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Abstract. We apply recent progress on Vinogradov’s mean value theorem to improve
bounds for the function H(k) in the Waring–Goldbach problem. We obtain new results for
all exponents k ≥ 7, and in particular establish that for large k one has

H(k) ≤ (4k − 2) log k − (2 log 2− 1)k − 3.

1. Introduction

In our recent work [7], we reported on the consequences for the Waring-Goldbach problem
of recent progress on Vinogradov’s mean value theorem based on efficient congruencing
(see, for example, [9, 10]). We now revisit our analysis in order to incorporate the latest
developments stemming from work of Bourgain, Demeter and Guth [1]. We first recall the
definition of the function H(k) associated with the Waring-Goldbach problem. Consider a
natural number k and prime number p, and define θ = θ(k, p) to be the integer with pθ|k
but pθ+1 - k, and γ = γ(k, p) by

γ(k, p) =

{
θ + 2, when p = 2 and θ > 0,

θ + 1, otherwise.

We then put K(k) =
∏

(p−1)|k p
γ, and denote by H(k) the least integer s such that every

sufficiently large positive integer congruent to s modulo K(k) may be written as the sum of
s k-th powers of prime numbers.

Improving on the bound H(k) ≤ k(4 log k + 2 log log k + O(1)), as k → ∞, due to Hua
[3, 4], we recently showed that H(k) ≤ (4k − 2) log k + k − 7. The improved bound that we
now present in this note saves roughly (2 log 2)k further variables.

Theorem 1. When k is large, one has H(k) ≤ (4k − 2) log k − (2 log 2− 1)k − 3.

For small values of k one has the bounds

H(1) ≤ 3, H(2) ≤ 5, H(3) ≤ 9, H(4) ≤ 13, H(5) ≤ 21, H(6) ≤ 32, H(7) ≤ 46,

as a consequence of work of Vinogradov [8], Hua [2], Kawada and the second author [5], the
first author [6], and Zhao [11]. For larger values of k, we recently established that

H(8) ≤ 61, H(9) ≤ 75, H(10) ≤ 89, H(11) ≤ 103, H(12) ≤ 117,

H(13) ≤ 131, H(14) ≤ 147, H(15) ≤ 163, H(16) ≤ 178,

H(17) ≤ 194, H(18) ≤ 211, H(19) ≤ 227, H(20) ≤ 244.

We now obtain the following bounds for H(k) when 7 ≤ k ≤ 20.
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Theorem 2. Let 7 ≤ k ≤ 20. Then H(k) ≤ s(k), where s(k) is defined by Table 1.

k 7 8 9 10 11 12 13 14 15 16 17 18 19 20
s(k) 45 57 69 81 93 107 121 134 149 163 177 193 207 223

Table 1. Upper bounds for H(k) when 7 ≤ k ≤ 20

Our proof of Theorems 1 and 2 proceeds by directly incorporating the refinements available
via [1] into our previous methods from [7]. We record improved estimates for Weyl sums in
§2, both pointwise bounds and mean value estimates. Then, in §3, we indicate how to refine
our previous bounds for H(k) using these bounds, thereby establishing Theorems 1 and 2.

Throughout this paper, the letter ε denotes a sufficiently small positive number. Whenever
ε occurs in a statement, we assert that the statement holds for each positive ε, and any
implied constant in such a statement is allowed to depend on ε. The letter p, with or
without subscripts, is reserved for prime numbers. We also write e(x) for exp(2πix), and
(a, b) for the greatest common divisor of a and b. Finally, for real numbers θ, we denote by
bθc the largest integer not exceeding θ, and by dθe the least integer no smaller than θ.

2. Auxiliary estimates for exponential sums

We refine the work of [7, §§2 and 3] by incorporating recent progress on Vinogradov’s
mean value theorem due to Bourgain, Demeter and Guth [1]. Recall the classical Weyl sum

fk(α;X) =
∑

X<x≤2X

e
(
αxk

)
,

in which we suppose that k ≥ 2 is an integer and α is real. When k ≥ 3 is an integer, we
define σk by means of the relation

(2.1) σ−1
k = min

{
2k−1, k(k − 1)

}
.

Also, for k ≥ 3, we define the multiplicative function wk(q) by taking

wk(p
uk+v) =

{
kp−u−1/2, when u ≥ 0 and v = 1,

p−u−1, when u ≥ 0 and 2 ≤ v ≤ k.

Lemma 2.1. Suppose that k ≥ 3. Then either one has fk(α;X)� X1−σk+ε, or there exist
integers a and q such that 1 ≤ q ≤ Xkσk , (a, q) = 1 and |qα− a| ≤ X−k+kσk , in which case

fk(α;X)� wk(q)X

1 +Xk|α− a/q|
+X1/2+ε.

Proof. One may apply the argument of the proof of [7, Lemma 2.1], noting only that the re-
finement of [10, Theorem 11.1] that follows by employing the bounds recorded in [1, Theorem
1.1] permits the use of the exponent σk with the revised definition (2.1) presented above. �

We also require upper bounds for the corresponding Weyl sum over prime numbers,

gk(α;X) =
∑

X<p≤2X

e
(
αpk
)
,

and these we summarise in the next lemma.
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Lemma 2.2. Suppose that k ≥ 4 and X2σk/3 ≤ P ≤ X9/20. Then either one has the bound
gk(α;X) � X1−σk/3+ε, or else there exist integers a and q such that 1 ≤ q ≤ P , (a, q) = 1
and |qα− a| ≤ PX−k, in which case

(2.2) gk(α;X)� X1+ε

(q +Xk|qα− a|)1/2
.

Proof. One may follow the argument of the proof of [7, Lemma 2.2], noting that the refine-
ment to the exponent σk made available via (2.1) as exhibited in Lemma 2.1. �

In order to describe our critical mean-value estimate, we introduce a set of admissible
exponents for kth powers as follows. Let t = tk and u = uk be positive integers to be fixed
in due course. Put θ = 1− 1/k, and define

(2.3) λi = (θ + σk−1/k)i−1 (1 ≤ i ≤ u+ 1).

Then define λu+2, . . . , λu+t by putting

λu+2 =
k2 − θt−3

k2 + k − kθt−3
λu+1,(2.4)

λu+j =
k2 − k − 1

k2 + k − kθt−3
θj−3λu+1 (3 ≤ j ≤ t),(2.5)

and then write

(2.6) Λ = λ1 + . . .+ λt+u.

Lemma 2.3. Let k, t and u be positive integers with k ≥ 3 and t ≥
⌊

1
2
(k + 3)

⌋
, and let w

be a non-negative integer. Define the exponents λj and Λ by means of (2.3)-(2.6), and put
η = max{0, k − Λ− 2wσk}. Then when N is sufficiently large, one has∫ 1

0

|gk(α;N)|2w
t+u∏
j=1

∣∣gk(α;Nλj)
∣∣2 dα� N2Λ+2w−k+η+ε.

Proof. This is [7, Lemma 3.3], modified to reflect the improved Weyl exponent (2.1) as
exhibited in Lemmata 2.1 and 2.2. �

3. The upper bound for H(k)

An upper bound for H(k) follows by combining the mean value estimate supplied by
Lemma 2.3 with the Weyl-type estimate stemming from Lemma 2.2.

Lemma 3.1. Let k, t and u be positive integers with k ≥ 3 and t ≥
⌊

1
2
(k + 3)

⌋
. Define the

exponent Λ by means of (2.6), and put v = b(k−Λ)/(2σk)c and η∗ = k−Λ− 2vσk. Finally,
define

h =


1, when 0 ≤ η∗ < 1

2
σk,

2, when 1
2
σk ≤ η∗ < σk,

3, when σk ≤ η∗ < 2σk.

Suppose in addition that 2(t + u + v) + h ≥ 3k + 1 and, when h ∈ {1, 2}, that either v ≥ 3
or η∗ < hσk/3. Then

H(k) ≤ 2(t+ u+ v) + h.
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Proof. This is [7, Lemma 4.1], modified to reflect the improved Weyl exponent (2.1) as
exhibited in Lemma 2.1-2.3. �

We establish Theorems 1 and 2 by applying Lemma 3.1. Recall (2.3)-(2.6), and write
σ = σk−1 and φ = θ + σ/k. Then, just as in the discussion of [7, §5], one has

k − Λ = − kσ

1− σ
+

(
k2(k + 1)σ + θt−3((k3 − 3k2 + k + 2)− σ(k3 − 2k2 + k + 2))

(k2 + k − kθt−3)(1− σ)

)
φu.

The proof of Theorem 2. Let k be an integer with 7 ≤ k ≤ 20, and define t = tk, u = uk,
v = vk and h = hk by means of Table 2. Then by application of a simple computer program,
one confirms the validity of the hypotheses of Lemma 3.1. Thus H(k) ≤ 2(t + u + v) + h.
Indeed, with h∗k defined as in Table 3, one finds that for each k one has 2η∗/σk < h∗k. We
note in this context that the entries in this table have been rounded up in the final decimal
place presented. This completes our proof of Theorem 2.

k 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tk 7 12 17 10 13 10 24 19 30 17 25 18 29 37
uk 13 12 14 25 29 37 28 42 41 60 56 74 66 63
vk 2 4 3 5 4 6 8 5 3 4 7 4 8 11
hk 1 1 1 1 1 1 1 2 1 1 1 1 1 1

Table 2. The values of tk, uk, vk and hk for 7 ≤ k ≤ 20

k 7 8 9 10 11 12 13

h∗k 0.44643 0.22927 0.02678 0.00739 0.97975 0.00042 0.08628

k 14 15 16 17 18 19 20

h∗k 1.94435 0.03925 0.01091 0.39085 0.00541 0.52855 0.00043

Table 3. The values of h∗k for 7 ≤ k ≤ 20

�

As we remarked in [7, §5], the non-monotonicity in the values of tk, uk and vk recorded in
Table 2 is a consequence of the fact that θ and φ are close in size, and thus the optimisation
is sensitive only to the sum tk + uk rather than the individual values of tk and uk.

The proof of Theorem 1. We adapt the proof of [7, Theorem 1], supposing throughout that
k is sufficiently large. Put t = tk and u = uk, where

tk =
⌈

1
2
k log k

⌉
and uk = dk(2 log k − log 2)e − t.

It is convenient to define γ = dk(2 log k − log 2)e − k(2 log k − log 2). Also, we write

τ =
1

k(k − 1)
and σ =

1

(k − 1)(k − 2)
,
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so that σk = τ and σk−1 = σ. Our earlier formula for k − Λ now takes the shape

k − Λ = − kσ

1− σ
+

(
k2(k + 1)(k − 1)3σ + θtk3(k3 − 3k2 +O(k))

(k − 1)3(k2 + k − kθt−3)(1− σ)

)
φu.

As in the corresponding proof of [7, Theorem 1], one finds that

θt = e−t/k
(

1− log k

4k
+O(k−3/2)

)
� k−1/2.

Also, since

log φ = log

(
1− 1− σ

k

)
= −1

k
− 1

2k2
+O

(
1

k3

)
,

one discerns that

φu = e−u/k
(

1− 3 log k − 2 log 2

4k
+O(k−3/2)

)
� k−3/2.

Consequently,

k − Λ = − kσ

1− σ
+
(
k − 1 +O(k−1/2)

)
θtφu +O(k−5/2),

where

θtφu = e−(t+u)/k

(
1− 2 log k − log 2

2k
+O(k−3/2)

)
= e−γ/k

(
2

k2
− 2 log k − log 2

k3
+O(k−7/2)

)
.

Since
σ

τ
=

k(k − 1)

(k − 1)(k − 2)
= 1 +

2

k
+O

(
1

k2

)
,

we find that

k − Λ

2τ
= −1

2
(k + 2) +

e−γ/kk(k − 1)

k3
(k − 1)(k − log k + 1

2
log 2) +O(k−1/2)

= −1
2
(k + 2) + (k − log k + 1

2
log 2− 2) (1− γ/k) +O(k−1/2)

= 1
2
k − log k − 3 + 1

2
log 2− γ +O(k−1/2).

Put v = b(k − Λ)/(2τ)c, set η∗ = k − Λ − 2vτ , and define h as in the statement of Lemma
3.1. Then one has 0 ≤ η∗ < 2τ , and in all circumstances one may confirm that

2v + h =
k − Λ− η∗

τ
+ h ≤ k − Λ

τ
+ 2 ≤ k − 2 log k − 4 + log 2− 2γ +O(k−1/2).

Since

2(t+ u+ v) + h ≤ 2(2k log k − k log 2 + γ) + k − 2 log k − 4 + log 2− 2γ +O(k−1/2),

we therefore conclude from Lemma 3.1 that

H(k) ≤ (4k − 2) log k − (2 log 2− 1)k − 4 + log 2 +O(k−1/2).

We have assumed k to be sufficiently large, and thus we have established the bound

H(k) ≤ (4k − 2) log k − (2 log 2− 1)k − 3.
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This completes the proof of Theorem 1. �
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