesis is satisfied for a t ≥ 1, and
consider one of the Oε,k(P ε) possible choices for the αij with i < t or j < t. We
consider the equation (8.30) with i = t in the form

αtt

 ∏
0≤i≤k
i 6=t

αit −
∏

0≤j≤k
j 6=t

αtj

 = α∗0 − α0∗. (8.35)

Since α0∗ 6= α∗0, a standard estimate for the divisor function shows that there are
Oε,k(P ε) possible choices for αtt. Fix any one such choice. On writing Nt for the
fixed integer (α∗0 − α0∗)/αtt, we obtain from (8.35) the equation

∏
t<i≤k

αit =

 ∏
0≤i<t

αit

−1
Nt +

∏
0≤j≤k
j 6=t

αtj

 . (8.36)

Moreover, by hypothesis, the right hand side of the equation (8.36) is already
fixed. Thus, by using standard estimates for the divisor function, there are at most
Oε,k(P ε) possible choices for the variables αit with t < i ≤ k. Consequently, there
are Oε,k(P ε) possible choices for the αij with i ≤ t or j ≤ t, and so the inductive
hypothesis holds with t + 1 in place of t. This completes the proof of the claim,
and hence also the proof of estimate (1.10) of Theorem 1.3.
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9. A special case of Vinogradov’s Mean Value Theorem

In this section, by an analysis somewhat similar to that applied in §8, we prove
Theorem 1.4. Let Uk(P ) denote the number of solutions of the simultaneous dio-
phantine equations

k+1∑
i=1

Xj
i =

k+1∑
i=1

Y ji (1 ≤ j ≤ k), (9.1)

with
1 ≤ Xi, Yi ≤ P (1 ≤ i ≤ k + 1), (9.2)

and satisfying the additional condition that (X1, . . . , Xk+1) is not a permutation of
(Y1, . . . , Yk+1). Then Theorem 1.4 follows from the estimate

Uk(P )�ε,k P
(k+5)/2+ε (k ≥ 3). (9.3)

Moreover, if X, Y is a solution of (9.1) satisfying the condition that for some i and
j with 1 ≤ i, j ≤ k + 1, we have Xi = Yj , then it follows that (X1, . . . , Xk+1) is
a permutation of (Y1, . . . , Yk+1). Thus it suffices to count only those solutions for
which Xi = Yj for no i and j.

We now note that by rearranging variables we may suppose that

Yk+1 = min
i,j
{Xi, Yj} .

Moreover an application of the binomial theorem reveals that the equations (9.1)
are equivalent to

k+1∑
i=1

(Xi − Yk+1)j =
k+1∑
i=1

(Yi − Yk+1)j (1 ≤ j ≤ k).

Thus, on observing that there are at most P choices for Yk+1, we may substitute
xi = Xi − Yk+1 and zi = Yi − Yk+1, and conclude from (9.1) and (9.2) that

Uk(P )�k PVk(P ), (9.4)

where Vk(P ) denotes the number of solutions of the system

k+1∑
i=1

xji =
k∑
i=1

zji (1 ≤ j ≤ k), (9.5)

with
1 ≤ xi ≤ P (1 ≤ i ≤ k + 1) and 0 ≤ zi ≤ P (1 ≤ i ≤ k), (9.6)

and xi = zj for no i and j.
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We now adopt the notation (8.12), and observe that by the properties of the
elementary symmetric polynomials, there is a positive integer C and a polynomial
Υ(w) ∈ Z[w1, . . . , wk−1] such that

Cφk,k−1(x) = Υ(φ1,k−1(x), . . . , φk−1,k−1(x)).

We therefore deduce from (8.12) that

Υ
(
φ1,k(x)− u, . . . , φk−1,k(x)− uk−1

)
− C(φk,k(x)− uk) (9.7)

is a non-trivial polynomial divisible by (u − x1) . . . (u − xk). Moreover, since the
polynomial in (9.7) has degree at most k, it follows from (9.5) and (9.6) that for
each solution counted by Vk(P ), we have

k∏
i=1

(zi − xs) =
∏

1≤j≤k+1
j 6=s

xj (1 ≤ s ≤ k + 1). (9.8)

Furthermore, plainly, for each s and t with 1 ≤ s < t ≤ k + 1, we have

xs

k∏
i=1

(zi − xs) = xt

k∏
j=1

(zj − xt), (9.9)

an equation strikingly similar to (8.24).
Consider first the solutions of (9.5) and (9.6) counted by Vk(P ) with xi = xj for

every i and j with 1 ≤ i < j ≤ k + 1. Fix any one such choice, say with xi = x
(1 ≤ i ≤ k + 1), and consider the equation (9.8). By using standard estimates
for the divisor function there are Oε,k(P ε) possible choices for integers d1, . . . , dk
satisfying zi = x + di (1 ≤ i ≤ k). Consequently the total number of solutions
of this type counted by Vk(P ) is Oε,k(P 1+ε). We may therefore restrict attention
to the situation with x1 6= x2. But given x1, x2 and z1, . . . , zk satisfying (9.6), we
may combine standard estimates for the divisor function with (9.8) to deduce that
there are Oε,k(P ε) possible choices for x3, . . . , xk+1. Thus, on substituting u0 = x1,
v0 = x2,

ui = zi − x1 and vi = zi − x2 (1 ≤ i ≤ k),

we deduce from (9.9) and (9.6) that

Vk(P )�ε,k P
εWk(P ) + P 1+ε, (9.10)

where Wk(P ) denotes the number of solutions of the system

k∏
i=0

ui =

k∏
j=0

vj , (9.11)
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with
u0 + ui = v0 + vi (1 ≤ i ≤ k), (9.12)

1 ≤ u0, v0 ≤ P and 1 ≤ |ui|, |vi| ≤ P (1 ≤ i ≤ k), (9.13)

and u0 6= v0.
We now proceed precisely as in the argument leading to (8.29)-(8.31). Employing

the same notation, we deduce that

Vk(P )�ε,k P
εRk(P ) + P 1+ε, (9.14)

where Rk(P ) denotes the number of solutions of the system

α0∗ + λiαi∗ = α∗0 + µiα∗i (1 ≤ i ≤ k), (9.15)

with
α0∗ 6= α∗0, 1 ≤ α0∗, α∗0 ≤ P, (9.16)

and
λi, µi ∈ {+1,−1}, 1 ≤ αi∗, α∗i ≤ P (1 ≤ i ≤ k). (9.17)

Moreover, as in the analysis leading to (8.32), we find that

Rk(P )� R∗k(P ), (9.18)

where R∗k(P ) denotes the number of solutions of the system (9.15) subject to (9.16),
(9.17), and the additional condition

α∗0
∏

0≤i<j≤k

αij ≤ P (k+3)/2. (9.19)

It is now a simple matter to imitate the analysis concluding §8. We claim that
for a fixed choice of the variables αij with

0 ≤ i < j ≤ k or j = 0 and 0 ≤ i ≤ k,

there are Oε,k(P ε) possible choices for the remaining variables satisfying (9.15),
(9.16) and (9.17). If such is the case, then by (9.18) and (9.19) we have

Rk(P )�ε,k P
(k+3)/2+ε,

and so Theorem 1.4 follows from (9.4) and (9.14). But the system (9.15) is identical
to (8.30), save that the rôles of α0∗ and α∗0 have been interchanged, and there
are 22k possible choices for the coefficients λi and µi. Such complications are
easily accomodated in the argument concluding §8, the equation (8.35) simply being
replaced by

αtt

µt ∏
0≤i≤k
i6=t

αit − λt
∏

0≤j≤k
j 6=t

αtj

 = α0∗ − α∗0.

Thus the above claim follows with little difficulty, and the proof of Theorem 1.4 is
concluded.
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10. A sharper estimate

In this section we improve on the estimate of the previous section in the case
k = 3, and indeed we are able to establish a lower bound. We follow an argument
motivated by an identity to be found in [13]. Consider a solution X, Y of (9.1)
counted by U3(P ). Let us write, for convenience, l(Z) = Z1 + · · · + Z4. Then an
application of the binomial theorem reveals that when k = 3, the system (9.1) is
equivalent to

4∑
i=1

(4Xi − l(X))
j

=
4∑
i=1

(4Yi − l(Y))
j

(1 ≤ j ≤ 3). (10.1)

We make the substitution

ui = 4Xi − l(X), vi = 4Yi − l(Y) (1 ≤ i ≤ 4). (10.2)

Since 0 < l(X) = l(Y) ≤ 4P , on taking account of all the possible choices for l(X),
we are forced to conclude from (10.1) and (9.2) that

U3(P )� PN1(4P ), (10.3)

where N1(P ) denotes the number of solutions of the system

4∑
i=1

uji =
4∑
i=1

vji (j = 2, 3), (10.4)

u1 + u2 + u3 + u4 = 0 = v1 + v2 + v3 + v4, (10.5)

subject to
0 ≤ |ui|, |vi| ≤ P (1 ≤ i ≤ 4), (10.6)

and with ui = vj for no i and j with 1 ≤ i, j ≤ 4. Moreover, to any solution u, v
counted by N1(P ) there correspond at least P solutions X, Y of the system (9.1)
with 1 ≤ Xi, Yi ≤ 3P and Xi = Yj for no i and j. For we may take any integer σ
with P < σ ≤ 2P , and put Xi = ui + σ, Yi = vi + σ (1 ≤ i ≤ 4), and once again
apply the binomial theorem in (9.1). Thus we deduce that U3(3P ) � PN1(P ).
Then taking note of (10.3), we deduce that

PN1(P/3)� U3(P )� PN1(4P ). (10.7)

We now substitute for u4 and v4 from (10.5) into (10.4), and write

xi = u1 + u2 + u3 − ui, yi = v1 + v2 + v3 − vi (i = 1, 2, 3). (10.8)

Then a solution u, v of the system (10.4) and (10.5) gives a solution x, y of the
system

x1x2x3 = y1y2y3, (10.9)

x21 + x22 + x23 = y21 + y22 + y23 . (10.10)
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Let us consider what happens to the diagonal solutions of the system (10.4) and
(10.5) under this transformation. First we note that by an elementary argument,
if for any i and j we have ui = vj in (10.4) and (10.5), then necessarily

(u1, u2, u3, u4) is a permutation of (v1, v2, v3, v4). (10.11)

Moreover in view of (10.8) we have

2ui = x1 + x2 + x3 − 2xi, 2vi = y1 + y2 + y3 − 2yi (i = 1, 2, 3), (10.12)

and
2u4 = −(x1 + x2 + x3), and 2v4 = −(y1 + y2 + y3). (10.13)

When (10.11) holds with u4 = v4, by (10.8) we find that (x1, x2, x3) is a permutation
of (y1, y2, y3). Otherwise for some i and j with 1 ≤ i, j ≤ 3, we have u4 = vj and
v4 = ui. Then by (10.12) and (10.13),

−(x1 + x2 + x3) = 2u4 = 2vj = y1 + y2 + y3 − 2yj ,

and
−(y1 + y2 + y3) = 2v4 = 2ui = x1 + x2 + x3 − 2xi,

and thus xi = yj . Then in either case we have xi = yj for some i and j with
1 ≤ i, j ≤ 3. But if x, y is a solution of (10.9) and (10.10) in which the latter
condition holds, then by a suitable rearrangement of variables we may suppose
that x3 = y3, and it easily follows that

(x21, x
2
2, x

2
3) is a permutation of (y21 , y

2
2 , y

2
3). (10.14)

Now suppose that this last condition holds. If in fact (x1, x2, x3) is a permutation
of (y1, y2, y3), then (10.11) follows from (10.12) and (10.13). Otherwise we have a
situation typified by the case (x1, x2, x3) = (y1,−y2,−y3). But then, by (10.12)
and (10.13), we have

2u4 = −(x1 + x2 + x3) = y2 + y3 − y1 = 2v1.

Thus we deduce that the solutions of (10.4) and (10.5), in which ui = vj for some
i and j, are in one-to-one correspondence with the solutions of (10.9) and (10.10)
in which x2k = y2l for some k and l.

Lemma 10.1. We have

S4(P ; 1, 2, 3)− 4!P 4 � P 10/3(log 2P )35.

Proof. In view of (10.7) it suffices to show that N1(P ) � P 7/3(log 2P )35. But by
the above analysis we have N1(P ) � N2(P ), where N2(P ) denotes the number of
solutions of the system (10.9) and (10.10) subject to 0 ≤ |xi|, |yi| ≤ 2P (1 ≤ i ≤ 3),
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and with x2i = y2j for no i and j. Moreover, if any xi vanishes, then by (10.9), so
does some yj , and then, in view of (10.10), we discover that the number of solutions
of this type is O(P 2 logP ). Thus

N1(P )� N3(P ) + P 2 logP, (10.15)

where N3(P ) denotes the number of solutions of (10.9) and (10.10) subject to

1 ≤ |xi|, |yi| ≤ 2P (1 ≤ i ≤ 3), (10.16)

and with x2i = y2j for no i and j.
At this stage we follow the same procedure that was adopted in §2 for the

removal of common factors among the variables. Adopting the same notation, save
with upper case X and Y replaced here by the corresponding lower case letters,
and noting a possible ambiguity of sign in the current situation, we discover that

N3(P )� N4(P ), (10.17)

where N4(P ) denotes the number of solutions of the equation

(d1e1f1)2 + (d2e2f2)2 + (d3e3f3)2 = (d1d2d3)2 + (e1e2e3)2 + (f1f2f3)2, (10.18)

subject to (3.5) and (2.9). Moreover, as in the argument described in §3, we may
once again assume, without any loss, that the inequalities (3.6) and (3.7) hold.
Thus we may follow the analysis of §3, on this occasion replacing the identity (3.8)
with a similar one obtained from (10.18), namely

(d21d
2
3 − e22f22 )(d22d

2
3 − e21f21 ) = (e23d

2
3 − f21 f22 )(f23 d

2
3 − e21e22). (10.19)

Hence, on writing Q = 2P , we find that

N4(P )�
∑

d1e1f1≤Q

∑
d2e2f2≤Q

∑
d3≤Q1/3

d(u)d(v)d(w)d(x),

where we have written

u = d1d3 − e2f2, v = d1d3 + e2f2, w = d2d3 − e1f1, x = d2d3 + e1f1,

and the summation is restricted to those values of d3 satisfying (3.6). An elementary
argument, with only minor complications, now shows that

N4(P )� Q7/3(logQ)35,

which, by (10.15) and (10.17), completes the proof of the lemma.

For the sake of simplicity, we establish a lower bound for U3(P ) which is probably
somewhat weaker than might be obtained through the use of the identity (10.19).



A CERTAIN NONARY CUBIC FORM 45

Lemma 10.2. We have U3(P )� P 2 logP .

Proof. Suppose that a, b, c are positive integers satisfying the equation

16c2 = a2 + 15b2. (10.20)

We put x1 = a, x2 = 2b, x3 = 7c, y1 = 2a, y2 = 7b, y3 = c, and write

ui = x1 + x2 + x3 − 2xi, vi = y1 + y2 + y3 − 2yi (i = 1, 2, 3),

and
u4 = −(u1 + u2 + u3), v4 = −(v1 + v2 + v3).

Then with only a little effort we discover that the equations (10.4) and (10.5) are
satisfied. Moreover, as in the analysis preceding Lemma 10.1, if ui = vj for any i
and j, then necessarily x2i = y2j for some i and j. If the latter does indeed occur,
then we have a non-trivial equation relating two of the variables a, b and c, and
moreover the equation (10.20) provides a further relation incorporating the third
variable. Thus we deduce that

N1(P )� N5(P ) +O(P ), (10.21)

where N5(P ) denotes the number of solutions of the equation (10.20) with

1 ≤ a, b, c ≤ P/100. (10.22)

An elementary argument shows that a parametric solution to (10.20) is given by

a = 4w(s2 − 15t2), b = 8wst, c = w(s2 + 15t2). (10.23)

Furthermore, distinct triples (s, t, w) satisfying (s, t) = 1 determine distinct triples
(a, b, c). Thus we deduce from (10.22) and (10.23) that N5(P ) � N6(P ), where
N6(P ) denotes the number of triples (s, t, w) with

1 ≤ s, t ≤ δ(P/w)1/2, (s, t) = 1 and 1 ≤ w ≤ P 1/2,

in which δ is a sufficiently small, but fixed, positive number. On noting that when
X � P δ we have ∑

1≤t≤X
(s,t)=1

1 =
∑
m|s

µ(m)
∑

1≤t≤X/m

1� Xφ(s)/s,

we deduce that

N5(P )� P 1/2
∑

1≤w≤P 1/2

w−1/2
∑

1≤s≤δ(P/w)1/2

φ(s)/s. (10.24)

A standard argument therefore shows that

N5(P )� P
∑

1≤w≤P 1/2

w−1 � P logP,

and thus the lemma follows immediately from (10.21) and (10.7).

The proof of Theorem 1.5 follows by combining Lemmata 10.1 and 10.2.
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11. Further lower bounds

The problem of obtaining non-trivial lower bounds for the number of non-
diagonal solutions of systems of the form (1.1) is probably of greatest interest in
the case s = t+1. In a number of such cases in which the exponents are quite small
one can show that there are many non-trivial solutions. In particular, Bremner [6,
7] has shown that there are infinitely many primitive solutions to the system (1.1)
when s = 3, t = 2, and (k1, k2) is either (1, 5) or (2, 6). We refer the reader also
to Gloden [13] and Choudhry [9] for a consideration of parametric solutions in a
number of interesting cases. Note, however, that knowledge of parametric solutions
to a system of equations is usually not, by itself, sufficient to obtain good lower
bounds for the number of non-diagonal solutions inside a box. Thus, for example,
the work of Bremner and Brudno [5] does not immediately imply the lower bound
of Theorem 1.2. For now we content ourselves with brief proofs of two non-trivial
lower bounds in Theorems 11.1 and 11.2 below.

Theorem 11.1. Let V4(P ) denote the number of non-diagonal solutions counted
by S4(P ; 1, 2, 4). Then V4(P )� P 2 logP .

Proof. We consider the number, V4(P ), of solutions of the system (1.1) with s = 4,
t = 3 and (k1, k2, k3) = (1, 2, 4), and with the variables satisfying

1 ≤ xi, yi ≤ P (1 ≤ i ≤ 4),

and xi = yj for no i and j. Following an argument parallel to that of §8, we
discover, by means of the substitution

xi = X1 +X2 +X3 +X4 − 3Xi, yi = Y1 + Y2 + Y3 + Y4 − 3Yi (1 ≤ i ≤ 4),

that V4(P )�M1(P ), where M1(P ) denotes the number of solutions of the system

X1X2X3X4 = Y1Y2Y3Y4, (11.1)

4∑
i=1

Xj
i =

4∑
i=1

Y ji (j = 1, 2), (11.2)

with Xi = Yj for no i and j, and subject to

0 < α1 + α2 + α3 + α4 − 3αi ≤ P (1 ≤ i ≤ 4;α = X,Y ). (11.3)

Let η be a sufficiently small, but fixed, positive number. Suppose that a, b, c
and d are integers satisfying the equation

ab = cd (11.4)

with
1 ≤ a, b, c, d ≤ η2P 1/2. (11.5)
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Suppose further that r and s are integers with

( 1
2 − η)P 1/2 < r, s ≤ 1

2P
1/2, (11.6)

and satisfying the coprimality conditions

(s, bc) = (r, ad) = 1. (11.7)

We consider the substitution

X1 = (r + a)(s+ b), X2 = (r − a)(s− b),
X3 = (r + d)(s− c), X4 = (r − d)(s+ c),
Y1 = (r + a)(s− b), Y2 = (r − a)(s+ b),
Y3 = (r − d)(s− c), Y4 = (r + d)(s+ c).

(11.8)

Notice first that distinct 6-tuples (r, s, a, b, c, d) determine distinct 8-tuples X,Y.
For if (ri, si, ai, bi, ci, di) (i = 1, 2) each determine the same values for X and Y,
then by elimination in (11.8), we obtain

s1 + b1
s1 − b1

=
X1

Y1
=
s2 + b2
s2 − b2

,

and hence s1b2 = s2b1. But (si, bi) = 1 for i = 1, 2, and thus s1 = s2 and b1 = b2,
and a similar argument applies for the remaining variables. A little calculation re-
veals that with the substitution (11.8), the equations (11.1) and (11.2) are satisfied,
and further that the inequalities (11.3) hold. Thus we conclude that

M1(P )�M2(P )−M3(P ), (11.9)

where M2(P ) is the number of integers r, s, a, b, c, d satisfying (11.4)-(11.7), and
M3(P ) is the number of such integers for which Xi = Yj for some i and j.

Suppose first that r, s, a, b, c, d are integers counted by M3(P ). If Xi = Yj for
some i and j, then by (11.8) and (11.4) we necessarily have an equation of the type

(r + α)(s+ β) = (r + γ)(s+ δ), (11.10)

in which (α2, β2, γ2, δ2) is some permutation of (a2, b2, c2, d2), and αβ = γδ. The
number of integers counted by M3(P ) with α = γ and β = δ is O(P 2). Meanwhile,
if

α 6= γ, or β 6= δ, (11.11)

then (11.10) provides a non-trivial equation between r and s. Thus, for any fixed
choice of a, b, c and d satisfying the inequalities implied by (11.11), the number of
possible choices for r and s is O(P 1/2). But the number of solutions of (11.4) with
(11.5) is O(P logP ), and hence the total number of solutions of this latter type is
O(P 3/2 logP ). We therefore conclude that

M3(P )� P 2. (11.12)
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Next suppose that r, s, a, b, c, d are integers counted by M2(P ). In view of
(11.4), we may write u = (a, c), v = a/u, w = c/u. Then since (v, w) = 1, we may
define the integer x by x = d/v, and we have a = uv, b = wx, c = uw and d = vx.
Thus we deduce that M2(P ) is the number of integers u, v, w, x, r, s satisfying

1 ≤ uv,wx, uw, vx ≤ η2P 1/2, (v, w) = 1,

with r and s satisfying (11.6) and (s, uwx) = (r, uvx) = 1. Following an argument
similar to that applied in the proof of Lemma 7.2, we therefore deduce that

M2(P )� P
∑

u,v,w,x

φ(uvx)φ(uwx)

u2x2vw
,

in which the summation is over u, v, w and x satisfying

1 ≤ u, x ≤ η2P 1/2, 1 ≤ v, w ≤ η2P 1/2 (max{u, x})−1 , (v, w) = 1.

Thus a standard argument similar to that of the proof of Lemma 7.3 ultimately
leads to the conclusion

M2(P )� P 2 logP. (11.13)

The theorem follows on combining (11.9), (11.12) and (11.13).

Theorem 11.2. Let V3(P ) denote the number of non-trivial solutions counted by
S3(P ; 2, 4). Then V3(P )� P 2 logP .

Proof. We exploit a remarkable identity to be found in [2], brought to our attention
by G. Myerson (who notes that the identity in question is not the “remarkable
identity” of the title of that paper). Suppose that a, b, c and d are positive integers
satisfying ad = bc, and write

x1 = a+ b+ c, x2 = b+ c+ d, x3 = |a− d|,
y1 = c+ d+ a, y2 = d+ a+ b, y3 = |b− c|. (11.14)

Then, as may be verified on performing the somewhat tedious task of expansion,
the xi and yi are positive integers satisfying the system

3∑
i=1

(xki − yki ) = 0 (k = 2, 4). (11.15)

Moreover, if in (11.15) we have x2i = y2j for any i and j, then it follows that

(x21, x
2
2, x

2
3) is a permutation of (y21 , y

2
2 , y

2
3), and hence by positivity, (x1, x2, x3) is

a permutation of (y1, y2, y3). Consequently, in view of (11.14), as ordered pairs we
have (a, d) = (b, c) or (a, d) = (c, b). Furthermore, distinct choices for a, b, c, d
provide distinct choices for x, y. Then we find that V3(P )�W (P )+O(P 2), where
W (P ) denotes the number of choices for a, b, c, d with 1 ≤ a, b, c, d ≤ P/3, and
satisfying ad = bc. Thus W (P )� P 2 logP , and the theorem follows immediately.
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Appendix. Quasi-Hardy-Littlewood systems and the circle method

We begin this section by discussing a conjecture which concerns the fundamental
nature of the Hardy-Littlewood circle method. Since such a conjecture is likely to
provide at most an approximation to the true state of affairs, as indeed will become
apparent, we prefer to refer to this conjecture as a “model”. In order to describe
this model we shall require some notation.

Let F1, . . . , Ft ∈ Z[x1, . . . , xs] be homogeneous polynomials with respective de-
grees k1 . . . , kt, satisfying 1 ≤ k1 ≤ k2 ≤ · · · ≤ kt, and let B be a convex region in
Rs having finite positive s-volume. Our aim is to estimate, when P is large, the
number, NB(F;P ), of integral solutions of the system of equations

Fi(x) = 0 (1 ≤ i ≤ t), (A.1)

with x ∈ PB. Let V denote the projective variety in Ps−1 defined by the system
of equations (A.1). We define a height function on the set of subvarieties of V as
follows. First define the height of a polynomial, G ∈ Z[x1, . . . , xs], which we write
h(G), to be the maximum of the absolute values of the coefficients occurring in
G. For each subvariety W of V there corresponds a collection Z(W) of finite sets
of homogeneous polynomials in Z[x1, . . . , xs], which define W in the sense that if
A ∈ Z(W), then the point y lies on W if and only if G(y) = 0 for each G ∈ A. We
define the height of W, which we abbreviate to H(W), by

H(W) = inf
A∈Z(W)

max
G∈A

h(G). (A.2)

Further, we define the integral degree of W, which we abbreviate to ∂ZW, by

∂ZW = inf
A∈Z(W)

∑
G∈A

deg(G). (A.3)

We note that it is by no means necessary that a set of defining equations for a
subvariety W of V contains F1, . . . , Ft. Moreover, since certain of the equations
defining V may be redundant, it is not necessarily the case that ∂ZV = k1 + · · ·+kt,
although there is plainly no loss of generality in assuming that the latter is the case.

We are now in a position to explain what we mean, in general, by the “trivial
solutions” of a system of equations. When Q is a real number exceeding H(V), and
K is a natural number, we define S(V;Q,K) to be the set of proper subvarieties,
W, of V with H(W) ≤ Q and ∂ZW ≤ K. We then let TB(F;P ;Q,K) denote the
number of integral solutions of the system (A.1) with x ∈ PB, and satisfying the
additional condition that for some W ∈ S(V;Q,K), and some A ∈ Z(W), one has
G(x) = 0 for each G ∈ A. Observe that when Q is not too large compared to H(V),
and K is not too large compared to ∂ZV, then the points counted by TB(F;P ;Q,K)
lie on subvarieties of V on which we may expect to find an unusually high density
of rational points, and such points we describe as “trivial”.
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In order to discuss the application of the Hardy-Littlewood method, we shall
require some additional notation. When P is a large real number we define the
exponential sum Φ(α;F) by

Φ(α;F) =
∑

x∈PB
e (Ψ(x;F;α)) , (A.4)

where

Ψ(x;F;α) =
t∑
i=1

αiFi(x). (A.5)

Thus, by orthogonality one has

NB(F;P ) =

∫
(0,1]t

Φ(α;F)dα, (A.6)

and the “Hardy-Littlewood method” simply comprises of an asymptotic analysis
of the latter integral, based upon a suitable dissection of the range of integration.
Our natural inclination is to define a dissection based on a cartesian product of
Farey dissections, each one covering the entire interval. However, for the sake of
simplicity of exposition, we proceed as follows. When 1 ≤ ai ≤ qi ≤ Qi ≤ P ki

(1 ≤ i ≤ t), define the arc M(q,a;Q) by

M(q,a;Q) =
{
α ∈ (0, 1]t : |qiαi − ai| ≤ QiP−ki (1 ≤ i ≤ t)

}
. (A.7)

We define the major arcs of level Q, which we write as M(Q), to be the union of the
M(q,a;Q) with 1 ≤ ai ≤ qi ≤ Qi and (ai, qi) = 1 (1 ≤ i ≤ t). We then define the
corresponding minor arcs m(Q) to be the complement in (0, 1]t of M(Q). We note
that when Qi ≤ 1

2P
ki/2 (1 ≤ i ≤ t), the arcs comprising M(Q) are non-overlapping.

Moreover, an easy application of Dirichlet’s theorem on diophantine approximation
shows that M(Q) = (0, 1]t whenever Qi ≥ P ki/2 (1 ≤ i ≤ t).

When the Qi are sufficiently small powers of P , and α ∈ M(Q), it is usually
possible, by using standard techniques from the theory of the circle method, to
determine an asymptotic formula for Φ(α;F). Motivated by the analysis of the
major arcs in applications of the circle method, we make the following definitions.
When qi (1 ≤ i ≤ t) are natural numbers, we define the partial singular integral
J(q) by

J(q) =

∫
T (q)

∫
B
e (Ψ(γ;F;β)) dγdβ, (A.8)

where T (q) denotes the set of β satisfying the conditions |βi| ≤ q−1i Qi (1 ≤ i ≤ t).
Next we define the truncated product of local densities as

∆(Q) =
∑

1≤q1≤Q1

· · ·
∑

1≤qt≤Qt

J(q)v(q), (A.9)
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where

v(q) = q−s
q1∑

a1=1
(a1,q1)=1

· · ·
qt∑

at=1
(at,qt)=1

q∑
r1=1

· · ·
q∑

rs=1

e

(
Ψ

(
r;F;

a1
q1
, . . . ,

at
qt

))
, (A.10)

and q = [q1, . . . , qt] denotes the lowest common multiple of q1, . . . , qt.
Now, at last, we arrive at the central object of our discussion. Let

ÑB(F;P ;Q,K) = NB(F;P )− TB(F;P ;Q,K). (A.11)

Thus Ñ counts the “non-trivial” solutions of the system (A.1). We shall say that
the system of equations (A.1) is quasi-Hardy-Littlewood (and will refer to a variety,
implicitly defined by a system of equations, as being QHL) for the domain B, if,
whenever P is sufficiently large, and δ is a sufficiently small positive number, we
have

ÑB(F;P ;P δ,K) = (1 + o(1))∆(Q)P s−K , (A.12)

with K = k1 + · · · + kt, and Qi = P ki/2 (1 ≤ i ≤ t). Here the implicit constant
in the little o-notation is independent of P , but may depend on B and F. (We
remark that it is possible, in delicate circumstances, that ∆ has to be modified
by the insertion of weights corresponding to the degree of overlapping which may
occur in the arcs with larger values of qi). We now state our general conjecture.

QHL Model. Suppose that F1, . . . , Ft ∈ Z[x1, . . . , xs] are homogeneous polynomi-
als with respective degrees k1, . . . , kt, that s > k1 + · · ·+ kt, and that the variety V
defined by the system of equations (A.1) satisfies ∂ZV = k1 + · · · + kt. Then V is
QHL for every convex domain.

We note that there are certain instances in which the QHL Model is known
to fail. For example, Cassels and Guy [8] have found a diagonal cubic form in
four variables for which there are no rational solutions, despite the existence of
solutions everywhere locally. Consequently one should modify the QHL model so as
to exclude from consideration those systems in which there are known obstructions
to the Hasse principle. It may be possible, for example, simply to strengthen the
condition on s to s > k1 + · · ·+ kt + 1 in order to achieve this end.

Let us spend a little time interpreting QHL varieties, and the QHL model, in
the context of familiar ideas, and in particular, the work of Schmidt [29]. We first
note that a standard analysis based on suitable convergence assumptions shows
that ∆(Q) is asymptotically equal to µ∞(B)S, where

µ∞(B) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫
B
e (Ψ(γ;F;β)) dγdβ, (A.13)

and
S =

∏
p prime

µp(F), (A.14)



52 R. C. VAUGHAN AND T. D. WOOLEY

in which

µp(F) = lim
h→∞

ph(t−s)card
{
x ∈

(
Z/phZ

)s
: Fi(x) = 0 (1 ≤ i ≤ t)

}
. (A.15)

The integral µ∞(B) may be shown to be the real density defined in [29, equation
(3.7)], which is a normalised version of the familiar singular integral in the circle
method. Further, the factors µp(F) are Schmidt’s local factors (see [29, equation
(3.1)]), the product of which is just the usual singular series from the circle method.
Thus, under these convergence assumptions, our QHL varieties are, in the language
of Schmidt, Hardy-Littlewood systems (see [29, equation (1.3)] and its preamble,
and also [11] for some recent interesting developments). As is evident to experts
in the subject, Schmidt’s Hardy-Littlewood systems are those varieties for which
the “major arc” contribution, arising from the application of the Hardy-Littlewood
method, provides the main term in the asymptotic formula for the number of inte-
gral points inside a box PB. For a generic variety in sufficiently many variables, the
latter circumstance has long been conjectured to be the case by many experts, under
the general philosophy that one expects the major and minor arcs in any Hardy-
Littlewood dissection to correspond, roughly speaking, to the non-trivial and trivial
solutions respectively. Thus our QHL model pursues this line of thought rather fur-
ther than Schmidt’s notion of a Hardy-Littlewood system. Indeed, there are QHL
varieties which are not Hardy-Littlewood systems. As an example, consider the
variety defined by x1x2 = x3x4. A simple analysis demonstrates that the number
of integral points on this variety with x ∈ [0, P ]4 is CP 2 logP , for a certain positive
constant C. Then with little effort, one deduces that this variety is QHL, but is
not a Hardy-Littlewood system.

There are two fundamental differences between our model, and that of Schmidt.
Firstly, whereas Schmidt takes an infinite product of local densities, ours is trun-
cated, so that one can handle situations in which this product does not converge.
Secondly, in our model we are interested only in “typical” points, and thus we are ef-
fectively investigating the quasi-projective variety obtained by excision of a certain
number of subvarieties from that in which we are primarily interested. Thus sys-
tems of equations with many parametric solutions which fail to be Hardy-Littlewood
systems may nonetheless be QHL.

We illustrate the preceding comments by considering S3(P ; 1, 3), under the hy-
pothesis that the system (1.2) is QHL. Write

f(α) =
∑

1≤x≤P

e(α1x
3 + α2x), (A.16)

so that by orthogonality,

S3(P ; 1, 3) =

∫ 1

0

∫ 1

0

|f(α)|6dα. (A.17)

From (A.9),

∆(P 3/2, P 1/2) =
∑

1≤q1≤P 3/2

∑
1≤q2≤P 1/2

J(q)v(q), (A.18)
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where

v(q) = q−6
q1∑

a1=1
(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

∣∣∣∣∣
q∑
r=1

e

(
a1
q1
r3 +

a2
q2
r

)∣∣∣∣∣
6

, (A.19)

J(q) =

∫
|β1|≤q−1

1 P 3/2

∫
|β2|≤q−1

2 P 1/2

|w(β)|6 dβ2dβ1, (A.20)

and where we have written q = [q1, q2], and

w(β) =

∫ 1

0

e(β1γ
3 + β2γ)dγ. (A.21)

We first consider J(q).

Lemma A.1. Let

J =

∫ ∞
−∞

∫ ∞
−∞
|w(β)|6dβ2dβ1.

Then 0 < J � 1, and moreover, when q1 and q2 satisfy 1 ≤ q1 ≤ P 3/2 and
1 ≤ q2 ≤ P 1/2, then

J(q)− J � qP−1/2.

Proof. By [32, Theorem 7.3], we have

w(β)� (1 + |β1|+ |β2|)−1/3. (A.22)

Thus, on combining the latter estimate with van der Corput’s estimates for expo-
nential integrals (see, for example, [31, Lemma 4.2]), we obtain

w(β)� min
{
|β2|−1, |β1|−1/3

}
� |β1β2|−1/4. (A.23)

A straightforward analysis, using the estimates (A.22) and (A.23), establishes the
convergence of the integral J , and the first assertion of the lemma follows immedi-
ately. Also, again using (A.22) and (A.23),

J(q)− J � I1 + I2 + I3,

where

I1 =

∫ 1

−1

∫
|β2|>q−1

2 P 1/2

|β2|−6dβ2dβ1, I2 =

∫
|β1|>q−1

1 P 3/2

∫ 1

−1
|β1|−2dβ2dβ1,

and

I3 =

∫
|β1|>q−1

1 P 3/2

∫
|β2|>q−1

2 P 1/2

|β1β2|−3/2dβ1dβ2.
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Thus,
J(q)− J � q1P

−3/2 + q52P
−5/2 + (q1q2)1/2P−1,

and the lemma follows.

We investigate the sum (A.19) through estimates for F (q), which we define by

F (q) = q−6
q∑

a1=1

q∑
a2=1

(a1,a2,q)=1

|S(q, a1, a2)|6,

where

S(q, a1, a2) =

q∑
r=1

eq(a1r
3 + a2r).

Lemma A.2. Suppose that p > 3 is prime. Then F (p) = 5(p− 1)2p−3.

Proof. We observe that

F (p) = p−6

(
p∑

a1=1

p∑
a2=1

|S(p, a1, a2)|6 − p6
)

= p−4M(p)− 1, (A.24)

where M(p) denotes the number of solutions, over the finite field Fp, of the system
(1.2). When p > 3, an argument analogous to that applied at the start of §2 reveals
that M(p) is the number of solutions, over Fp, of the simultaneous equations

X1X2X3 = Y1Y2Y3,

X1 +X2 +X3 = Y1 + Y2 + Y3.

Thus

M(p) = p−2
p∑
a=1

p∑
b=1

∣∣∣∣∣
p∑
x=1

p∑
y=1

p∑
z=1

ep (axyz + b(x+ y + z))

∣∣∣∣∣
2

=

p∑
a=1

p∑
b=1

∣∣∣∣∣∣∣∣
p∑
x=1

p∑
y=1

p|axy+b

ep (b(x+ y))

∣∣∣∣∣∣∣∣
2

. (A.25)

The term with a = b = p in (A.25) contributes p4 to M(p), those with a 6= p and
b = p contribute (p − 1)(2p − 1)2, and those with a = p and b 6= p have an empty
innermost sum. Further, the contribution of the remaining terms in the innermost
double sum is M∗(p), where

M∗(p) =

p−1∑
a=1

p−1∑
b=1

∣∣∣∣∣
p−1∑
x=1

ep
(
b(x− ba−1x−1)

)∣∣∣∣∣
2

=

p−1∑
b=1

p∑
r=1

∣∣∣∣∣
p−1∑
x=1

ep
(
b(x+ rx−1)

)∣∣∣∣∣
2

−
p−1∑
b=1

∣∣∣∣∣
p−1∑
x=1

ep (bx)

∣∣∣∣∣
2

.

Thus, by orthogonality we have M∗(p) = (p − 1)2p − (p − 1), and hence M(p) =
p4 + 5p(p− 1)2. The lemma now follows from (A.24).
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Lemma A.3. Let p be prime and t > 1. Then

F (pt)� p−2t/3.

Proof. Let (pt, a1, a2) = 1. Then by [24, Lemma 1.6] (or the argument of the proof
of [32, Theorem 7.1]),

S(pt, a1, a2)� p2t/3.

Furthermore, S(pt, a1, a2) = 0 if p|a1 but p - a2, so by the argument given in the
proof of [22, Lemma 7], we have

S(pt, a1, a2)� pt/2(pt, a2)1/4.

Therefore

F (pt)� p−2t
pt∑

a2=1

min
{
pt, (pt, a2)3/2

}
≤ p−2t

t∑
m=0

pt−m min{pt, p3m/2},

and the lemma follows.

We are now in a position to estimate ∆(P 3/2, P 1/2).

Theorem A.4. There are positive absolute constants D1 and D2 such that

D1(logP )5 � ∆(P 3/2, P 1/2)� D2(logP )5.

Proof. For the upper bound, we observe that by positivity, and a rearrangement of
terms,

∆(P 3/2, P 1/2) ≤ J
∑

1≤q1≤P 3/2

∑
1≤q2≤P 1/2

v(q) ≤ J
∑

1≤q≤P 2

F (q).

A standard argument shows that F (q) is multiplicative, and hence by Lemmata
A.2 and A.3,

∆(P 3/2, P 1/2) ≤ J
∏
p≤P 2

∞∑
h=0

F (ph) ≤ J
∏
p≤P 2

(
1 + 5p−1 +O(p−4/3)

)
,

and the upper bound follows easily.
For the lower bound, we observe that by positivity,

∆(P 3/2, P 1/2) ≥
∑

[q1,q2]≤P 1/2

J(q)v(q).
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Further, by Lemma A.1, the latter expression is

≥ JT0(P 1/2) +O
(
T1(P 1/2)

)
,

where
Tr(X) = X−r

∑
1≤q≤X

qrF (q) (r = 0, 1).

In order to estimate the sums Tr, we let H± be the multiplicative function
satisfying H±(pt) = p−t

(±5
t

)
for prime powers pt, in which we have made the usual

extension of the definition of the binomial coefficient. Thus

F (n) =
∑
d|n

H+(d)G(n/d),

where
G(n) =

∑
d|n

H−(d)F (n/d).

But by Lemmata A.2 and A.3, we have G(pt) � p−2t/3, and when p > 3 we have
G(p) = (5− 10p)p−3. Thus

m∑
t=0

G(pt) =
m∑
u=0

F (pu)(1 + 1/p)−5 +O(p−2m/3).

Then on recalling that F (q) is positive, and applying Lemmata A.2 and A.3, we
deduce that when m is large,

m∑
t=0

G(pt) >
1

2
(1 + 1/p)−5

m∑
u=0

F (pu) > 0.

Thus
∑∞
t=0G(pt) converges absolutely and is nonzero. Moreover,

∞∑
t=0

|G(pt)| = 1 +O(p−4/3).

Thus
∏
p

∑∞
t=0G(pt) converges absolutely, and hence so does

∑∞
n=1G(n), say to Γ

(a positive number). Therefore, on applying a standard argument,∑
q≤X

F (q) =
∑
d≤X

H+(d)
∑
r≤X/d

G(r)

=
∑
d≤X

H+(d) (Γ +O(d/X))

=
1

5!
Γ(logX)5 +O

(
(logX)4

)
.
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Thus T0(X) ∼ 1
5!Γ(logX)5, and a similar argument shows that T1(X)� (logX)4.

This completes the proof of the theorem.

The hypothesis that the system (1.2) is QHL now leads to the conclusion that
when δ is a sufficiently small positive number,

Ñ(P, P δ) � P 2(logP )5.

Here Ñ(P, P δ) denotes the number of solutions of the system (1.2) with (1.3),
and satisfying the additional condition that none of these points lie on a proper
subvariety of integral degree at most 4 of height at most P δ. A simple check reveals
that the number of solutions lying on the latter subvarieties is equal to the number
lying on the subvarieties corresponding to systems of equations in which the xi are
permutations of the yj , together with O(P 2) other such. Thus we expect that

S3(P ; 1, 3)− 6P 3 � P 2(logP )5,

which is (1.6). Notice that the system (1.2) is not a Hardy-Littlewood system, but,
as is evident from Theorem 1.2, shows every likelihood of being QHL.

As a final footnote, we mention that the ideas outlined above have a natu-
ral extension to inhomogeneous equations. Such would explain the observation of
Szekeres [30], that the equation

x31 + x32 + x33 + x34 = 1 (A.26)

has more solutions than are predicted by the major arcs in the circle method.
Szekeres found that the parametric solutions (x1, x2, x3, x4) = (1,m,−m, 0), and
permutations thereof, outnumber the product of local densities. However, these
parametric solutions are, in our language, “trivial”, and we would predict that the
major arc contribution in fact corresponds to the number of non-trivial solutions.
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