ON THE WARING-GOLDBACH PROBLEM
FOR SEVENTH AND HIGHER POWERS

ANGEL V. KUMCHEV AND TREVOR D. WOOLEY

ABSTRACT. We apply recent progress on Vinogradov’s mean value theorem to improve
bounds for the function H (k) in the Waring—Goldbach problem. We obtain new results for
all exponents k > 7, and in particular establish that for large k£ one has

H(k) < (4k — 2)logk — (2log2 — 1)k — 3.

1. INTRODUCTION

In our recent work [7], we reported on the consequences for the Waring-Goldbach problem
of recent progress on Vinogradov’s mean value theorem based on efficient congruencing
(see, for example, [9, 10]). We now revisit our analysis in order to incorporate the latest
developments stemming from work of Bourgain, Demeter and Guth [1]. We first recall the
definition of the function H (k) associated with the Waring-Goldbach problem. Consider a
natural number k and prime number p, and define § = 0(k,p) to be the integer with p?|k
but p** { k, and v = v(k, p) by

042, whenp=2and6 >0,
v(k,p) = { 9 :
+ 1, otherwise.
We then put K (k) = [, 1), ", and denote by H(k) the least integer s such that every
sufficiently large positive integer congruent to s modulo K (k) may be written as the sum of
s k-th powers of prime numbers.
Improving on the bound H(k) < k(4logk + 2loglogk + O(1)), as k — oo, due to Hua

3, 4], we recently showed that H (k) < (4k — 2)logk + k — 7. The improved bound that we

now present in this note saves roughly (2log2)k further variables.

Theorem 1. When k is large, one has H(k) < (4k —2)logk — (2log2 — 1)k — 3.
For small values of k£ one has the bounds

H(1)<3, H(2) <5, H(3)<9, H(4)<13, H(5) <21, H(6)<32, H(7)<46

< 40,
as a consequence of work of Vinogradov [8], Hua [2], Kawada and the second author [5], the
first author [6], and Zhao [11]. For larger values of k, we recently established that

H(8) <61, H(9) <75 H(10)<89, H(11)<103, H(12)< 117,
H(13) <131, H(14) < 147, H(15) <163, H(16) < 178,
H(17) <194, H(18) <211, H(19) <227, H(20) < 244.
We now obtain the following bounds for H (k) when 7 < k < 20.
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Theorem 2. Let 7 < k <20. Then H(k) < s(k), where s(k) is defined by Table 1.

k7 8 9 10 11 12 13 14 15 16 17 18 19 20
s(k) 45 57 69 81 93 107 121 134 149 163 177 193 207 223

TABLE 1. Upper bounds for H(k) when 7 < k < 20

Our proof of Theorems 1 and 2 proceeds by directly incorporating the refinements available
via [1] into our previous methods from [7]. We record improved estimates for Weyl sums in
62, both pointwise bounds and mean value estimates. Then, in §3, we indicate how to refine
our previous bounds for H (k) using these bounds, thereby establishing Theorems 1 and 2.

Throughout this paper, the letter € denotes a sufficiently small positive number. Whenever
€ occurs in a statement, we assert that the statement holds for each positive ¢, and any
implied constant in such a statement is allowed to depend on €. The letter p, with or
without subscripts, is reserved for prime numbers. We also write e(x) for exp(2riz), and
(a,b) for the greatest common divisor of a and b. Finally, for real numbers 6, we denote by
|0 the largest integer not exceeding 6, and by [#] the least integer no smaller than 6.

2. AUXILIARY ESTIMATES FOR EXPONENTIAL SUMS

We refine the work of [7, §§2 and 3] by incorporating recent progress on Vinogradov’s
mean value theorem due to Bourgain, Demeter and Guth [1]. Recall the classical Weyl sum

frla; X) = Z e (az"),
X<x<2X

in which we suppose that £ > 2 is an integer and « is real. When k£ > 3 is an integer, we
define o}, by means of the relation

(2.1) o' =min {27 k(k—1)}.
Also, for k > 3, we define the multiplicative function wg(q) by taking

ko kp~v~1/2 when u >0 and v =1,
wk(p i ) = { u—1

pvT when v > 0 and 2 <v <k.

Lemma 2.1. Suppose that k > 3. Then either one has fi(a; X) < X'7o%% or there exist
integers a and q such that 1 < ¢ < X** (a,q) =1 and |qo — a| < X7**% in which case
wi(q) X
T+ XFla — a/d]
Proof. One may apply the argument of the proof of [7, Lemma 2.1], noting only that the re-

finement of [10, Theorem 11.1] that follows by employing the bounds recorded in [1, Theorem
1.1] permits the use of the exponent o, with the revised definition (2.1) presented above. [

frlas X) < + X2t

We also require upper bounds for the corresponding Weyl sum over prime numbers,
gl X)= Y e(aph),
X<p<L2X

and these we summarise in the next lemma.
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Lemma 2.2. Suppose that k > 4 and X?7%/3 < P < X920 Then either one has the bound
ge(o; X) < X17o%/3% or clse there exist integers a and q such that 1 < ¢ < P, (a,q) =1
and |ga — a] < PX 7k, in which case

X1+a
(¢ + XF*|ga — a])1/?”

(2.2) gr(a; X) <

Proof. One may follow the argument of the proof of [7, Lemma 2.2], noting that the refine-
ment to the exponent o made available via (2.1) as exhibited in Lemma 2.1. O

In order to describe our critical mean-value estimate, we introduce a set of admissible
exponents for kth powers as follows. Let ¢ = ¢, and u = u; be positive integers to be fixed
in due course. Put # =1 — 1/k, and define

(2.3) Ni=O+op 1 /b)) (1<i<u+1).
Then define A\, o, ..., A\,1¢ by putting

k’2 _ 915—3

B —k—1 . .
(25) )\u+j - k2 T L — /{Z@t_gej 3)\u+1 (3 S ¥ S t),

and then write
(2.6) A= i+ 4+ Xpu

Lemma 2.3. Let k, t and u be positive integers with k > 3 and t > |1(k+3)], and let w
be a non-negative integer. Define the exponents \; and A by means of (2.3)-(2.6), and put
n =max{0,k — A — 2woy}. Then when N is sufficiently large, one has
1 t+u
/ ’gk<a; N)|2wH ‘gk(a;N)‘j)f da < N2A+2w7k+n+s.
Proof. This is [7, Lemma 3.3], modified to reflect the improved Weyl exponent (2.1) as
exhibited in Lemmata 2.1 and 2.2. U

3. THE UPPER BOUND FOR H (k)

An upper bound for H(k) follows by combining the mean value estimate supplied by
Lemma 2.3 with the Weyl-type estimate stemming from Lemma 2.2.

Lemma 3.1. Let k, t and u be positive integers with k > 3 and t > L%(k + 3)J Define the
exponent A by means of (2.6), and put v = |(k—A)/(204)] and n* =k — A —2voy. Finally,
define
1, when 0 <n*< %ak,

h=1<2  when %ak <n* <oy,
3, when o < N* < 20%.
Suppose in addition that 2(t + u +v) + h > 3k + 1 and, when h € {1,2}, that either v > 3
orn* < hoy/3. Then

H(k) <2(t+u+v)+h.
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Proof. This is [7, Lemma 4.1], modified to reflect the improved Weyl exponent (2.1) as
exhibited in Lemma 2.1-2.3. O

We establish Theorems 1 and 2 by applying Lemma 3.1. Recall (2.3)-(2.6), and write
0 =01 and ¢ = 0 + o/k. Then, just as in the discussion of [7, §5], one has

ko Fk+1Do+073((k -3k +k+2) —o(k®* =2+ k+2)\ ,,
1—0+( 2+ h— k091 —0) )¢'
The proof of Theorem 2. Let k be an integer with 7 < k < 20, and define t = #;, u = wy,
v = v and h = h; by means of Table 2. Then by application of a simple computer program,
one confirms the validity of the hypotheses of Lemma 3.1. Thus H(k) < 2(t +u + v) + h.
Indeed, with hj defined as in Table 3, one finds that for each k one has 2n* /o, < hj. We

note in this context that the entries in this table have been rounded up in the final decimal
place presented. This completes our proof of Theorem 2.

k—A=—

k7 8 9 10 11 12 13 14 15 16 17 18 19 20

ty, 7 12 17 10 13 10 24 19 30 17 25 18 29 37
up 13 12 14 25 29 37 28 42 41 60 56 74 66 63
v, 2 4 3 5 4 6 8 5 3 4 7 4 8 11
h, 1111 1 1 1 2 1 1 1 1 1 1

TABLE 2. The values of ty, uy, vy and hy for 7 < k < 20

k 7 8 9 10 11 12 13
hy 0.44643 0.22927 0.02678 0.00739 0.97975 0.00042 0.08628

k 14 15 16 17 18 19 20
hy 1.94435 0.03925 0.01091 0.39085 0.00541 0.52855 0.00043

TABLE 3. The values of A} for 7 < k <20

O

As we remarked in [7, §5], the non-monotonicity in the values of x, uj and vy, recorded in
Table 2 is a consequence of the fact that # and ¢ are close in size, and thus the optimisation
is sensitive only to the sum ¢, 4+ u rather than the individual values of t; and uy.

The proof of Theorem 1. We adapt the proof of [7, Theorem 1], supposing throughout that
k is sufficiently large. Put ¢ = t;, and u = uy, where
t, = [3klogk| and w; = [k(2logk —log2)] —t.
It is convenient to define v = [k(2logk — log2)] — k(2log k — log 2). Also, we write
1 1
Thon M T T hm oy
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so that o, = 7 and o;,_1 = 0. Our earlier formula for £ — A now takes the shape
ko (kQ(k—i—l)(k— 1)3U+9tk3(k3—3]€2+0(l€>>> o

l1—0o (k—1)3(k2+k—Ek0'3)(1 — o) '
As in the corresponding proof of [7, Theorem 1], one finds that

o' =t/ (1—-E§%E«+<D(k‘&”)) = k2,

l—-0o 1 1 1
logqﬁ—log(l— ? )__E_@+O<ﬁ>’

E—A=

Also, since

one discerns that

1 —2log?2
¢u _ e—u/k (1 _ 3 0g k4k 0g + O(k—3/2)) < k_3/2.
Consequently,
k
k=A== (k= 1+ O(kY%) ' + O(k™2),
where
_ 2log k — log 2 B
et u o (t+u)/k 1 — k 3/2
Pt =e — o + O( )
_ 2 2logk —log2 _
— e /k (E_T+O(k 7/2)).
Since Kk —1)
o —1 2 1
h— —1+240(=
T G-Dk-2 kT (M)’
we find that
k—A k(-1
= = —5(k+2)+ ek—(g)(k — 1)(k —logk + Llog2) + O(k™'/?)

=—1(k+2)+ (k—logk+ 1log2 —2) (1 —v/k) + O(k™/?)

=1k —loghk — 3+ 1log2 — v+ O(k™/?).
Put v = [(k—A)/(27)], set n* = k — A — 2vT, and define h as in the statement of Lemma
3.1. Then one has 0 < n* < 27, and in all circumstances one may confirm that

—A—n* —A
k=A=', F

+2<k—2logk —4+log2—2y+O0(k™/?).
T T

20+ h =

Since
2t +u+v) +h<22klogk —klog2 +7) + k —2loghk — 4 +log2 — 2y 4+ O(k~*/?),
we therefore conclude from Lemma 3.1 that
H(k) < (4k — 2)logk — (2log2 — 1)k — 4 +log2 + O(k™V/?).
We have assumed k£ to be sufficiently large, and thus we have established the bound
H(k) < (4k — 2)logk — (2log2 — 1)k — 3.
5



This completes the proof of Theorem 1. O
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