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Abstract. We investigate pairs of diagonal cubic equations with integral
coefficients. For a class of such Diophantine systems with 11 or more vari-
ables, we are able to establish that the number of integral solutions in a
large box is at least as large as the expected order of magnitude.

1. Introduction

The convexity barrier in the Hardy-Littlewood method presents an appar-
ently insurmountable obstacle to the analysis of Diophantine systems in which
the underlying number of variables is smaller than twice the total degree of
the system. As is well-known, this obstruction arises from the relative sizes of
the product of local densities associated with the system, and the square-root
of the available reservoir of variables that is a limiting feature of associated
exponential sum estimates. In this paper, we establish a lower bound of the
anticipated magnitude for the number of integral zeros of certain pairs of di-
agonal cubic forms in 11 variables, thereby breaking this convexity barrier.

In order to introduce the Diophantine systems central to our discussion, take
l, m, n to be non-negative integers with m > n, and fix non-zero integers ai,
bi, cj, dk, where 1 6 i 6 l, 1 6 j 6 m and 1 6 k 6 n. We then define N(B)
to be the number of integral solutions to the system

a1x
3
1 + . . .+ alx

3
l + c1y

3
1 + . . .+ cmy

3
m = 0,

b1x
3
1 + . . .+ blx

3
l +d1z

3
1 + . . .+ dnz

3
n = 0,

}
(1.1)

with xi, yj, zk ∈ [−B,B]. Associated to the system (1.1) are the total number
of variables s = l +m+ n, and a measure of the minimal number of variables
across equations q∗0 = min{s− l, s−m, s−n}. Before announcing the principal
conclusion of this paper, we direct the reader to §6 for a description of Hooley’s
Riemann Hypothesis (which we call HRH).

Theorem 1.1. Let s > 11 and q∗0 > 7, and suppose that the system (1.1)
admits non-singular p-adic solutions for each prime p. Then, with the possible
exception of the case (l,m, n) = (5, 5, 2), one has N(B)� Bs−6. In the latter
exceptional case one recovers the same conclusion by appealing to HRH.
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Examples allied to the system

49(x3
1 + 2x3

2 + 3x3
3) + y3

1 + 2y3
2 + 7y3

3 + 14y3
4 = 0,

49(x3
1 + 4x3

2 + 4x3
3) +z3

1 + 2z3
2 + 7z3

3 + 14z3
4 = 0,

}
demonstrate that the p-adic solubility hypothesis in the theorem is required,
as the reader may easily verify.

The conclusion of Theorem 1.1 establishes the Hasse Principle for those
systems (1.1) with s > 11 and q∗0 > 7, and indeed an appropriate modification
of our methods would confirm the weak approximation property for the same
systems. In view of the convexity barrier, the cases in which s = 11 are of
particular interest. We note that when s > 13, the conclusion of Theorem
1.1 follows from our previous work [7, 8] concerning pairs of diagonal cubic
forms (in particular, see [8, Theorem 2]). When s > 11, moreover, the special
case in which a and b are in rational ratio is covered by [8, Theorem 10].
Previous results on pairs of diagonal cubic equations, meanwhile, apply only to
systems having 14 or more variables (see, in chronological order, the references
[14, 13, 26, 1, 4]).

When s > 12, which is the threshold of the convexity barrier, we are able to
refine the asymptotic lower bound of Theorem 1.1. In this context, it is useful
to introduce the product of local densities associated with the system (1.1).
The latter we define by C = v∞

∏
p vp, in which v∞ is the area of the manifold

defined by (1.1) in the box [−1, 1]s, and for each prime number p one takes

vp = lim
h→∞

ph(2−s)M(ph),

where M(q) denotes the number of solutions of (1.1) with x ∈ (Z/qZ)s.

Theorem 1.2. When s > 12 and q∗0 > 8, one has N(B) > (C + o(1))Bs−6.

For comparison, our earlier work [11] establishes a conclusion which implies
Theorem 1.2 when s > 14 (see [11, Theorem 1.1]).

Thus far we have discussed only problems involving simultaneous cubic equa-
tions, but for problems of very low degree alternative approaches may be appli-
cable. Thus, for systems of linear equations, one has recent work of Green and
Tao [16] for prime numbers, and work of the first author [5] for limit periodic
sequences. It is worth remarking also that the Kloosterman method provides
conclusions on the edge of subconvexity for problems of quadratic type (for
some of the relevant literature, see [15, 18, 24]). Problems within the orbit of
our methods are not limited to diagonal cubic examples alone, and in §11 we
outline some of what may be said concerning problems of higher degree.

In this paper we employ the well-known symbols of Landau and Vinogradov.
The constants implicit in the use of these symbols depend at most on s, a, b,
c, d and ε, unless otherwise indicated. In an effort to simplify our analysis, we
adopt the following convention concerning the number ε. Whenever ε appears
in a statement, either implicitly or explicitly, we assert that the statement
holds for each ε > 0. Note that the “value” of ε may consequently change
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from statement to statement. Throughout, we take B to be a positive real
number with B � 1, in the sense indicated.

2. Preliminary considerations

We initiate our discussion by introducing the notation and technical infras-
tructure necessary for our application of the circle method. Consider a system
of the shape (1.1) subject to the hypotheses of the statement of Theorem 1.1.
Since the conclusion of this theorem is already supplied by [8, Theorem 2]1

when s > 13, there is no loss of generality in restricting to the situations
wherein s = 11 or s = 12. A modicum of computation reveals that the triple
(l,m, n) associated with the system (1.1) must take one of four shapes, namely:

(A) (3, 4, 4) or (3, 5, 4),
(B) (4, 4, 3), (4, 4, 4), (4, 5, 3) or (5, 4, 3),
(C) (2, 5, 5),
(D) (5, 5, 2).

Systems of type A and B we analyse by very similar methods in §§3 and 4,
respectively. The reader will find that the ideas developed in these sections
serve as a model for the treatment of the remaining cases relevant to the proof
of Theorem 1.1, as well as the cases required to establish Theorem 1.2. In
order to handle systems of type C, we ‘borrow’ a variable from each of the
long blocks of 5, adding them to the short block of 2. In this way we obtain a
system superficially resembling those of type B, though sharing characteristics
with those of type A. In this way, we are able in §5 to offer an economical
treatment of systems of type C that rests heavily on the work of §§3 and
4. Readers may care to challenge themselves with the task of developing an
alternative treatment based on our work [6] joint with Kawada, in which the
system (1.1) is understood in terms of an exceptional set problem involving
the representation of values of a binary diagonal form by a diagonal form in
five variables. Finally, in order to accommodate systems of type D, we first
develop mean value estimates for exponential sums conditional on HRH, and
then adapt the methods used for our analysis of systems of type A and B. We
offer an abbreviated account of this work in §6.

1We correct an oversight here in the statement of [8, Theorem 9], an ingredient in the
proof of [8, Theorem 2] relevant to our discussion when the system (1.1) has the shape
(1,m, n) with m > n > 6. The statement of the former theorem should read as follows.

Theorem. Suppose that t is a natural number with t > 6, and let c1, . . . , ct be natural
numbers satisfying (c1, . . . , ct) = 1. Then for each natural number d there is a positive
number ∆, depending at most on c and d, with the property that the set Et(P ), defined by

Et(P ) = {n ∈ N : νPd−1/3 < n 6 Pd−1/3, (n, c1 . . . ct) = 1 and Rt(dn
3; c) < ∆P t−3},

has at most P 1−τ elements.

The inserted condition (n, c1 . . . ct) = 1 should also be imposed in the subsequent application
of this theorem in [8, §6]. Our forthcoming work [12] discusses the case (l,m, n) = (1, 6, 6)
as a particular instance of more general investigations of diagonal senary cubic forms.
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It is apparent that the system (1.1) possesses a real solution (x,y, z) =
(ξ,η, ζ) ∈ (−1, 1)s in which ξi, ηi and ζi are each positive for i 6= 1, 2. We put

ν = 1
2

min
i 6=1,2
{ξi, ηi, ζi}.

Let η be a small positive number to be fixed in due course, and write

Aη(B) = {n ∈ Z ∩ [1, B] : p prime and p|n⇒ p 6 Bη}.

We then put

A ∗
η (B) = {n ∈ [−B,B] : |n| ∈ Aη(B) or n = 0}.

Define the exponential sums

f(θ) =
∑
|x|6B

e(θx3), g(θ) =
∑

νB<x6B

e(θx3), h(θ) =
∑

x∈A ∗
η (B)

e(θx3),

where, as usual, we write e(z) for e2πiz. Let τ0 be the positive number defined
via the relation τ−1

0 = 852 + 16
√

2833 = 1703.6 . . .. Then, when a and b are
fixed non-zero integers and τ1 is any real number with τ1 < τ0, the methods of
[32] may be applied to confirm that whenever η is a sufficiently small positive
number, one has ∫ 1

0

|g(aθ)2h(bθ)4| dθ � B13/4−τ1 . (2.1)

We direct the reader to [31, §5] and [32, §2] for the necessary ideas, the presence
of the coefficients a and b leading to superficial complications only. We put
τ = 1

10
τ0, and for the remainder of this paper we fix our choice of η > 0 to be

sufficiently small in the context of the upper bound (2.1) with τ1 = 9τ .

Having introduced the cast of exponential sums to appear in our application
of the circle method, we next introduce the generating functions

F (α, β) = h(a1α + b1β)h(a2α + b2β)
l∏

i=3

g(aiα + biβ), (2.2)

G(α) = h(c1α)h(c2α)
m∏
j=3

g(cjα), H(β) = h(d1β)h(d2β)
n∏
k=3

g(dkβ). (2.3)

Here we adopt the convention that an empty product is equal to unity. When
B ⊆ [0, 1)2 is measurable, we define

N(B;B) =

∫∫
B

F (α, β)G(α)H(β) dα dβ. (2.4)

Then, by orthogonality, one finds that

N(B) > N(B; [0, 1)2). (2.5)

At this stage we introduce the primary Hardy-Littlewood dissection. We
take the major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 B−9/4},
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with 0 6 a 6 q 6 B3/4 and (a, q) = 1. The corresponding set of minor arcs m
is defined by putting m = [0, 1) \M. In addition, we define a two-dimensional
Hardy-Littlewood dissection as follows. With an eye towards concision in
future sections, we put

L = logB, L = logL and Q = L1/100.

We then define the narrow major arcs N to be the union of the boxes

N(q, a, b) = {(α, β) ∈ [0, 1)2 : |α− a/q| 6 QB−3 and |β − b/q| 6 QB−3},
with 0 6 a, b 6 q 6 Q and (a, b, q) = 1. The complementary set of minor arcs
is n = [0, 1)2 \N. Finally, we write

K = (M×M) \N. (2.6)

We regard sets of major and minor arcs throughout as subsets of R/Z, or
the appropriate higher dimensional analogue of the latter. Thus, for example,
when we write γ ∈ m, then we are implicitly asserting that γ ∈ m + Z.

Our strategy for obtaining a lower bound for N(B; [0, 1)2) employs the
Hardy-Littlewood method, of course, though in a somewhat unconventional
manner. We begin by analysing the contribution of the narrow set of major
arcs N.

Lemma 2.1. Suppose that the system (1.1) admits non-singular p-adic solu-
tions for each prime number p. Then for systems of type A, B, C and D, one
has N(B;N)� Bs−6.

Proof. We begin by defining the Gauss sum

S(q, a) =

q∑
r=1

e(ar3/q),

and then introduce the expression

A(q) =

q∑
u=1

q∑
v=1

(u,v,q)=1

T (q, u, v), (2.7)

where

T (q, u, v) = q−s
l∏

i=1

S(q, aiu+ biv)
m∏
j=1

S(q, cju)
n∏
k=1

S(q, dkv).

In addition, we write

v(θ) =

∫ B

νB

e(θγ3) dγ and w(θ) =

∫ B

−B
e(θγ3) dγ,

and then put
V (ξ, ζ) = VF (ξ, ζ)VG(ξ)VH(ζ),

where

VF (ξ, ζ) = w(a1ξ + b1ζ)w(a2ξ + b2ζ)
l∏

i=3

v(aiξ + biζ),
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VG(ξ) = w(c1ξ)w(c2ξ)
m∏
j=3

v(cjξ), VH(ζ) = w(d1ζ)w(d2ζ)
n∏
k=3

v(dkζ).

Finally, we define

J(X) =

∫∫
B(X)

V (ξ, ζ) dξ dζ and S(X) =
∑

16q6X

A(q),

in which we have written B(X) for the box [−XB−3, XB−3]2. Then by fol-
lowing the argument of [7, §7] leading to [7, equation (7.8)], one finds that
there exists a positive constant C with the property that

N(B;N)− CS(Q)J(Q)� Bs−6L−1/4. (2.8)

In order to estimate the truncated singular series S(Q), we begin by fol-
lowing the argument of the proof of the estimate [7, (7.14)] presented on page
890 of the latter paper. In the present context we find that there is an integer
t > 3, and a non-zero integer ∆ depending on a, b, c, d, such that

A(q)� q−s/3
∑
v1,...,vt
v1...vt|∆q

q2

v1 . . . vt
(vr11 . . . vrtt )1/3,

in which r1, . . . , rt are positive integers satisfying r1 + . . .+ rt = s, and further
maxi ri = 4 when s = 11, and maxi ri 6 5 when s = 12 . Consequently, one
has A(q) � qε−4/3. An inspection of the proof of [7, Lemma 12], noting [7,
equation (7.14)], reveals that S = lim

X→∞
S(X) exists, that S−S(X)� X−1/4,

and thus S(Q)� 1. A pedestrian modification of the proof of [7, Lemma 13],
on the other hand, reveals that in the present context one has J(Q) � Bs−6.
In combination with the lower bound S(Q)� 1 just obtained, the conclusion
of the lemma is evident from the relation (2.8). �

A detailed account of the next step in our analysis, a comparison of N(B;N)
with N(B;M×M), depends on the particular case at hand, and this we defer
to the following four sections. However, we take the opportunity now to record
several auxiliary estimates of significance in the discussion to come. We begin
by considering certain major arc integrals.

Lemma 2.2. Let a be a fixed non-zero integer, and let b be a non-zero rational
number. Then one has

sup
λ∈R

∫
M

|g(aθ)h(bθ + λ)|2 dθ � B1+ε, (2.9)

and when δ > 0,

sup
λ∈R

∫
M

|g(aθ)|2+δ|h(bθ + λ)|2 dθ � B1+δ. (2.10)

Proof. The upper bound (2.10) is immediate from [7, Lemma 9]. By taking
δ = 0 in the argument of the proof of the latter, meanwhile, one obtains (2.9)
(see also [6, Lemma 3.4]). �
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As an immediate consequence of this lemma, we obtain major arc estimates
for G(α) and H(β).

Lemma 2.3. For systems of type A and C, one has∫
M

|G(α)| dα� Bm−3+ε and

∫
M

|H(β)| dβ � Bn−3+ε.

The former estimate holds also for systems of type B and D.

Proof. For systems of type A, B, C and D, one has m > 4. Thus, by applying a
trivial estimate for g(θ) in combination with Schwarz’s inequality and Lemma
2.2, one obtains∫

M

|G(α)| dα 6 g(0)m−4

2∏
i=1

(∫
M

|g(c2+iα)h(ciα)|2 dα
)1/2

� Bm−4(B1+ε).

For systems of type A and C, meanwhile, one has n > 4. Hence, by following
a similar argument to that just described, with H(β) in place of G(α), the
second assertion of the lemma is confirmed in like manner. �

We finish by recording two mean value estimates of some generality. In this
context, when r > t > 3 and λ1, . . . , λr are fixed non-zero integers, we write

Et(θ) = h(λ1θ)h(λ2θ)
t∏
i=3

g(λiθ).

Lemma 2.4. One has∫ 1

0

|Et(θ)|2 dθ �λ B
2t−11/4−9τ (3 6 t 6 r),

and ∫
m

|Et(θ)|2 dθ �λ B
2t−13/4−8τ (4 6 t 6 r).

Proof. An application of Schwarz’s inequality, combined with the trivial esti-
mate |g(λiθ)| 6 B, reveals that∫ 1

0

|Et(θ)|2 dθ 6 B2t−6

2∏
i=1

(∫ 1

0

|g(λ3θ)
2h(λiθ)

4| dθ
)1/2

.

From here, the first estimate of the lemma follows from (2.1). In order to
confirm the second estimate, we begin by noting that a modified version of
Weyl’s inequality (see [27, Lemma 1]) supplies the bound

sup
θ∈m
|g(λtθ)| � B3/4+ε. (2.11)

Thus, on utilising the mean value estimate just obtained, we deduce that∫
m

|Et(θ)|2 dθ 6
(

sup
θ∈m
|g(λtθ)|

)2
∫ 1

0

|Et−1(θ)|2 dθ

� (B3/4+ε)2B2(t−1)−11/4−9τ ,

and the second estimate of the lemma follows. �
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3. Systems of type A

The strategy employed in our proof of Theorem 1.1 is somewhat circuitous,
and we illustrate ideas in this section by concentrating on systems of type
A. We may assume for the present, therefore, that l = 3 and m > n >
4. Our strategy for obtaining a lower bound for the number of solutions of
the system (1.1) counted by N(B) involves constraining the first block of l
variables. Restricting in such a manner that the corresponding diagonal forms
a1x

3
1 + . . . + alx

3
l and b1x

3
1 + . . . + blx

3
l behave essentially as expected so far

as multiplicity of representations is concerned, we obtain a modified counting
function N0(B) whose behaviour is mollified by this arithmetic smoothing. In
Lemma 3.3 we show that the major arc contribution within N0(B) is close to
the corresponding contribution within N(B). By means of a pruning operation
discussed in Lemma 3.1, this contribution is seen via Lemma 2.1 to have order
of growth Bs−6. Meanwhile, the minor arc contribution within N0(B) exploits
the available smoothing by means of Bessel’s inequality, and is described in
mixed form in Lemma 3.4, and pure minor arc form in Lemma 3.5. In this
way, we aim to show that

N(B) > N0(B) > N(B;N) + o(Bs−6)� Bs−6,

and thereby establish Theorem 1.1.

Our first step in the above plan is to prune from the set of arcs M×M to
the narrow major arcs N. We apply Lemmata 2.2 and 2.3 in order to estimate
the contribution of the set of arcs K defined in (2.6), a set we divide into the
two subsets

K0 = {(α, β) ∈ K : alα + blβ ∈M}
and

K1 = {(α, β) ∈ K : alα + blβ ∈ m}.

Lemma 3.1. For systems of type A, one has N(B;K)� Bs−6L −1.

Proof. We first consider the contribution of the set K1. Observe that as a
consequence of the modified version of Weyl’s inequality (2.11), one has

sup
(α,β)∈K1

|F (α, β)| � Bl−1 sup
alα+blβ∈m

|g(alα + blβ)| � Bl−1/4+ε.

Then we deduce from Lemma 2.3 that

N(B;K1)�
(

sup
(α,β)∈K1

|F (α, β)|
)∫

M

|G(α)| dα
∫
M

|H(β)| dβ

� Bl−1/4+ε(Bm−3+ε)(Bn−3+ε)� Bs−49/8. (3.1)

Turning our attention next to the contribution from the set K0, we begin by
considering the functions

ΦG(α) = |g(c3α)g(c4α)|5/4|h(c1α)h(c2α)|, (3.2)

ΦH(β) = |g(d3β)g(d4β)|5/4|h(d1β)h(d2β)|,
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and their mean values

IG =

∫
M

ΦG(α) dα and IH =

∫
M

ΦH(β) dβ.

With an application of Schwarz’s inequality mirroring that employed in the
proof of Lemma 2.3, followed by recourse to Lemma 2.2, one obtains

IG 6
2∏
i=1

(∫
M

|g(c2+iα)|5/2|h(ciα)|2 dα
)1/2

� B3/2, (3.3)

and a symmetric argument yields IH � B3/2. Writing

J0 =

∫
M

∫
M

ΦG(α)ΦH(β) dα dβ, (3.4)

therefore, we deduce that J0 = IGIH � B3.

Next, when i ∈ {1, 2}, k ∈ {l − 1, l} and E is either G or H, define

JEi,k =

∫∫
K0

|g(akα + bkβ)|5/2|ΦE(α)h(aiα + biβ)2| dα dβ. (3.5)

We note that at present we require these integrals only when k = l, though in
§4 we make use of them also when k = l−1. By means of a change of variable,
one discerns from (3.3) and Lemma 2.2 that

JGi,l �
∫
M

ΦG(α) sup
λ∈R

∫
M

|g(γ)|5/2|h(bib
−1
l γ + λ)|2 dγ dα

� B3/2IG � B3, (3.6)

and in an analogous manner one obtains JHi,l � B3. Finally, we put

Ψ(α, β) =
2∏
i=1

|h(ciα)h(diβ)h(aiα + biβ)3|.

Then, as a consequence of the argument of the proof of [7, Lemma 10] (see in
particular the display preceding [7, equation (6.14)]), one has

sup
(α,β)∈n

Ψ(α, β)� B10Q−1/10. (3.7)

By applying Hölder’s inequality in combination with the estimates assembled
above, and applying a trivial bound for g(θ), we conclude that

N(B;K0) 6 g(0)s−11
(

sup
(α,β)∈n

Ψ(α, β)
)1/5

(JG1,lJ
G
2,lJ

H
1,lJ

H
2,l)

1/10J
3/5
0

� Bs−11(B10Q−1/10)1/5(B12)1/10(B3)3/5 = Bs−6Q−1/50.

On recalling (3.1), therefore, we obtain the upper bound

N(B;K) = N(B;K0) +N(B;K1)� Bs−6Q−1/50,

and this completes the proof of the lemma. �
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Thus far our argument presents the appearance of a conventional applica-
tion of the Hardy-Littlewood method. It is at this point that unconventional
elements are introduced. When u, v ∈ Z, denote by ρ(u, v) the number of
integral solutions of the system

a1y
3
1 + . . .+ aly

3
l = u, (3.8)

b1y
3
1 + . . .+ bly

3
l = v, (3.9)

with y1, y2 ∈ A ∗
η (B) and νB < yi 6 B (3 6 i 6 l). In addition, write ρ1(u) for

the number of integral solutions of (3.8), and ρ2(v) for the number of integral
solutions of (3.9), subject to the same conditions on y. Then if we put

Ω =
l∑

i=1

(|ai|+ |bi|) and X = [−ΩB3,ΩB3] ∩ Z,

one finds that

ρ1(u) =
∑
v∈X

ρ(u, v) and ρ2(v) =
∑
u∈X

ρ(u, v). (3.10)

The arithmetic smoothing to which we alluded in the introduction of this
section is achieved by dividing the set X2 into three subsets, calibrated by a
truncation parameter T . We define the sets Xi = Xi(T ) for i = 0, 1, 2 by taking

X0(T ) = {(u, v) ∈ X2 : ρ1(u) 6 T and ρ2(v) 6 T},
X1(T ) = {(u, v) ∈ X2 : ρ1(u) > T and ρ2(v) 6 T}, (3.11)

X2(T ) = {(u, v) ∈ X2 : ρ2(v) > T},
so that

X0(T ) = X2 \ (X1(T ) ∪ X2(T )). (3.12)

For systems of type A, we fix the truncation parameter to be T = Bl−11/4.

At this point we pause to establish an auxiliary estimate for the quantity

Ξi =
∑

(u,v)∈Xi

ρ(u, v) (i = 1, 2).

Lemma 3.2. For systems of type A, one has Ξi � Bl−9τ (i = 1, 2).

Proof. Observe first that in view of (3.10) we have

Ξ1 6
∑
u∈X

ρ1(u)>Bl−11/4

∑
v∈X

ρ(u, v) 6 B11/4−l
∑
u∈X

ρ1(u)2.

On considering the underlying Diophantine equation and applying Lemma 2.4,
one sees that ∑

u∈X

ρ1(u)2 =

∫ 1

0

|F (α, 0)|2 dα� B2l−11/4−9τ . (3.13)

We therefore conclude that when i = 1, one has Ξi � Bl−9τ , and a symmetrical
variant of this argument delivers the same bound when i = 2. �
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Next, when C and D are measurable subsets of [0, 1), we put

R1(u;C) =

∫
C

G(α)e(αu) dα and R2(v;D) =

∫
D

H(β)e(βv) dβ.

One then obtains

N(B;C×D) =
∑

(u,v)∈X2

ρ(u, v)R1(u;C)R2(v;D). (3.14)

Writing

N0(B;C,D) =
∑

(u,v)∈X0

ρ(u, v)R1(u;C)R2(v;D), (3.15)

the starting point for our analysis is the lower bound

N(B) > N0(B; [0, 1), [0, 1)). (3.16)

Our Hardy-Littlewood dissection is now executed by disassembling the set
[0, 1)× [0, 1) into the four pieces

M×M, M×m, m×M and m×m.

We examine each of these subsets in turn.

Lemma 3.3. For systems of type A, one has

N0(B;M,M)−N(B;M×M)� Bs−6−τ .

Proof. By applying the triangle inequality in combination with Lemma 2.3, we
find that

R1(u;M)� Bm−3+ε and R2(v;M)� Bn−3+ε. (3.17)

Consequently, on recalling (3.12), (3.14) and (3.15), and then applying Lemma
3.2, we deduce that

N(B;M×M)−N0(B;M,M) =
∑

(u,v)∈X1∪X2

ρ(u, v)R1(u;M)R2(v;M)

� Bs−l−6+ε(Ξ1 + Ξ2)� Bs−6−9τ+ε.

This completes the proof of the lemma. �

Lemma 3.4. For systems of type A, one has

N0(B;M,m)� Bs−6−τ and N0(B;m,M)� Bs−6−τ .

Proof. Applying the first upper bound of (3.17) in concert with (3.10), one
sees that

N0(B;M,m)� Bm−3+ε
∑

(u,v)∈X0

ρ(u, v)|R2(v;m)|

6 Bm−3+ε
∑
v∈X

ρ2(v)|R2(v;m)|. (3.18)
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On the one hand, by applying Bessel’s inequality together with the first esti-
mate of Lemma 2.4, one has∑

v∈X

ρ2(v)2 =

∫ 1

0

|F (0, β)|2 dβ � B2l−11/4−9τ .

On the other hand, Bessel’s inequality in combination with the second estimate
of Lemma 2.4 yields the bound∑

v∈X

|R2(v;m)|2 6
∫
m

|H(β)|2 dβ � B2n−13/4−8τ .

Consequently, by applying Cauchy’s inequality to (3.18), we obtain

N0(B;M,m)� Bm−3+ε
(∑
v∈X

ρ2(v)2
)1/2(∑

v∈X

|R2(v;m)|2
)1/2

� Bs−6−8τ .

A symmetrical argument shows similarly that N0(B;m,M) � Bs−6−8τ , and
thus the proof of the lemma is complete. �

Lemma 3.5. For systems of type A, one has N0(B;m,m)� Bs−6−τ .

Proof. Recall that for systems of type A, we take T = Bl−11/4 for the truncation
parameter. First applying Cauchy’s inequality, and then applying (3.10) and
(3.11), therefore, in our first step we deduce that

N0(B;m,m) 6
( ∑

(u,v)∈X0

ρ(u, v)|R1(u;m)|2
)1/2( ∑

(u,v)∈X0

ρ(u, v)|R2(v;m)|2
)1/2

6
( ∑

u∈X
ρ1(u)6Bl−11/4

ρ1(u)|R1(u;m)|2
)1/2( ∑

v∈X
ρ2(v)6Bl−11/4

ρ2(v)|R2(v;m)|2
)1/2

6 Bl−11/4
(∑
u∈X

|R1(u;m)|2
)1/2(∑

v∈X

|R2(v;m)|2
)1/2

.

Next, applying Bessel’s inequality together with Lemma 2.4, we conclude that

N0(B;m,m) 6 Bl−11/4
(∫

m

|G(α)|2 dα
)1/2(∫

m

|H(β)|2 dβ
)1/2

� Bl−11/4(B2m−13/4−8τ )1/2(B2n−13/4−8τ )1/2 � Bs−6−8τ .

This completes the proof of the lemma. �

We now come to the crescendo of our argument for systems of type A.
Combining the upper bounds provided by Lemmata 3.3, 3.4 and 3.5, we deduce
from (3.16) that

N(B) > N0(B;M,M) +N0(B;M,m) +N0(B;m,M) +N0(B;m,m)

= N(B;M×M) +O(Bs−6−τ ).

Hence, in view of (2.6), we conclude from Lemmata 2.1 and 3.1 that

N(B) > N(B;N) +O(Bs−6L −1)� Bs−6.
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This completes the proof of Theorem 1.1 for systems of type A.

4. Systems of type B

The proof of Theorem 1.1 in situations wherein n = 3 is complicated by the
relative inferiority of the minor arc bounds available for H(β) in mean square.
Our argument for systems of type B, in which l > 4, m > 4 and n > 3, though
modelled on that of the previous section, must therefore be modified in order
to exploit better the exceptional nature of elements in the sets X1 and X2.
Since Lemma 2.1 remains valid, and shows that N(B;N) � Bs−6, our first
goal is to show that the conclusion of Lemma 3.1 remains valid in the present
circumstances.

Lemma 4.1. For systems of type B, one has N(B;K)� Bs−6L −1.

Proof. We begin by deriving an auxiliary mean value estimate. When j ∈
{l − 1, l}, define

Fj(α, β) = h(a1α + b1β)h(a2α + b2β)
∏

36i6l
i 6=j

g(aiα + biβ).

Then as a consequence of Schwarz’s inequality, one has∫ 1

0

|Fj(α, β)H(β)| dβ 6
(∫ 1

0

|Fj(α, β)|2 dβ
)1/2(∫ 1

0

|H(β)|2 dβ
)1/2

.

By orthogonality, the first integral on the right hand side here is bounded
above by the number of solutions of a diophantine equation, and so by applying
Lemma 2.4 we obtain∫ 1

0

|Fj(α, β)|2 dβ 6
∫ 1

0

|Fj(0, β)|2 dβ � B2(l−1)−11/4−9τ .

The second integral on the right hand side may also be estimated via Lemma
2.4, so that ∫ 1

0

|H(β)|2 dβ � B2n−11/4−9τ .

We therefore deduce that∫ 1

0

|Fj(α, β)H(β)| dβ � Bl+n−15/4−9τ .

Our next step is to prune the set K, the better to exploit available major
arc estimates. Define

K0 = {(α, β) ∈ K : al−1α + bl−1β ∈M and alα + blβ ∈M},
ki(α) = {β ∈ [0, 1) : aiα + biβ ∈ m} (i = l − 1, l).

Then from the modified version of Weyl’s inequality (2.11), when i ∈ {l− 1, l}
one sees that

sup
β∈ki(α)

|g(aiα + biβ)| 6 sup
θ∈m
|g(θ)| � B3/4+ε.
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Uniformly in α, therefore, one has the estimate∫
ki(α)

|F (α, β)H(β)| dβ 6
(

sup
β∈ki(α)

|g(aiα + biβ)|
)∫ 1

0

|Fi(α, β)H(β)| dβ

� B3/4+ε(Bl+n−15/4−9τ )� Bs−m−3−8τ .

Consequently, on recalling Lemma 2.3, one discerns the upper bound

N(B;K \ K0) 6
l∑

i=l−1

∫
M

|G(α)|
∫
ki(α)

|F (α, β)H(β)| dβ dα

� Bs−m−3−8τ

∫
M

|G(α)| dα� Bs−6−τ .

In this way, we deliver the interim conclusion

N(B;K) = N(B;K0) +O(Bs−6−τ ). (4.1)

We now imitate the argument of the proof of Lemma 3.1, employing notation
from the latter proof with some minor modifications. We define ΦG(α) as in
(3.2), and modify the definition of ΦH(β) by putting

ΦH(β) = |g(dnβ)|5/2|h(d1β)h(d2β)|.

One finds with little effort that the estimates IG � B3/2 and IH � B3/2 remain
valid in present circumstances. Defining JGi,k and JHi,k as in (3.5), though noting
our revised definition of the set K0, one finds just as in the argument leading to
(3.6) that when i ∈ {1, 2} and k ∈ {l−1, l}, one has JGi,k � B3 and JHi,k � B3.
In the current situation, we modify the definition of Ψ(α, β) by putting

Ψ(α, β) =
2∏
i=1

|h(ciα)h(diβ)3h(aiα + biβ)|.

The reader will have no difficulty in confirming that the upper bound (3.7)
remains valid. Consequently, an application of Hölder’s inequality reveals that

N(B;K0) 6 g(0)s−11
(

sup
(α,β)∈n

Ψ(α, β)
)1/5

(JG1,lJ
G
2,l−1)3/10(JH1,lJ

H
2,l−1)1/10J

1/5
0 ,

in which J0 is defined by (3.4). The upper bound J0 � B3, combined with
our earlier estimates, therefore leads to the asymptotic relation

N(B;K0)� Bs−11(B10Q−1/10)1/5(B6)3/10(B6)1/10(B3)1/5 = Bs−6Q−1/50.

The conclusion of the lemma is now confirmed by recalling (4.1). �

At this stage of our discussion we introduce unconventional elements paral-
leling those introduced in the preambles to Lemmata 3.2 and 3.3, employing
the same notation throughout. We have only to record that for systems of
type B, the truncation parameter is fixed to be T = Bl−3+τ . Before launch-
ing the Hardy-Littlewood dissection proper, we pause to establish an auxiliary
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estimate for the quantity

Zi =
∑
v∈X

( ∑
u∈X

(u,v)∈Xi

ρ(u, v)

)2

(i = 1, 2).

Lemma 4.2. For systems of type B, one has Zi � B2l−13/4−8τ (i = 1, 2).

Proof. We first seek to establish the lemma in the case i = 1. Suppose that
u ∈ X is an integer for which ρ1(u) > Bl−3+τ . Then one has∫ 1

0

F (α, 0)e(−uα) dα = ρ1(u) > Bl−3+τ .

For systems of type B one has l > 4. As in the argument of the proof of
Lemma 2.3, one therefore finds from Lemma 2.2 that∣∣∣∫

M

F (α, 0)e(−uα) dα
∣∣∣ 6 ∫

M

|F (α, 0)| dα� Bl−3+ε,

whence ∣∣∣∫
m

F (α, 0)e(−uα) dα
∣∣∣ > 1

2
ρ1(u).

In this way, one obtains the upper bound∑
(u,v)∈X1

ρ(u, v) 6
∑
u∈X

ρ1(u)>Bl−3+τ

∑
v∈X

ρ(u, v) 6 B3−l−τ
∑
u∈X

ρ1(u)>Bl−3+τ

ρ1(u)2

� B3−l−τ
∑
u∈X

∣∣∣∫
m

F (α, 0)e(−uα) dα
∣∣∣2.

From here, an application of Bessel’s inequality in combination with the second
bound of Lemma 2.4 yields∑

(u,v)∈X1

ρ(u, v)� B3−l−τ
∫
m

|F (α, 0)|2 dα� B3−l−τ (B2l−13/4−8τ ).

However, when (u, v) ∈ X1 one has∑
u∈X

(u,v)∈X1

ρ(u, v) 6 ρ2(v) 6 Bl−3+τ ,

and so one arrives at the upper bound∑
v∈X

( ∑
u∈X

(u,v)∈X1

ρ(u, v)
)2

6 Bl−3+τ
∑

(u,v)∈X1

ρ(u, v)� Bl−3+τ (Bl−1/4−9τ ).

The conclusion of the lemma has therefore been established when i = 1.
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When i = 2, we follow a similar though simpler path. Thus, one obtains∑
v∈X

( ∑
u∈X

(u,v)∈X2

ρ(u, v)
)2

6
∑
v∈X

ρ2(v)>Bl−3+τ

ρ2(v)2 �
∑
v∈X

∣∣∣∫
m

F (0, β)e(−βv) dβ
∣∣∣2

6
∫
m

|F (0, β)|2 dβ � B2l−13/4−8τ .

This completes the proof of the lemma in the case i = 2. �

In the present circumstances, our Hardy-Littlewood dissection proceeds by
disassembling the set [0, 1)× [0, 1) into the three pieces

M×M, m× [0, 1) and M×m.

We analyse these subsets in turn by means of three lemmata.

Lemma 4.3. For systems of type B, one has

N0(B;M,M)−N(B;M×M)� Bs−6−τ .

Proof. We begin by deriving an auxiliary estimate for the quantity

Υi =
∑

(u,v)∈Xi

ρ(u, v)|R2(v;M)| (i = 1, 2).

Observe that by applying Bessel’s inequality in combination with the first
estimate of Lemma 2.4, one discerns that∑

v∈X

|R2(v;M)|2 6
∫ 1

0

|H(β)|2 dβ � B2n−11/4−9τ .

When i ∈ {1, 2}, therefore, we deduce from Cauchy’s inequality together with
Lemma 4.2 that

Υi 6 Z
1/2
i

(∑
v∈X

|R2(v;M)|2
)1/2

� Bl+n−3−8τ .

For systems of type B one has m > 4, and so it follows from Lemma 2.3 that
R1(u;M)� Bm−3+ε. Hence, we obtain

N(B;M×M)−N0(B;M,M) =
∑

(u,v)∈X1∪X2

ρ(u, v)R1(u;M)R2(v;M)

� Bm−3+ε(Υ1 + Υ2)� Bs−6−7τ .

This completes the proof of the lemma. �

Lemma 4.4. For systems of type B, one has N0(B;m, [0, 1))� Bs−6−τ .

Proof. An application of Cauchy’s inequality reveals that

N0(B;m, [0, 1)) 6 V
1/2

1 V
1/2

2 ,

where
V1 =

∑
(u,v)∈X0

ρ(u, v)|R1(u;m)|2
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and

V2 =
∑

(u,v)∈X0

ρ(u, v)|R2(v; [0, 1))|2.

On recalling the definitions of the sets Xi from (3.11), noting that at present
T = Bl−3+τ , it follows from Bessel’s inequality and Lemma 2.4 that

V1 6
∑
u∈X

ρ1(u)6Bl−3+τ

ρ1(u)|R1(u;m)|2 6 Bl−3+τ
∑
u∈X

|R1(u;m)|2

6 Bl−3+τ

∫
m

|G(α)|2 dα� Bl−3+τ (B2m−13/4−8τ ).

Similarly, one finds that

V2 6
∑
v∈X

ρ2(v)6Bl−3+τ

ρ2(v)|R2(v; [0, 1))|2 6 Bl−3+τ
∑
v∈X

|R2(v; [0, 1))|2

6 Bl−3+τ

∫ 1

0

|H(β)|2 dβ � Bl−3+τ (B2n−11/4−9τ ).

Thus we deduce that

N0(B;m, [0, 1))� Bl−3+τ (Bn+m−3−8τ ) 6 Bs−6−7τ ,

and the proof of the lemma is complete. �

Lemma 4.5. For systems of type B, one has N0(B;M,m)� Bs−6−τ .

Proof. Following the argument of the proof of Lemma 4.3, one finds that

N(B;M×m)−N0(B;M,m) =
∑

(u,v)∈X1∪X2

ρ(u, v)R1(u;M)R2(v;m)

� Bm−3+ε(Z1 + Z2)1/2
(∫ 1

0

|H(β)|2 dβ
)1/2

.

Thus we deduce that

N0(B;M,m)−N(B;M×m)� Bs−6−7τ . (4.2)

We next observe that

N(B;M×m) =

∫
M

∫
m

F (α, β)G(α)H(β) dβ dα. (4.3)

As a consequence of Schwarz’s inequality, one has∫ 1

0

|F (α, β)h(d1β)h(d2β)| dβ 6 g(0)l−4U
1/2
1 U

1/2
2 ,

where for i ∈ {1, 2} we write

Ui =

∫ 1

0

|g(a2+iα + b2+iβ)h(aiα + biβ)h(diβ)|2 dβ.



18 JÖRG BRÜDERN AND TREVOR D. WOOLEY

On considering the underlying Diophantine equations and then appealing to
Lemma 2.4, one discerns that

Ui 6
∫ 1

0

|g(b2+iβ)h(biβ)h(diβ)|2 dβ � B13/4−9τ .

We therefore deduce from the modified version of Weyl’s inequality (2.11) that∫
m

|F (α, β)H(β)| dβ 6 g(0)n−3
(

sup
β∈m
|g(dnβ)|

)∫ 1

0

|F (α, β)h(d1β)h(d2β)| dβ

� Bn−3(B3/4+ε)(Bl−3/4−9τ )� Bs−m−3−8τ .

Substituting this upper bound into (4.3) and applying Lemma 2.3, we obtain

N(B;M×m)� Bs−m−3−8τ

∫
M

|G(α)| dα� Bs−6−7τ .

The conclusion of the lemma follows by reference to (4.2). �

We are now equipped to finish off the discussion of systems of type B. Com-
bining the estimates supplied by Lemmata 4.3, 4.4 and 4.5, we see that

N(B) > N0(B;M,M) +N0(B;M,m) +N0(B;m, [0, 1))

= N(B;M×M) +O(Bs−6−τ ).

Hence, in view of (2.6), we conclude from Lemmata 2.1 and 4.1 that

N(B) > N(B;N) +O(Bs−6L −1)� Bs−6.

This completes the proof of Theorem 1.1 for systems of type B.

5. Systems of type C

Our analysis of systems of type C, wherein s = 12 and (l,m, n) = (2, 5, 5),
may be abbreviated by adjusting the argument of §3 through modification of
the generating functions F (α, β), G(α) and H(β). We begin with a discussion
of the pruning operation implicit in the estimation of N(B;K).

Lemma 5.1. For systems of type C, one has N(B;K)� B6L −1.

Proof. Define the mean values

Uij =

∫∫
K

|g(ciα)|5/2|g(djβ)|9/2|h(a1α + b1β)|2 dα dβ,

Vij =

∫∫
K

|g(ciα)|9/2|g(djβ)|5/2|h(a2α + b2β)|2 dα dβ,

Wk =

∫ 1

0

∫ 1

0

|h(ckα)h(dkβ)|8 dα dβ,

and put

Ψ(α, β) = |h(c1α)h(c2α)h(d1β)h(d2β)|3|h(a1α + b1β)h(a2α + b2β)|.
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Then an application of Hölder’s inequality reveals that

N(B;K) 6
(

sup
(α,β)∈n

Ψ(α, β)
)1/7

(W1W2)1/14

5∏
i=3

5∏
j=3

(UijVij)
1/21. (5.1)

The argument of the proof of [7, Lemma 10] shows that

sup
(α,β)∈n

Ψ(α, β)� B14Q−1/10.

As a consequence of Lemma 2.2, meanwhile, one has

Uij 6
(∫

M

|g(djβ)|9/2 dβ
)(

sup
λ∈R

∫
M

|g(ciα)|5/2|h(a1α + λ)|2 dα
)
� B3,

and a symmetric argument yields the estimate Vij � B3. Finally, one finds
from [27, Theorem 2] that

Wk 6
(∫ 1

0

|h(θ)|8 dθ
)2

� (B5)2 = B10.

Combining these estimates within (5.1), we conclude that

N(B;K)� (B14Q−1/10)1/7(B20)1/14(B6)9/21 � B6Q−1/70.

This completes the proof of the lemma. �

Our next step is to relabel the coefficients of the system (1.1) so that m̃ =

m− 1, ñ = n− 1, l̃ = l+ 2, which is to say that (l̃, m̃, ñ) = (4, 4, 4), and to put

c̃j = cj and d̃j = dj (1 6 j 6 4),

and

(ãi, b̃i) = (ai, bi) (i = 1, 2), (ã3, b̃3) = (0, d5) (ã4, b̃4) = (c5, 0).

We then define the generating functions F̃ (α, β), G̃(α) and H̃(β) as in the
respective definitions of F (α, β), G(α) and H(β) in (2.2) and (2.3), save that
in the present context the integers l, m, n, and the coefficients ai, bi, cj and dk,
are to be decorated by tildes. Further notation from §§2 and 3 is understood to
have the meaning naturally inferred in like manner when decorated by a tilde.
An examination of the argument of §3, leading from the discussion preceding
Lemma 3.2 to the conclusion of the section, now reveals that no adjustment
is necessary in order to accommodate the change of circumstances implicit in
our present analysis. Here it is worth noting that, despite the fact that we

now have l̃ = 4 and ã3 = 0, the presence of three non-zero coefficients in the
equation (3.8) ensures that the analogue of the upper bound (3.13) remains

valid. Thus one obtains Ξ̃1 � B4−9τ , and by means of a symmetric argument

also Ξ̃2 � B4−9τ . The analogue of Lemma 3.3 delivers the bound

Ñ0(B;M,M)− Ñ(B;M×M)� B6−τ ,

and analogues of Lemmata 3.4 and 3.5 yield the estimates

Ñ0(B;M,m)� B6−τ , Ñ0(B;m,M)� B6−τ , Ñ0(B;m,m)� B6−τ .
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We therefore conclude that

Ñ(B) > Ñ0(B;M,M) + Ñ0(B;M,m) + Ñ0(B;m,M) + Ñ0(B;m,m)

= Ñ(B;M×M) +O(B6−τ ) = N(B;M×M) +O(B6−τ ).

Then, in view of (2.6), we conclude from Lemmata 2.1 and 5.1 that

N(B) = Ñ(B)� N(B;N) +O(B6L −1)� B6.

This completes the proof of Theorem 1.1 for systems of type C.

6. Systems of type D

At present, we have been unable to devise an unconditional treatment of
systems of the shape (1.1) in which (l,m, n) = (5, 5, 2). A conditional treat-
ment is available by appealing to HRH. In order to describe the nature of this
particular Riemann Hypothesis, we must indulge in some discussion. Although
a lengthy affair in full, for the sake of concision we conduct a rather sketchy
account here of the treatment of systems of type D. Following Hooley [21, §§5
and 6], we consider the cubic form g(x) = x3

1 + . . . + x3
6 and the associated

discriminant
∆(m) = 3

∏
(m

3/2
1 ±m3/2

2 ± . . .±m3/2
6 ),

in which the product is taken over all possible choices of the signs. Let ρ(m; pr)
denote the number of points of the projective variety defined by g(x) = m·x =
0, having coordinates in the finite field Fpr , and put

E(m; pr) = ρ(m; pr)− (p4r − 1)/(pr − 1). (6.1)

The Euler factors Lp(m; s) are then defined for p - ∆(m) by putting

Lp(m; s) = exp
(
−
∞∑
r=1

E(m; pr)p−rs/r
)
.

When p|∆(m), one must modify the definition of Lp(m; s), as described by
Serre [25], so that for suitable coefficients λj,p = λj,p(m) with 1 6 |λj,p| 6 p3/2,
one has

Lp(m; s) =
∏
j

(1− λj,pp−s)−1.

The number of factors here is at most 10, the precise definition of which need
not detain us. Associated to the modified Hasse-Weil L-function

L(m; s) =
∏
p

Lp(m; s)

is the conductor B(m), given by

B(m) =
∏

p|∆(m)

pap ,

in which the exponents ap are certain non-negative integers with 0 6 ap 6 200.
Finally, we put

ξ(m; s) = (2π)−5sΓ(s)5B(m)s/2L(m; s).
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Conjecture 6.1 (HRH). Suppose that ∆(m) 6= 0. Then:

(i) the function ξ(m; s) has a meromorphic continuation to C of finite
order, its only possible poles being at s = 3

2
and s = 5

2
;

(ii) with w(m) = ±1, one has the functional equation

ξ(m; s) = w(m)ξ(m; 4− s);

(iii) when Re(s) 6= 2, one has ξ(m; s) 6= 0.

It is the assertion (iii) of this conjecture that constitutes the Riemann Hy-
pothesis within HRH. The relevance of Conjecture 6.1 for our work here is
made visible by the following lemma.

Lemma 6.2. Provided that HRH be valid, one has∫ 1

0

|f(θ)|6 dθ � B3+ε.

Proof. When n is a non-negative integer, write r(n) for the number of repre-
sentations of n as the sum of three non-negative integral cubes. Then, subject
to the validity of HRH, Hooley [22, §5] has shewn that∑

16n6x

r(n)2 � x1+ε, (6.2)

a conclusion that yields the bound claimed in the lemma as an immediate
corollary. We note that Heath-Brown [19, Theorem 1.1] has also shown that
the upper bound (6.2) holds conditional on the truth of HRH2. �

Henceforth in this section, we assume the truth of HRH. We now put Y =
B10τ , and introduce the generating functions

kp(θ) =
∑

B/p<w62B/p

e(θw3) and K(θ;Y ) =
∑

Y <p62Y

kp(p
3θ),

in which the letter p is reserved to indicate a prime number in the congruence
class 2 modulo 3. Finally, we change the definition of the generating function
h(θ) applied hitherto by setting

h(θ) =
J∑
j=1

K(θ; 2−jY ), (6.3)

where J = [1
2
τ logB].

Lemma 6.3. When a and b are non-zero integers, one has∫
m

|g(aθ)4h(bθ)6| dθ � B6−3τ .

2In order to avoid possible confusion, we note that in the display preceding [19, equation
(4.4)], there is a typographic error which is corrected in (6.1) above.
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Proof. We apply the argument of the proof of Theorem 3.1 of the authors’
recent work [10] concerning sums of cubes and minicubes, substituting the
conditional bound supplied by Lemma 6.2 in place of the bound tantamount
to (2.1) employed in [10]. In the first instance, the relevance of this new bound
is seen on considering the underlying Diophantine equations. One finds that∫ 1

0

|K(θ;Y )|6 dθ � B3+ε,

and likewise ∫ 1

0

(
max

Y <p62Y
|kp(θ)|

)6

dθ � (B/Y )3+ε.

Next, when X is a real parameter with 1 6 X 6 B3/2, define

M(q, a;X) = {θ ∈ [0, 1) : |qθ − a| 6 XB−3},
and then take M(X) to be the union of the arcs M(q, a;X) with 0 6 a 6 q 6 X
and (a, q) = 1. We put m(X) = [0, 1) \M(X). In view of our choice for Y ,
it follows by an application of Hölder’s inequality paralleling that employed in
the proof of [10, Corollary 3.2], that∫

m(BY 3)

|g(aθ)2h(bθ)6| dθ � B9/2+ε(Y/Bτ )−1/2 � B9/2−4τ .

As a consequence of Weyl’s inequality (see [28, Lemma 2.4]), moreover, one
has

sup
θ∈m(BY 3)

|g(aθ)| � B3/4+ε.

Hence we deduce that∫
m(BY 3)

|g(aθ)4h(bθ)6| dθ � (B3/4+ε)2B9/2−4τ � B6−3τ . (6.4)

We next prune from m to m(BY 3). By a modified version of Weyl’s inequal-
ity akin to that embodied in (2.11), one finds that whenever Y < p 6 2Y ,
then

sup
θ∈m
|kp(bp3θ)| � sup

θ∈m(B3/4Y −4)

|kp(θ)| � B3/4+εY 2,

whence
sup
θ∈m
|h(bθ)| � B3/4+εY 3L� B4/5.

In addition, the methods of [28, §§4.3 and 4.4] permit one to establish the
estimate ∫

M(BY 3)

|g(aθ)|4 dθ � B1+εY 12.

We are consequently led to the upper bound∫
m\m(BY 3)

|g(aθ)4h(bθ)6| dθ �
(

sup
α∈m
|h(bθ)|

)6
∫
M(BY 3)

|g(aθ)|4 dθ

� (B4/5)6B1+εY 12 � B6−3τ .

The conclusion of the lemma follows by reference to (6.4). �
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We now aim to follow the argument of §4, making adjustments as necessary.
We first revise the definitions of the generating functions in (2.2) and (2.3) by
putting

F (α, β) = g(a4α + b4β)g(a5α + b5β)
3∏
i=1

h(aiα + biβ),

G(α) = g(c4α)g(c5α)
3∏
j=1

h(cjα), H(β) = g(d1β)g(d2β).

Defining N(B;B) as in (2.4), we again obtain the lower bound (2.5) for N(B).
All other definitions remain unchanged in the discussion to follow, unless ex-
plicitly noted. Notice that the new definition (6.3) of the generating function
h(θ) ensures that its behaviour on major arcs is very nearly as congenial as
that of g(θ), since it differs from a classical Weyl sum only by the presence of
a small prime factor. Indeed, one may sum trivially over this factor whenever
necessary, treating the remaining part as a classical Weyl sum. In this way,
one may verify that the conclusions of Lemmata 2.1, 2.2 and 2.3 remain valid
in the current situation, despite the novel identity of the exponential sum h(θ).

Our next step is to derive an analogue of the pruning lemma of §4.

Lemma 6.4. For systems of type D, one has N(B;K)� B6L −1.

Proof. Define the mean values

Uij =

∫∫
K

|g(ciα)g(diβ)|19/9|h(ajα + bjβ)h(cjα)|2 dα dβ,

Wj =

∫ 1

0

∫ 1

0

|h(cjα)h(ajα + bjβ)|8 dα dβ,

and put

Ψ(α, β) =
3∏
j=1

|h(cjα)h(ajα + bjβ)|.

Then an application of Hölder’s inequality reveals that

N(B;K) 6 g(0)2
(

sup
(α,β)∈n

Ψ(α, β)
)13/57

3∏
j=1

(U9
4jU

9
5jWj)

1/57. (6.5)

The argument of the proof of [7, Lemma 10] shows that

sup
(α,β)∈n

Ψ(α, β)� B6Q−1/10.

As a consequence of Lemma 2.2, meanwhile, one has

Uij 6
(∫

M

|g(ciα)|19/9|h(cjα)|2 dα
)(

sup
λ∈R

∫
M

|g(diβ)|19/9|h(bjβ + λ)|2 dβ
)

� (B10/9)2 = B20/9.
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Also, by considering the underlying Diophantine equations, making a change
of variables, and applying [27, Theorem 2], one sees that

Wj 6
(∫ 1

0

|h(θ)|8 dθ
)2

� (B5)2 = B10.

Combining these estimates within (6.5), we conclude that

N(B;K)� B2(B6Q−1/10)13/57((B20)2B10)3/57 � B6Q−13/570.

The conclusion of the lemma now follows. �

We now proceed as in §4, adopting the notation introduced in the discussion
prior to Lemmata 3.2 and 3.3. In present circumstances we have (l,m, n) =
(5, 5, 2), though comparison with §4 will be assisted in what follows by explicit
mention of l, m and n. Thus, for systems of type D, the truncation parameter
is fixed to be T = Bl−3+τ , just as in §4. Our next task is to derive a bound
for the quantity Zi introduced in the preamble to Lemma 4.2.

Lemma 6.5. For systems of type D, one has Zi � B2l−4−3τ (i = 1, 2).

Proof. The reader will experience no difficulty in adapting the argument of the
proof of Lemma 4.2 to establish the claimed bounds, substituting when needed
the estimates∫

m

|F (α, 0)|2 dα� B2l−4−3τ and

∫
m

|F (0, β)|2 dβ � B2l−4−3τ ,

made available from Lemma 6.3 via Hölder’s inequality. �

Lemma 6.6. For systems of type D, one has

N0(B;M,M)−N(B;M×M)� B6−τ .

Proof. We adapt the argument of the proof of Lemma 4.3 to the present con-
text. First, as a consequence of Hua’s lemma (see [28, Lemma 2.5]) and
Schwarz’s inequality, one has∫ 1

0

|H(β)|2 dβ 6
(∫ 1

0

|g(d1β)|4 dβ
)1/2(∫ 1

0

|g(d2β)|4 dβ
)1/2

� B2+ε = B2n−2+ε. (6.6)

Then, as in the proof of Lemma 4.3, we deduce from Lemma 6.5 that

Υi 6 Z
1/2
i

(∫ 1

0

|H(β)|2 dβ
)1/2

� Bl+n−3−3τ/2+ε,

and hence that

N0(B;M,M)−N(B;M×M)� Bm−3+ε(Υ1 + Υ2)� Bs−6−τ .

The desired conclusion follows on recalling that s = 12. �

Lemma 6.7. For systems of type D, one has N0(B;m, [0, 1))� B6−τ/3.
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Proof. By adapting the argument of the proof of Lemma 4.4, one finds that

N0(B;m, [0, 1))� Bl−3+τ
(∫

m

|G(α)|2 dα
)1/2(∫ 1

0

|H(β)|2 dβ
)1/2

.

The first integral on the right hand side may be estimated by means of Lemma
6.3 via Hölder’s inequality, and the second from (6.6). Thus one obtains

N0(B;m, [0, 1))� Bl−3+τ (B2m−4−3τ )1/2(B2n−2+ε)1/2 � Bs−6−τ/3.

The desired conclusion again follows on noting that s = 12. �

Lemma 6.8. For systems of type D, one has N0(B;M,m)� B6−τ .

Proof. In the first step, by adapting the argument of the proof of Lemma 4.5,
we deduce from (6.6) and Lemma 6.5 that

N(B;M×m)−N0(B;M,m)� Bm−3+ε(Z1 + Z2)1/2
(∫ 1

0

|H(β)|2 dβ
)1/2

� Bm−3+ε(B2l−4−3τ )1/2(B2n−2+ε)1/2. (6.7)

We next estimate N(B;M×m), observing that a consideration of the under-
lying Diophantine equations in combination with Hölder’s inequality delivers
the bound∫

m

F (α, β)H(β) dβ

�
(

sup
β∈m
|g(d1β)|

)(∫ 1

0

|f(d2β)|6 dβ
)1/6

5∏
i=1

(∫ 1

0

|f(aiα + biβ)|6 dβ
)1/6

.

We therefore deduce from Lemma 6.2 together with Weyl’s inequality (see
(2.11) above) that ∫

m

F (α, β)H(β) dβ � B3/4+ε(B3+ε).

Consequently, in view of Lemma 2.3, we derive the upper bound

N(B;M×m) =

∫
M

G(α)

∫
m

F (α, β)H(β) dβ dα

� B15/4+ε

∫
M

|G(α)| dα� B15/4+ε(B2+ε).

On recalling (6.7), we conclude that

N0(B;M,m)� Bs−6−τ +B6−τ � B6−τ ,

and the proof of the lemma is complete. �

The treatment of systems of type D is now completed just as in the analo-
gous argument for systems of type B in §4. By combining the conclusions of
Lemmata 6.4, 6.6, 6.7 and 6.8, we confirm by means of Lemma 2.1 that

N(B) > N(B;N) +O(B6L −1)� B6.
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This completes the proof of Theorem 1.1 for systems of type D, subject to the
validity of HRH.

7. The anticipated asymptotic formula: preliminaries

In this section, we turn to the proof that N(B) is asymptotically at least
as large as anticipated. Consider a system of the shape (1.1) subject to the
hypotheses of the statement of Theorem 1.2. The conclusion of this theorem
is already supplied by [11, Theorem 1.1] when s > 14, so there is no loss of
generality in restricting to the situations with s = 12 and 13. A moment of
thought reveals that the triple (l,m, n) associated with the system (1.1) must
take one of three shapes, namely:

(E) (4, 4, 4), (4, 5, 4) or (5, 4, 4),
(F) (3, 5, 5),
(G) (5, 5, 3).

We now modify the argument of §§2–6 in order to accommodate the modest
changes involved in obtaining an asymptotic formula for N(B). We take the
expedient approach of adopting all notation from those sections without further
comment, unless noted otherwise, and thereby economise on space.

We begin by modifying the definitions of the generating functions defined
in (2.2) and (2.3) by putting

F (α, β) =
l∏

i=1

f(aiα + biβ), G(α) =
m∏
j=1

f(cjα) and H(β) =
n∏
k=1

f(dkβ).

With the definition (2.4) unchanged, one finds by orthogonality that

N(B) = N(B; [0, 1)2). (7.1)

Lemma 7.1. For systems of type E, F and G, one has

N(B;N) = CBs−6 +O(Bs−6L −1).

Proof. We may apply the argument of the proof of Lemma 2.1. The presence
of additional classical Weyl sums, rather than their smooth brethren, ensures
that the analysis underlying the proof of the latter lemma not only remains
valid, but proceeds in a manner more pedestrian than in §2 (see also the proof
of [11, Lemma 3.1]). Thus one obtains the asymptotic formula

N(B;N) = SJ(B) +O(Bs−6L −1),

where S =
∞∑
q=1

A(q), with A(q) defined as in (2.7), and

J(B) =

∫∫
R2

l∏
i=1

w(aiξ + biζ)
m∏
j=1

w(cjξ)
n∏
k=1

w(dkζ) dξ dζ.

A conventional analysis akin to that described in §2 reveals that, provided
the system (1.1) admits non-singular p-adic solutions for each prime number
p, then 1 � S � 1. Moreover, for a suitable positive constant J, one finds
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that J(B) = JBs−6. Here, in the notation introduced in the preamble to
the statement of Theorem 1.2, one has J = v∞ and S =

∏
p vp (compare

the treatment of [11]). This confirms the asymptotic formula claimed in the
statement of the lemma, with C = SJ. �

The exponential sum g(θ), avoiding as it does summands with arguments
close to 0, has slightly better behaviour on major arcs than does f(θ). We
therefore record surrogates for Lemmata 2.2 and 2.3 of use in later sections.

Lemma 7.2. Let a be a fixed non-zero integer, and let b be a non-zero rational
number. Then when δ > 0, one has

sup
λ∈R

∫
M

|f(aθ)3+δf(bθ + λ)2| dθ � B2+δ

and ∫
M

|f(aθ)|4+δ dθ � B1+δ.

Proof. The first estimate follows via the argument of the proof of [7, Lemma
9], and the second from the methods of [28, §§4.3 and 4.4]. �

Lemma 7.3. Suppose that the integer w is non-zero. Then for m > 4, one
has

R1(w;M)� Bm−3Lε and R1(0;M)� Bm−3+ε.

Similarly, when n > 4, one has

R2(w;M)� Bn−3Lε and R2(0;M)� Bn−3+ε.

Finally, when m > 5 one has R1(w;M)� Bm−3 for all integers w.

Proof. On recalling the definitions of R1(w;M) and R2(w;M) from the pre-
amble to Lemma 3.3, these estimates follow from the methods of [28, §§4.3
and 4.4]. We note that a precise form of these upper bounds may be derived
from [23, equations (1.3) and (1.4)]. �

We finish by recording some mean value estimates for Weyl sums. In this
context, when r > t > 3 and λ1, . . . , λr are fixed non-zero integers, we write

Dt(θ) =
t∏
i=1

f(λiθ).

Lemma 7.4. One has∫ 1

0

|Dt(θ)|2 dθ �λ B
2t−5/2Lε−3/2 (3 6 t 6 r),∫

m

|Dt(θ)|2 dθ �λ B
2t−3Lε−3 (4 6 t 6 r),∫

m

|Dt(θ)|2 dθ �λ B
2t−7/2Lε−5/2 (5 6 t 6 r).
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Proof. The upper bounds∫ 1

0

|f(α)|4 dα� B2 and

∫
m

|f(α)|8 dα� B5Lε−3, (7.2)

that follow, respectively, from Hooley [20, Theorem 1] and Boklan [3], combine
through the medium of Schwarz’s inequality to give∫

m

|f(α)|6 dα 6
(∫ 1

0

|f(α)|4 dα
)1/2(∫

m

|f(α)|8 dα
)1/2

� B7/2Lε−3/2.

In view of Lemma 7.2, therefore, one finds that∫ 1

0

|f(α)|6 dα =

∫
M

|f(α)|6 dα +

∫
m

|f(α)|6 dα� B3 +B7/2Lε−3/2.

By applying Hölder’s inequality, when 3 6 t 6 r one obtains∫ 1

0

|Dt(θ)|2 dθ 6 f(0)2t−6

∫ 1

0

|f(θ)|6 dθ � B2t−6(B7/2Lε−3/2).

This establishes the first estimate of the lemma.

The second estimate of the lemma follows from the second bound of (7.2),
following an application of Hölder’s inequality in a manner similar to that
above. For the third estimate of the lemma, we begin by recalling the sharp-
ened version of Weyl’s inequality

sup
α∈m
|f(α)| � B3/4L1/4+ε,

available from [27] via the work of Hall and Tenenbaum [17]. This leads from
the second estimate of (7.2) to the upper bound∫

m

|f(α)|10 dα�
(

sup
α∈m
|f(α)|

)2
∫
m

|f(α)|8 dα� (B3/4L1/4+ε)2B5Lε−3.

The final estimate of the lemma therefore follows once again by employing
Hölder’s inequality. �

8. Systems of type E

The treatment of systems of type E is similar to that of systems of type B
in §4, and we imitate the latter throughout this section.

Lemma 8.1. For systems of type E, one has N(B;K)� Bs−6L −1.

Proof. Define the mean values

Uijk =

∫∫
K

|f(cjα)|10/3|f(dkβ)|13/3|f(aiα + biβ)|2 dα dβ,

Vijk =

∫∫
K

|f(cjα)|13/3|f(dkβ)|10/3|f(aiα + biβ)|2 dα dβ

and put

Ψ(α, β) =
l∏

i=1

|f(aiα + biβ)|24(l−2)m

m∏
j=1

|f(cjα)|4l(6m−23)

4∏
k=1

|f(dkβ)|lm.
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Then an application of Hölder’s inequality reveals that

N(B;K) 6
(

sup
(α,β)∈n

Ψ(α, β)
)1/(24lm)

l∏
i=1

m∏
j=1

4∏
k=1

(UijkVijk)
1/(8lm). (8.1)

The argument of the proof of [7, Lemma 10] shows that

sup
(α,β)∈n

Ψ(α, β)� (Bl+m−17/3)24lmQ−1/10.

As a consequence of Lemma 7.2, meanwhile, one has

Uijk 6
(∫

M

|f(dkβ)|13/3 dβ
)(

sup
λ∈R

∫
M

|f(cjα)|10/3|f(aiα + λ)|2 dα
)

� (B4/3)(B7/3) = B11/3,

and a symmetric argument yields the estimate Vijk � B11/3. Combining these
estimates within the framework of (8.1), we conclude that

N(B;K)� (Bl+m−17/3Q−1/(240lm))(B11/3)� Bs−6Q−1/4800,

and the bound asserted in the lemma follows immediately. �

We proceed now as in §4, adopting the notation introduced in the discussion
associated with Lemmata 3.2 and 3.3. For systems of type E, the truncation
parameter is fixed to be T = Bl−3L. As in §4, we pause at this point to
establish an estimate for the auxiliary quantity Zi.

Lemma 8.2. For systems of type E, one has Zi � B2l−3Lε−3 (i = 1, 2).

Proof. Since l > 4, the estimate∫
M

F (α, 0)e(−αu) dα� Bl−3Lε (u 6= 0)

may be established just as in the proof of Lemma 7.3. Meanwhile, Hölder’s
inequality combines with the first estimate of (7.2) to supply the bound∫ 1

0

F (α, 0) dα� Bl−2, (8.2)

and Lemma 7.4 delivers the estimate∫
m

|F (α, 0)|2 dα� B2l−3Lε−3. (8.3)

The argument of the proof of Lemma 4.2 therefore demonstrates that∑
(u,v)∈X1

ρ(u, v) 6 B3−lL−1
∑
u∈X

ρ1(u)>Bl−3L

ρ1(u)2

� B3−lL−1
(
ρ1(0)2 +

∫
m

|F (α, 0)|2 dα
)

� B3−lL−1((Bl−2)2 +B2l−3Lε−3),
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and hence

Z1 6 Bl−3L
∑

(u,v)∈X1

ρ(u, v)� B2l−3Lε−3.

Similarly, and again following the argument of the proof of Lemma 4.2, one
finds that

Z2 �
(
ρ2(0)2 +

∫
m

|F (0, β)|2 dβ
)
� (Bl−2)2 +B2l−3Lε−3.

The conclusion of the lemma therefore follows both for i = 1 and i = 2. �

Lemma 8.3. For systems of type E, one has

N0(B;M,M)−N(B;M×M)� Bs−6Lε−3/2.

Proof. Since in present circumstances one has n > 4, it follows from Lemmata
7.2 and 7.4 via Hölder’s inequality that∫ 1

0

|H(β)|2 dβ 6
∫
M

|H(β)|2 dβ +

∫
m

|H(β)|2 dβ � B2n−3. (8.4)

Following the argument of the proof of Lemma 4.3, therefore, one obtains

Υi 6 Z
1/2
i

(∫ 1

0

|H(β)|2 dβ
)1/2

� Bl+n−3Lε−3/2.

For systems of type E one has m > 4, and so it follows from Lemma 7.3 that

N(B;M×M)−N0(B;M,M)

=
∑

(u,v)∈X1∪X2

ρ(u, v)R1(u;M)R2(v;M)

� Bm−3
(
Bε
∑
v∈X

ρ(0, v)|R2(v;M)|+ Lε(Υ1 + Υ2)
)
.

But since l > 4 and n > 4, one finds from (8.2) and Lemma 7.3 that∑
v∈X

ρ(0, v) = ρ1(0)� Bl−2 and R2(v;M)� Bn−3+ε.

Consequently,

N(B;M×M)−N0(B;M,M)� Bm−3(Bl+n−5+ε +Bl+n−3Lε−3/2)

� Bs−6Lε−3/2,

and the proof of the lemma is complete. �

Lemma 8.4. For systems of type E, one has N0(B;m, [0, 1))� Bs−6Lε−1/2.

Proof. By adapting the argument of the proof of Lemma 4.4 to the present
context, one obtains

N0(B;m, [0, 1))� Bl−3L
(∫

m

|G(α)|2 dα
)1/2(∫ 1

0

|H(β)|2 dβ
)1/2

.
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The first integral on the right hand side may be estimated by means of Lemma
7.4, and the second from (8.4). Thus one finds that

N0(B;m, [0, 1))� Bl−3L(B2m−3Lε−3)1/2(B2n−3)1/2 � Bs−6Lε−1/2.

This completes the proof of the lemma. �

Lemma 8.5. For systems of type E, one has N0(B;M,m)� Bs−6Lε−1/2.

Proof. By adapting the argument of the proof of Lemma 4.4 to the present
context, one obtains

N0(B;M,m)� Bl−3L
(∫ 1

0

|G(α)|2 dα
)1/2(∫

m

|H(β)|2 dβ
)1/2

.

The first integral on the right hand side may be estimated by means of a
variant of (8.4), and the second by means of Lemma 7.4. Thus one finds that

N0(B;M,m)� Bl−3L(B2m−3)1/2(B2n−3Lε−3)1/2 � Bs−6Lε−1/2.

This completes the proof of the lemma. �

We may now complete the proof of Theorem 1.2 for systems of type E. We
simply combine (7.1) with Lemmata 8.1, 8.3, 8.4 and 8.5 as in the analogous
argument completing the discussion of §4, obtaining

N(B) > N(B;N) +O(Bs−6L −1) = CBs−6 +O(Bs−6L −1).

9. Systems of type F

In common with the treatment of systems of type C in §5, our argument for
systems of type F, wherein s = 13 and (l,m, n) = (3, 5, 5), may be substan-
tially abbreviated by adjusting the argument of §8 through modification of the
generating functions F (α, β), G(α) and H(β). We begin with a discussion of
the pruning operation implicit in the estimation of N(B;K).

Lemma 9.1. For systems of type F, one has N(B;K)� B7L −1.

Proof. Define the mean values

Uj =

∫∫
K

|f(cjα)f(djβ)|9/2 dα dβ,

and put

Ψ(α, β) =
3∏
i=1

|f(aiα + biβ)|10

5∏
j=1

|f(cjα)f(djβ)|.

Then an application of Hölder’s inequality reveals that

N(B;K) 6
(

sup
(α,β)∈n

Ψ(α, β)
)1/10

5∏
j=1

U
1/5
j . (9.1)

The argument of the proof of [7, Lemma 10] shows that

sup
(α,β)∈n

Ψ(α, β)� B40Q−1/10.
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As a consequence of Lemma 7.2, meanwhile, one has

Uj 6
(∫

M

|f(cjα)|9/2 dα
)(∫

M

|f(djβ)|9/2 dβ
)

� (B3/2)2 = B3.

Combining these estimates with (9.1), we conclude that

N(B;K)� (B40Q−1/10)1/10B3 � B7Q−1/100.

This completes the proof of the lemma. �

Our next step is to relabel the coefficients of the system (1.1) so that m̃ =

m− 1, ñ = n− 1, l̃ = l+ 2, which is to say that (l̃, m̃, ñ) = (5, 4, 4), and to put

c̃j = cj and d̃j = dj (1 6 j 6 4),

and

(ãi, b̃i) = (ai, bi) (i = 1, 2, 3), (ã4, b̃4) = (0, d5) (ã5, b̃5) = (c5, 0).

As in the discussion of §5, we then define the generating functions F̃ (α, β),

G̃(α) and H̃(β) as in the respective definitions of F (α, β), G(α) and H(β) in
(2.2) and (2.3), save that in the present context the integers l, m, n, and the
coefficients ai, bi, cj and dk, are to be decorated by tildes. Further notation
from §§2 and 3 is again understood to have the meaning naturally inferred in
like manner when decorated by a tilde. An examination of the argument of
§8, leading from the discussion preceding Lemma 8.2 to the conclusion of the
section, now reveals that no adjustment is necessary in order to accommodate
the change of circumstances implicit in our present analysis. Here it is worth

noting that, despite the fact that we now have l̃ = 5 and ã4 = 0, the presence of
four non-zero coefficients in the equation (3.8) ensures that the analogue of the

upper bounds (8.2) and (8.3) remain valid. Thus one obtains Z̃1 � B7Lε−3,

and by means of a symmetric argument also Z̃2 � B7Lε−3. The analogue of
Lemma 8.3 delivers the bound

Ñ0(B;M,M)− Ñ(B;M×M)� B7Lε−3/2,

and analogues of Lemmata 8.4 and 8.5 yield

Ñ0(B;m, [0, 1))� B7Lε−1/2 and Ñ0(B;M,m)� B7Lε−1/2.

We therefore deduce that

Ñ(B) > Ñ0(B;M,M) + Ñ0(B;M,m) + Ñ0(B;m, [0, 1))

= Ñ(B;M×M) +O(B7Lε−1/2) = N(B;M×M) +O(B7Lε−1/2).

Finally, we conclude from Lemmata 7.1 and 9.1 that

N(B) = Ñ(B) > N(B;N) +O(B7L −1) = CB7 +O(B7L −1),

and this completes the proof of Theorem 1.2 for systems of type F.
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10. Systems of type G

Our argument when (l,m, n) = (5, 5, 3) is motivated by the treatment of
systems of type D in §6.

Lemma 10.1. For systems of type G, one has N(B;K)� B7L −1.

Proof. Define the mean values

Uij =

∫∫
K

|f(ciα)|9/2|f(djβ)3f(aiα + biβ)2| dα dβ

and put

Ψ(α, β) =
5∏
i=1

|f(aiα + biβ)6f(ciα)|.

Then an application of Hölder’s inequality reveals that

N(B;K)�
(

sup
(α,β)∈n

Ψ(α, β)
)1/10

5∏
i=1

3∏
j=1

U
1/15
ij . (10.1)

The argument of the proof of [7, Lemma 10] shows that

sup
(α,β)∈m

Ψ(α, β)� B35Q−1/10.

As a consequence of Lemma 7.2, on the other hand, one has

Uij �
(∫

M

|f(ciα)|9/2 dα
)(

sup
λ∈R

∫
M

|f(djβ)3f(biβ + λ)2| dβ
)

� (B3/2)(B2) = B7/2.

Combining these estimates within (10.1), we conclude that

N(B;K)� (B35Q−1/10)1/10B7/2 � B7Q−1/100.

The conclusion of the lemma now follows. �

We proceed now as in §4, adopting the notation introduced in the discussion
prior to Lemmata 3.2 and 3.3. For systems of type G, the truncation parameter
is fixed to be T = Bl−3L. Our immediate goal is to derive a bound for the
quantity Zi introduced prior to Lemma 4.2.

Lemma 10.2. For systems of type G, one has Zi � B13/2Lε−5/2 (i = 1, 2).

Proof. We apply the argument of the proof of Lemma 8.2, noting that since
l = 5, in this instance Lemma 7.4 delivers the estimates∫

m

|F (α, 0)|2 dα� B2l−7/2Lε−5/2 and

∫
m

|F (0, β)|2 dβ � B2l−7/2Lε−5/2.

Thus we obtain∑
(u,v)∈X1

ρ(u, v)� B3−lL−1((Bl−2)2 +B2l−7/2Lε−5/2),
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and hence
Z1 � Bl−3L

∑
(u,v)∈X1

ρ(u, v)� B2l−7/2Lε−5/2.

Also, though more directly,

Z2 � (Bl−2)2 +B2l−7/2Lε−5/2.

The conclusion of the lemma now follows for i = 1 and 2. �

Lemma 10.3. For systems of type G, one has

N0(B;M,M)−N(B;M×M)� B7L−1.

Proof. In the present situation one has n = 3, and so Lemma 7.4 yields∫ 1

0

|H(β)|2 dβ � B7/2Lε−3/2. (10.2)

Following the argument of the proof of Lemma 4.3, one obtains

Υi 6 Z
1/2
i

(∫ 1

0

|H(β)|2 dβ
)1/2

� B5Lε−2.

But for systems of type G one has m = 5, and so it follows from Lemma 7.3
that R1(u;M)� B2 uniformly in u. We therefore conclude that

N(B;M×M)−N0(B;M,M)�
∑

(u,v)∈X1∪X2

ρ(u, v)R1(u;M)R2(v;M)

� B2(Υ1 + Υ2)� B7Lε−2,

and the proof of the lemma is complete. �

Lemma 10.4. For systems of type G, one has N0(B;m, [0, 1))� B7Lε−1.

Proof. Adapting the argument of the proof of Lemma 4.4 to the present situ-
ation, one finds that

N0(B;m, [0, 1))� Bl−3L
(∫

m

|G(α)|2 dα
)1/2(∫ 1

0

|H(β)|2 dβ
)1/2

.

The first integral on the right hand side may be estimated via Lemma 7.4, and
the second by means of (10.2). Thus one obtains

N0(B;m, [0, 1))� B2L(B13/2Lε−5/2)1/2(B7/2Lε−3/2)1/2 � B7Lε−1.

This completes the proof of the lemma. �

Lemma 10.5. For systems of type G, one has N0(B;M,m)� B7L−1.

Proof. First, adapting the argument of the proof of Lemma 4.5, we infer from
Lemma 7.3 that

N(B;M×m)−N0(B;M,m) =
∑

(u,v)∈X1∪X2

ρ(u, v)R1(u;M)R2(v;m)

� B2(Z1 + Z2)1/2
(∫ 1

0

|H(β)|2 dβ
)1/2

.
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Consequently, from (10.2) and Lemma 10.2, one obtains

N(B;M×m)−N0(B;M,m)� B2(B13/2Lε−5/2)1/2(B7/2Lε−3/2)1/2

= B7Lε−2. (10.3)

We next estimate N(B;M × m), observing that an application of Hölder’s
inequality together with (7.2) and [27, Theorem 2] yields∫

m

F (α, β)H(β) dβ �
3∏

k=1

(∫
m

|f(dkβ)|8 dβ
)1/8

5∏
i=1

(∫ 1

0

|f(aiα + biβ)|8 dβ
)1/8

� (B5Lε−3)3/8(B5)5/8 � B5Lε−9/8.

Thus, one deduces from Lemma 7.3 that

N(B;M×m)� B5Lε−9/8

∫
M

|G(α)| dα� B7L−1.

The conclusion of the lemma now follows by reference to (10.3). �

The proof of Theorem 1.2 for systems of type G follows by combining (7.1)
with Lemmata 10.1, 10.3, 10.4 and 10.5, just as in the analogous argument
completing the analysis of §4, and so we arrive at the lower bound

N(B) > N(B;N) +O(B7L −1) = CB7 +O(B7L −1).

11. Further applications

The key feature of the systems amenable to our methods is a block structure.
Our methods make possible the analysis of Diophantine systems of the shape

φ(x1, . . . , xl) + ψ(y1, . . . , ym) = 0,

χ(x1, . . . , xl) +ω(z1, . . . , zn) = 0,

}
for homogeneous polynomials φ, ψ, χ, ω of degree d, provided that l, m, n are
suitably large. The simplest situations to describe are those wherein one has
non-trivial minor arc estimates in mean square for each of the polynomials φ, ψ,
χ, ω. Such is the case, for example, when these polynomials are suitably non-
singular forms in a number of variables exceeding (d−1)2d−1, as a consequence
of the work of Birch [2], and also when these polynomials are diagonal forms
of degree d in d2 variables (see [33, 34]). In the latter case, moreover, if one
restricts the variables to be smooth then one can reduce the number of variables
required to 1

2
d(log d+ log log d+O(1)) (see the methods of [29, 30]).

It may be worthwhile to be more specific concerning the diagonal examples
alluded to above. Consider then the Diophantine system

a1x
d
1 + . . .+ alx

d
l + c1y

d
1 + . . .+ cmy

d
m = 0,

b1x
d
1 + . . .+ blx

d
l +d1z

d
1 + . . .+ dnz

d
n = 0,

}
(11.1)

wherein l, m, n are each at least 1
2
d(log d+log log d+O(1)). Also, let N(B) de-

note the number of integral solutions of (11.1) with |xi|, |yi|, |zi| 6 B. Provided
that the system (11.1) admits non-singular real and p-adic solutions for each
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prime number p, then one may prove via our methods that N(B) � Bs−2d,
where s = l + m + n. Such systems, then, are accessible to our methods
when s > (3

2
+ o(1))d log d, previous approaches being applicable only for

s > (2 + o(1))d log d. With C defined to be the product of local densities as-
sociated with the system (11.1), on the other hand, one may obtain the lower
bound N(B) > (C +o(1))Bs−2d whenever s > 3d2. Hitherto, such a conclusion
would be available only for s > 4d2 or thereabouts.

We finish by noting that at the cost of additional complications our meth-
ods may be generalised so as to be applicable to systems of three or more
equations. Thus, a system of r equations partitioned appropriately into r + 1
blocks may be successfully analysed by recourse to higher moment estimates
along the lines contained in our previous work [9]. The conditions that must
be imposed on the number of variables comprising each block become progres-
sively more complicated to analyse as r increases. When the number of blocks
exceeds r + 1, on the other hand, although inspiration may be drawn from
the investigations of this paper, it seems fair to comment that the situation
remains highly experimental.
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[7] J. Brüdern and T. D. Wooley, The Hasse principle for pairs of diagonal cubic forms,

Ann. of Math. (2) 166 (2007), 865–895.
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