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Abstract. Let Fq [t] denote the ring of polynomials over the finite field Fq of characteristic

p, and write Jkq [t] for the additive closure of the set of kth powers of polynomials in Fq [t].

Define Gq(k) to be the least integer s satisfying the property that every polynomial in Jkq [t] of
sufficiently large degree admits a strict representation as a sum of s kth powers. We employ

a version of the Hardy-Littlewood method involving the use of smooth polynomials in order

to establish a bound of the shape Gq(k) ≤ Ck log k + O(k log log k). Here, the coefficient C
is equal to 1 when k < p, and C is given explicitly in terms of k and p when k > p, but in

any case satisfies C ≤ 4/3. There are associated conclusions for the solubility of diagonal
equations over Fq [t], and for exceptional set estimates in Waring’s problem.

1. Introduction. A striking theme in arithmetic concerns the remarkable similarity
between the ring of rational integers ℤ on the one hand, and the polynomial rings in
a single variable Fq[t], defined over the finite fields Fq having q elements, on the other.
The analogy between ℤ and Fq[t] is but one in a family that in general relates number
fields to function fields. In at least one respect it is surprising that these rings should
resemble one another so faithfully, for whereas the characteristic of ℤ is zero, that of
Fq[t] is equal to the characteristic of Fq, a positive (prime) number that we denote by
ch(Fq). A significant desideratum in translating conclusions from ℤ to Fq[t], therefore, is
the derivation of results uniform in the characteristic. In this paper we investigate the
analogue of Waring’s problem over Fq[t], our aim being to establish conclusions that are
relatively robust to changes in the characteristic of Fq. We concentrate, in particular,
on methods having the potential to impact questions that concern the density of rational
points on algebraic varieties in function fields, a topic to which we intend to return on a
future occasion.

Some preparation is required before we can announce our principal conclusions. Let k
be an integer with k ≥ 2, let s ∈ ℕ, and consider a polynomial m in Fq[t]. We seek to
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determine the circumstances in which m admits a representation

(1.1) m = xk1 + xk2 + ⋅ ⋅ ⋅+ xks ,

with xi ∈ Fq[t] (1 ≤ i ≤ s). It is possible that a representation of the shape (1.1) is
obstructed for every natural number s. For example, if the characteristic p of Fq divides

k, then xk1 + ⋅ ⋅ ⋅ + xks = (x
k/p
1 + ⋅ ⋅ ⋅ + x

k/p
s )p, and thus m necessarily fails to admit a

representation of the shape (1.1) whenever m ∕∈ Fq[tp], no matter how large s may be. In
order to accomodate this and other intrinsic obstructions, we define Jkq [t] to be the additive
closure of the set of kth powers of polynomials in Fq[t], and we restrict attention to those
m lying in the subring Jkq [t] of Fq[t]. It is convenient also to define Jkq to be the additive
closure of the set of kth powers of elements of Fq.

As is the case for the rational integers ℤ, two variants of Waring’s problem over Fq[t]
demand attention. In the first (unrestricted) variant, one seeks to establish the existence
of a number s0 with the property that, whenever m ∈ Jkq [t] and s ≥ s0, then the equation
(1.1) is soluble with xi ∈ Fq[t] (1 ≤ i ≤ s). Should such a number s0 exist, we define
vq(k) to be the least permissible choice for s0. The problem of establishing the existence
of vq(k) was addressed first by Paley [17] in 1933. A feature of Paley’s approach to this
problem, in common with the strategies of subsequent authors, is that a representation
is sought first for the polynomial t, and from this representation all others follow by
substitution. In order to achieve success with such a strategy, one must clearly engineer
extensive cancellation amongst monomials tn of large degree, and indeed the degree of the
kth powers of polynomials xki utilised in such a representation (1.1) must usually be at
least k times as large as the degree of the polynomial to be represented. This unrestricted
variant therefore resembles not the classical version of Waring’s problem, but rather the
“easier” Waring problem in which the kth powers of integers xk are replaced by ±xk (see
[11, §21.7], for example). Methods currently employed in the analysis of the unrestricted
variant of Waring’s problem over Fq[t] are apparently of little use in the investigation of
the density of rational points on algebraic varieties. Thus, although we will have more to
say about this unrestricted problem elsewhere, our focus in this paper is on the analogous
restricted variant of Waring’s problem.

Further discussion requires a formal definition. When m ∈ Fq[t], write ord m for the
degree of m. We say that m is an exceptional element of Jkq [t] when its leading coefficient

lies in Fq ∖ Jkq , and in addition k divides ord m. The strongest constraint on the degrees
of the variables that might still permit the existence of a representation of the shape (1.1)
is plainly ord xi ≤ ⌈(ord m)/k⌉ (1 ≤ i ≤ s). When ch(Fq) < k, however, it is possible
that Jkq is not equal to Fq, and then the leading coefficient of m need not be an element

of Jkq . If k divides ord m, so that m is an exceptional polynomial, such circumstances
obstruct the existence of a representation (1.1) of m with the variables xi satisfying the
above constraint on their degrees1. Motivated by these observations, given k ∈ ℕ with

1We are grateful to an individual involved in the refereeing process for raising this issue. By applying

familiar estimates of Weil, one may show that such exceptional polynomials are absent whenever q >
(k − 1)2.
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k ≥ 2, we define P = Pk(m) by setting P = ⌈(ord m)/k⌉ when m is not exceptional, and
when m is exceptional we define P = (ord m)/k+ 1. Notice, in particular, that when m is
not exceptional, then P is the unique integer satisfying k(P − 1) < ord m ≤ kP . We say
that m admits a strict representation as a sum of s kth powers when for some xi ∈ Fq[t]
with ord xi ≤ Pk(m) (1 ≤ i ≤ s), the equation (1.1) is satisfied. We now introduce an
analogue for this strict polynomial Waring problem of the function G(k) familiar from the
classical theory. When k and q are natural numbers exceeding 1, define Gq(k) to be the
least integer s1 satisfying the property that, whenever s ≥ s1 and m ∈ Jkq [t] has degree
sufficiently large in terms of k, s and q, then m admits a strict representation of the shape
(1.1). The primary goal of this paper is the proof of the uniform upper bound for Gq(k)
provided in Theorem 1.1 below.

Before describing this theorem, we introduce some additional notation. First, to each
exponent k and finite field Fq we associate an integer  = q(k) defined in terms of
p = ch(Fq) as follows. We write k in base p, say k = a0 + a1p + ⋅ ⋅ ⋅ + anp

n, where
0 ≤ ai ≤ p−1 (0 ≤ i ≤ n), and then put q(k) = a0 +a1 + ⋅ ⋅ ⋅+an. It is apparent that for
each q and k one has q(k) ≤ k, and also that when k ≥ 2 and ch(Fq) ∤ k, then q(k) ≥ 2.
In addition, we define A = Aq(k) by putting

(1.2) Aq(k) =

{
1, when ch(Fq) > k,

(1− 2−q(k))−1, when ch(Fq) < k.

Finally, when x is a positive real number, we write Logx for max{1, log x}, and put

(1.3) Ĝq(k) = Ak(Log k + Log Log k + 2 +ALog Log k/Log k).

Theorem 1.1. There is a positive absolute constant C1 with the property that whenever
k and q are natural numbers with ch(Fq) ∤ k, then

Gq(k) ≤ Ĝq(k) + C1k
√

Log Log k/Log k.

Meanwhile, when ch(Fq)∣k, one has Gq(k) = Gq(k/ch(Fq)).

Some comments are in order concerning the general features of the bound for Gq(k)
provided by Theorem 1.1. First, when ch(Fq) ∤ k, the lower bound q(k) ≥ 2 ensures that
the coefficient A appearing in (1.3) satisfies 1 ≤ A ≤ 4/3. When ch(Fq)∣k, meanwhile,
it follows from Theorem 1.1 that Gq(k) = Gq(k0), where k0 is the largest divisor of k
coprime to q. But the first conclusion of Theorem 1.1 may be used to bound Gq(k0), and
thus one obtains a bound of the same shape, but quantitatively stronger. Finally, when
q(k) > 3 Log Log k, one has ∣Aq(k) − 1∣ < 1/(Log k)2. In these circumstances one may
replace A by 1 in the upper bound provided by Theorem 1.1 at the cost of increasing the
absolute constant C1.

Almost all work concerning Gq(k) hitherto has been restricted to those situations
wherein ch(Fq) > k. Under this condition, Kubota [13,14] applied a variant of the Hardy-
Littlewood (circle) method involving analogues of Weyl’s inequality and Hua’s lemma in
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order to establish that Gq(k) ≤ 2k + 1. By making use of a modification of Vinogradov’s
mean value theorem, Car [1,2] obtained the upper bound Gq(k) ≤ 2k(k− 1) log 2 + 2k+ 3,
superior for large k, subject to the same constraint ch(Fq) > k. In the former work, the use
of Weyl differencing on certain generating functions involving kth powers of polynomials
produces factors of k! within the arguments of the resulting exponential sums. Since these
factors are zero when ch(Fq) ≤ k, such methods are ineffective in providing non-trivial
estimates for the generating functions essential to the application of the circle method.
The work of Car [1,2] involving Vinogradov’s mean value theorem, on the other hand,

demands that the polynomials xj1 + ⋅ ⋅ ⋅+ xjk be independent for 1 ≤ j ≤ k, and such fails
when ch(Fq) ≤ k. Again, therefore, one encounters a formidable barrier to the extension
of these methods to small characteristic. Both the independent work of Matthews [16]
(unpublished) and of Webb [26] is subject to the same limitations.

Aside from the improvement in the quality of the estimate provided by Theorem 1.1
over those available hitherto, a notable feature of our work is its relative robustness to
changes in the characteristic of the ambient field Fq. We surmount the barriers that
previously obstructed viable conclusions for ch(Fq) ≤ k by applying the large sieve to
obtain a substitute for Weyl’s inequality, thereby avoiding the problematic use of Weyl
differencing. Such an approach requires the availability of suitable mean value estimates
for auxiliary exponential sums. Here we avoid barriers and complications arising from
Vinogradov’s methods and diminishing range arguments, adapting the theory of smooth
Weyl sums to the function field setting through the introduction of exponential sums over
smooth polynomials. It is in this step that the iterative methods of Vaughan [22] and
the second author [27] play an important rôle, and that the parameter q(k) enters the
scene. Repeated efficient differencing analogous to that introduced in [27] inherits some
of the features of Weyl differencing, and so the number of efficient differences that may be
usefully extracted is limited in a manner determined by the divisibility of various binomial
coefficients by ch(Fq).

Earlier authors have bounded Gq(k) in special situations with ch(Fq) ≤ k. Cherly [7]
and Car and Cherly [5] have addressed cases wherein k = 3 and q is a power of 2, applying
methods based on the use of Poisson summation to establish that G2ℎ(3) ≤ 11. The latter
conclusion has recently been refined by Gallardo [9], and by Car and Gallardo [6], using
quite different methods, so that the upper bound 11 can now be replaced by 7 for ℎ > 4,
by 8 for ℎ = 4, and by 10 when 1 ≤ ℎ ≤ 3. Kubota [14, Theorem 37], meanwhile, made use
of diminishing ranges to obtain an upper bound for Gq(k) not far short of 6k log k+O(k).
Here we note that Kubota imposes the restriction k∣Pk(m) for the polynomials m that
are to be represented, and we remark also that his exposition contains some (potentially
fixable) errors.

The local solubility conditions associated with the representation problem (1.1) are
somewhat more complicated than is the case for the classical version of Waring’s problem.
Suppose that ch(Fq) = p. When p∣k, we have already noted that (1.1) is soluble only
when m ∈ Fq[tp]. A second less obvious condition for solubility presents itself when k is
a multiple of a qb-norm for some natural number b. In order to describe this condition,
suppose that q = pℎ. Let l ∈ ℕ, and let a be a divisor of lℎ with 1 ≤ a < lℎ. Then it
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follows from §1.1 of [8] that whenever $ ∈ Fq[t] is an irreducible polynomial of degree
l, and k is a multiple of N = (plℎ − 1)/(pa − 1), then there exist polynomials m ∈ Fq[t]
for which (1.1) admits no solutions modulo $. In brief, the map defined by taking x to
xN (mod $) is the norm map from Fq[t]/($) down to a subfield of the latter having pa

elements. Each m ∈ Fq[t] for which m modulo $ does not belong to this subfield (in fact,
the bulk of Fq[t]) fails to be represented in the shape (1.1), and this failure is detected
by a local condition at the place $. As we shall see in §5, for all k and q, provided that
s ≥ 2k + 1, all local solubility conditions are embodied within the constraint m ∈ Jkq [t] in

(1.1). In addition, when ch(Fq) > k one has Jkq [t] = Fq[t].
Before leaving Theorem 1.1, we remark that the analysis underlying the derivation of

the lower order terms in (1.3) may be applied without substantive modification in the
classical version of Waring’s problem. Thus, writing G(k) for the least integer s2 with the
property that whenever s ≥ s2, then every sufficiently large natural number is the sum of
at most s kth powers of positive integers, one has

G(k) ≤ k(log k + log log k + 2 + log log k/ log k +O(
√

log log k/ log k)).

This refines an earlier bound of the second author [29, Theorem 1.4] in which the final two
terms contained in the outer set of parentheses are replaced simply by O(log log k/ log k).

The theory of exponential sums over smooth polynomials developed in §§2–14 puts at
our disposal a flexible variant of the circle method with wide applicability. We illustrate
this point with two immediate consequences of our methods. In §15 we establish that,
in the sense of natural density, almost all m ∈ Fq[t] admit a strict representation in the
shape (1.1) whenever s ≥ 1

2Ak(Log k+O(Log Log k)). In order to be precise, we introduce
some additional notation. When N is a large natural number, denote by ℰs,k(N) the set
of polynomials m ∈ Jkq [t] with ord m ≤ N that do not admit a strict representation in the
shape (1.1). We write Es,k(N) for the cardinality of ℰs,k(N). Let the characteristic of Fq
be p, and suppose that p� is the largest power of p dividing k. We define G+

q (k) to be the

smallest integer s3 with the property that whenever s ≥ s3, then Es,k(N) = o(qN/p
�

) as
N →∞.

Theorem 1.2. There is a positive absolute constant C2 with the property that whenever
k and q are natural numbers with ch(Fq) ∤ k, then

G+
q (k) ≤ 1

2 Ĝq(k) + C2k
√

Log Log k/Log k.

When ch(Fq)∣k, meanwhile, one has G+
q (k) = G+

q (k/ch(Fq)).

In §16, we discuss the density of solutions of diagonal equations in Fq[t]. Given s, k ∈ ℕ,
and fixed coefficients ai ∈ Fq[t] (1 ≤ i ≤ s), denote by Ns(B; a) the number of solutions
of the equation

(1.4) a1x
k
1 + ⋅ ⋅ ⋅+ asx

k
s = 0,

with x ∈ Fq[t]s and ord xi ≤ B (1 ≤ i ≤ s).
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Theorem 1.3. Let k and q be natural numbers with ch(Fq) ∤ k. There is a positive
absolute constant C3 with the property that whenever s is a natural number with

s ≥ Ĝq(k) + C3k
√

Log Log k/Log k,

then the equation (1.4) satisfies the following quantitative local-to-global principle. Let
a ∈ (Fq[t] ∖ {0})s, and suppose that the equation (1.4) has non-trivial solutions in all
completions Fq(t)$ of Fq(t). Then one has Ns(B; a)≫ (qB)s−k.

The Lang-Tsen theory of Ci-fields (see, in particular, [15, Theorem 8]) shows that
the equation (1.4) possesses a solution x ∈ Fq[t]s ∖ {0} whenever s > k2. The local
solubility hypothesis of Theorem 1.3 is consequently satisfied automatically under the
same condition. Rather than merely establishing the existence of non-trivial solutions of
equation (1.4), our objective is instead the proof of a Hasse principle with good control
of the associated density of solutions. We note in this context that weak approximation

follows by our methods as soon as s ≥ Ĝq(k) + C3k
√

Log Log k/Log k.
A perspective on Waring’s problem in Fq[t] has been presented by Effinger and Hayes

[8] that differs from that motivating the discourse of this paper. As an analogue of the
function G(k) familiar from the classical version of Waring’s problem, Effinger and Hayes
define a function G(k) associated with the collection ℱk of all polynomial rings Fq[t] having
characteristic exceeding k (see [8, Definition 1.13]). They define G(k) to be the least integer
s with the property that, with the exception of at most finitely many polynomials from the
whole collection ℱk, whenever m ∈ Fq[t] and Fq[t] ∈ ℱk, then m has a strict representation
in the shape (1.1). The upper bound G(k) < ∞ is asserted by [8, Theorem 1.9], and the
refinement G(k) ≤ k22k may be extracted from the discussion following the statement of
Theorem 8.15 of [8]. Unfortunately, there is apparently an error in the proof of [8, Theorem
8.11] that invalidates these conclusions. The last line of the proof of this theorem asserts,

inter alia, that the function (d+ qd−2)21−d
is a bounded function of d when the principal

conclusion demands instead that it be a bounded function of q. We have not found a
means to repair the proof of this version of Weyl’s inequality in such a manner that a
direct proof of Theorems 8.15 and 1.9 of [8] may be recovered. However, by employing an
alternative strategy we have obtained an upper bound for G(k) somewhat sharper than
that claimed by Effinger and Hayes [8]. We will report on this work elsewhere.

The reader will discern a number of avenues available for future research stemming
from the ideas presented herein, and we plan to pursue several in future papers. Our most
immediate concern is the explicit computation of bounds for Gq(k) for smaller values of k.
There is also the problem of obtaining the expected asymptotic formula for the number of
solutions of (1.1), and likewise for quite general systems of homogeneous equations over
Fq[t]. Finally, we intend to consider bounds for vq(k) going beyond the trivial relation
vq(k) ≤ Gq(k) + 1 that, in combination with the conclusion of Theorem 1.1, already yields
improvements in the results of Vaserstein [21] relating to the ring Fq[t] for smaller q. This
list by no means exhausts the menu available for the enthusiast. For example, Car [4] has
considered an analogue of Gq(k) for field extensions of Fq(t), and presumably our methods
extend to this situation with additional effort.
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We describe the key elements of the circle method as it applies to Fq[t] in §2. Poly-
nomials having only small degree irreducible divisors (that is, smooth polynomials) play a
distinguished rôle in our method, and so in §3 we discuss their distribution in sufficient
detail for later application. In §4 we build on this work to obtain major arc approxima-
tions for smooth Weyl sums, with a similar analysis for complete Weyl sums, and thus in
§5 we derive a satisfactory lower bound for the major arc contribution. As is familiar to
aficionados of the modern circle method, there is a gap between the domains accessible to
major and minor arc treatments, and so in §6 we develop appropriate pruning technology.
Then, in §7, we move on to consider mean values of smooth Weyl sums, beginning first with
a fundamental lemma, then in §8 establishing an efficient differencing process for mean
values, and finally deriving permissible exponents for these mean values in §9. Following
some preliminary manoeuvres in §10, analogues of Weyl’s estimates for exponential sums
follow via the large sieve in §§11 to 13, with large moduli handled in §11, small moduli in
§12, and explicit Weyl estimates derived in §13. The latter are then applied in §14 in order
to bound Gq(k), and thereby we complete the proof of Theorem 1.1. Finally, in §15 we
apply the methods developed for our work on Gq(k) in order rapidly to establish Theorem
1.2, the proof of Theorem 1.3 in §16 being similarly swift.

It is convenient throughout to reserve uppercase Latin letters for positive real numbers,
and lowercase Latin letters (with the exception of d, e, i, j, k, n, q, r, s, t) for polynomials in
Fq[t]. We reserve q for the cardinality of the finite field Fq and t for the indeterminate
underlying the ring Fq[t]. The letter e will be associated with the exponential function,
and d, i, j, k, n, r, s with positive integers. Irreducible polynomials $ will be supposed
throughout to be monic, and we write $r∥x when $r∣x but $r+1 ∤ x. We denote the
cardinality of a set X by card(X). Throughout, the letter " will denote a sufficiently small
positive number. We use ≪ and ≫ to denote Vinogradov’s well-known notation, implicit
constants depending at most on ", unless otherwise indicated. In an effort to simplify our
analysis, we adopt the convention that whenever " appears in a statement, then we are
implicitly asserting that for each " > 0 the statement holds for sufficiently large values of
the main parameter. Note that the “value” of " may consequently change from statement
to statement, and hence also the dependence of implicit constants on ". Finally, from time
to time we make use of vector notation in order to save space. Thus, for example, we may
abbreviate (c1, . . . , ct) to c.

2. The circle method for polynomial rings. While the circle method for Fq[t] mirrors
the classical version familiar from applications over ℤ, the substantial differences in detail
between these rings demand explanation. Our goal in the present section is to introduce
such notation and basic notions as are subsequently needed to initiate discussion of the
key components of this version of the circle method.

Associated with the polynomial ring Fq[t] defined over the field Fq is its field of fractions
K = Fq(t). Write K∞ = Fq((1/t)) for the completion of Fq(t) at ∞. We may write each
element � ∈ K∞ in the shape � =

∑
i≤n ait

i for some n ∈ ℤ and coefficients ai = ai(�) in

Fq (i ≤ n). Our previous definition of ord m for polynomials m now extends to elements �
of K∞ by defining ord � to be the largest integer i for which ai(�) ∕= 0. We then write ⟨�⟩
for qord �. In this context, we adopt the convention that ord 0 = −∞ and ⟨0⟩ = 0. Consider
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next the compact additive subgroup T of K∞ defined by T = {� ∈ K∞ : ⟨�⟩ < 1}. Every
element � of K∞ can be written uniquely in the shape � = [�] + ∥�∥, where [�] ∈ Fq[t]
and ∥�∥ ∈ T, and we may normalise any Haar measure d� on K∞ in such a manner that∫
T 1 d� = 1.

We are now equipped to define an analogue of the exponential function. Suppose that
ch(Fq) = p. There is a non-trivial additive character eq : Fq → ℂ× defined for each a ∈ Fq
by taking eq(a) = e(tr(a)/p), where we write e(z) for e2�iz, and where tr : Fq → Fp
denotes the familiar trace map. This character induces a map e : K∞ → ℂ× by defining,
for each element � ∈ K∞, the value of e(�) to be eq(a−1(�)). It is often convenient to
refer to a−1(�) as being the residue of �, an element of Fq that we abbreviate to res �.
In this guise we have e(�) = eq(res �). The orthogonality relation underlying the Fourier
analysis of Fq[t], established in [14, Lemma 1], takes the shape

(2.1)

∫
T
e(ℎ�) d� =

{
0, when ℎ ∈ Fq[t] ∖ {0},
1, when ℎ = 0.

In order better to highlight parallels between the application of the circle method over

ℤ and that over Fq[t], we adopt the convention that whenever X is a real number, then X̂
denotes qX . Next, when R and P are positive numbers with R ≤ P , we denote by A(P,R)
the set of degree R-smooth polynomials, that is

(2.2) A(P,R) = {x ∈ Fq[t] : ⟨x⟩ ≤ P̂ , and $∣x⇒ ⟨$⟩ ≤ R̂}.

Here and elsewhere we adopt the convention that whenever $ is used to denote a poly-
nomial, then this polynomial is assumed to be irreducible and monic. We fix a natural
number k with k ≥ 2, and then define the classical Weyl sum F (�) = F (�;P ), and smooth
Weyl sum f(�) = f(�;P,R), by putting

(2.3) F (�;P ) =
∑
⟨x⟩≤P̂

e(�xk) and f(�;P,R) =
∑

x∈A(P,R)

e(�xk).

We seek a strict representation of a given polynomial m of large degree as the sum of s
kth powers, with s chosen suitably large in terms of k. To this end we define P = Pk(m)
as in §1, we take � > 0 sufficiently small in terms of k and s, and we consider the number
R(m) = Rs,k(m; �) of representations of m in the shape

(2.4) m = xk1 + xk2 + yk1 + yk2 + ⋅ ⋅ ⋅+ yks−2,

with ⟨xi⟩ ≤ P̂ (i = 1, 2) and yj ∈ A(P, �P ) (1 ≤ j ≤ s− 2). We note that R(m) provides
a lower bound for the number of strict representations of m in the shape (1.1). When ℬ
is a measurable subset of T, define

(2.5) ℛs(m;ℬ) =

∫
ℬ
F (�)2f(�)s−2e(−m�) d�.
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Here and throughout, whenever the secondary parameters of the exponential sums are
suppressed, then F (�) and f(�) respectively are used to denote F (�;P ) and f(�;P,R),
with P = Pk(m) and R = �P . It follows from (2.1) that R(m) = ℛs(m;T). A heuristic
argument suggests that when s ≥ k + 1 and the necessary local conditions are met, then

R(m) should be of order P̂ s−k. We confirm this expectation with the number of variables
inflated by a factor roughly of log k.

We analyse the integral (2.5) via the Hardy-Littlewood (circle) method, and to this end
we define sets of major and minor arcs corresponding to well and poorly approximable
elements of T. Let W be a positive parameter with 2W < kP . Given polynomials a and
g with (a, g) = 1 and g monic, we define the Farey arc M(g, a) = M(g, a;W ) about a/g
associated with the parameter W by

(2.6) M(g, a;W ) = {� ∈ K∞ : ⟨g�− a⟩ < ŴP̂−k}.

The set of major arcs M(W ) is defined to be the union of the sets M(g, a;W ) with

(2.7) a, g ∈ Fq[t], g monic, 0 ≤ ⟨a⟩ < ⟨g⟩ ≤ Ŵ and (a, g) = 1.

It is apparent from (2.6) and (2.7) that M(W ) ⊆ T. We write m(W ) = T ∖M(W ) for
the complementary set of minor arcs. As the reader will easily verify, the conditions (2.6)
and (2.7) ensure that the arcs M(g, a;W ) comprising M(W ) are disjoint. When W is a
positive parameter satisfying 3W < kP , it is useful also to define the set of arcs N(W ) to
be the union of the sets

(2.8) N(g, a;W ) = {� ∈ K∞ : ⟨g�− a⟩ < ⟨g⟩Ŵ P̂−k}

with polynomials a and g subject to (2.7). Again one has N(W ) ⊆ T, and the arcs
N(g, a;W ) comprising N(W ) are disjoint. Finally, we write n(W ) = T ∖N(W ).

Our strategy for estimating R(m) is now familiar from the classical version of the circle
method. We put V = [ 1

12 logq P ], and we write N = N(V ) and n = n(V ). Here and
elsewhere we use logq x to denote (log x)/(log q). In §4 we derive asymptotic formulae
for the generating functions F (�) and f(�) valid for � ∈ N. These formulae are then
converted in §5 to an asymptotic formula for the total major arc contribution, and indeed
we are able to establish the asymptotic relation

(2.9) ℛs(m;N) = cs,k(m; �)P̂ s−k + o(P̂ s−k),

valid for s ≥ 2k + 1, wherein cs,k(m; �) is a number depending at most on �, q, s, k and
m. Provided that m ∈ Jkq [t], it transpires that cs,k(m; �) > 0. The goal of §§6 to 14 is then

to derive the appropriate complementary minor arc bound ℛs(m; n) = o(P̂ s−k), valid for

(2.10) s ≥ Ĝq(k) + C1k
√

Log Log k/Log k,

with C1 a suitably large positive absolute constant. On combining the last estimate
with (2.5) and (2.9), we deduce that whenever m ∈ Jkq [t] and s satisfies (2.10), then

R(m)≫ P̂ s−k, and consequently Theorem 1.1 follows at once.
Throughout our applications of the circle method in §§4-16 inclusive, unless stated

otherwise we suppose that ch(Fq) ∤ k.
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3. A quasi-ordering on the ring of polynomials. By analogy with the familiar
formulation of the circle method for ℤ, one expects that asymptotic formulae for the
generating functions F (�) and f(�), valid for � ∈ N, will follow via partial summation.
However, the ordering on Fq[t] provided by the degree of a polynomial is too coarse to
permit such arguments to succeed. For example, one may have e(�xk) ∕= e(�yk) even
when ⟨x⟩ = ⟨y⟩. We surmount this difficulty by introducing a finer notion of size that
distinguishes between distinct polynomials, and thereby facilitates arguments involving the
use of partial summation. In this section we establish such properties of various counting
functions for polynomials in arithmetic progressions, and for smooth polynomials, as are
required in subsequent sections of this paper.

Before defining our measure of the size of a polynomial, we recall that the set of non-
zero elements F×q of a finite field Fq forms a cyclic group of order q − 1. Let � ∈ F×q
be a fixed generator of this cyclic group. Formally defining �−∞ to be the element 0 of
Fq, it follows that every element of Fq can be written uniquely in the form �i for some
index i from the set ℐ = {−∞, 0, 1, . . . , q− 2}. We define a bijection ⟨⋅⟩� from Fq[t] to the
non-negative integers as follows. When a ∈ Fq, we define the index � ∈ ℐ associated with
a via the relation a = �� , and then put ⟨a⟩� = � + 1 when � ∈ ℐ ∖ {−∞}, and ⟨a⟩� = 0
when � = −∞. Given a polynomial m = a0 + a1t + ⋅ ⋅ ⋅ + aN t

N in Fq[t], we then define
⟨m⟩� by

(3.1) ⟨m⟩� =

N∑
i=0

⟨ai⟩�qi.

The polynomial ring Fq[t] now inherits an ordering from the non-negative integers. When
a, b ∈ Fq[t], we write a ≺ b when ⟨a⟩� < ⟨b⟩�, and we write a ≼ b when either a ≺ b or
a = b. Also, we write a ≻ b and a ≽ b when b ≺ a and b ≼ a, respectively. As is apparent
from (3.1), whenever a, b ∈ Fq[t] and the degree of b exceeds that of a, then ⟨b⟩� > ⟨a⟩�.
Indeed, if the degree of m is N , then one has qN̂ > ⟨m⟩� ≥ N̂ .

It is convenient to have available a map T�(⋅) from the non-negative integers to Fq[t] that
inverts that defined via (3.1). For this purpose, when u is an integer with 0 ≤ u ≤ q−1, we
define T�(u) by putting T�(u) = �u−1 when u ∈ {1, 2, . . . , q−1}, and T�(u) = 0 when u = 0.
Next, given a non-negative integer v, we write v in base q as v = v0 + v1q + ⋅ ⋅ ⋅ + vNq

N ,
with 0 ≤ vi ≤ q− 1 (0 ≤ i ≤ N), and then put T�(v) = T�(v0) + T�(v1)t+ ⋅ ⋅ ⋅+ T�(vN )tN .

We may now discuss the distribution of polynomials in arithmetic progressions.

Lemma 3.1. Let g and r be elements of Fq[t]. Then whenever X ∈ ℕ, we have

card {m ∈ Fq[t] : ⟨m⟩� ≤ X and m ≡ r (mod g)} = X/⟨g⟩+O(1).

Proof. When W ∈ ℕ and g, r ∈ Fq[t], we define Zg,r(W ) to be the set of polynomials m ∈
Fq[t] for which ⟨m⟩� ≤ W and m ≡ r (mod g), and we write Zg,r(W ) for card(Zg,r(W )).
Note that there is no loss in supposing that ord r < ord g, for one may reduce r modulo
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g. Under this assumption, if m ∈ Zg,r(W ) and we subtract r from m, then it is only the
monomials with degree smaller than ord g that are affected, whence

∣⟨m⟩� − ⟨m− r⟩�∣ ≤
ord g−1∑
i=0

(q − 1)qi < ⟨g⟩.

Thus we see that whenever m ∈ Zg,a(W ), then m± r ∈ Zg,a±r(W + ⟨g⟩), whence

(3.2) Zg,0(W − ⟨g⟩) ≤ Zg,r(W ) ≤ Zg,0(W + ⟨g⟩).

Every polynomial m ∈ Fq[t] belongs to some residue class modulo g, and so by averaging
over the elements r ∈ Fq[t] with 0 ≤ ⟨r⟩ < ⟨g⟩ within (3.2), we obtain

Zg,0(W − ⟨g⟩) ≤ (W + 1)/⟨g⟩ ≤ Zg,0(W + ⟨g⟩).

It therefore follows that

⟨g⟩−1(X − ⟨g⟩+ 1) ≤ Zg,0(X) ≤ ⟨g⟩−1(X + ⟨g⟩+ 1),

and so the proof of the lemma is completed by reference to (3.2).

We now analyse the distribution of refined smooth polynomials. Given positive numbers
X and Y with Y ≤ X, define the set of Y -smooth polynomials

Ã�(X,Y ) = {n ∈ Fq[t] : ⟨n⟩� ≤ X and $∣n⇒ ⟨$⟩� ≤ Y },

and write Ã�(X,Y ) = card(Ã�(X,Y )). One readily confirms the relation

(3.3) A(P,R) = Ã�(qP̂ − 1, 2R̂− 1),

and so the set Ã�(X,Y ) offers a refinement of the set A(P,R).

Before announcing an asymptotic formula for card(Ã�(X,Y )), it is helpful to introduce
some notation. When X and Y are positive numbers with Y < X, define

(3.4) Πq(X,Y ) =
∏

Y <⟨$⟩�≤X

$, �q(X,Y ) =
∑†

d∣Πq(X,Y )

⟨d⟩�≤X

�(d)⟨d⟩−1,

and

(3.5) E(X,Y ) = card{d ∈ Fq[t] : d monic, ⟨d⟩� ≤ X and $∣d⇒ Y < ⟨$⟩� ≤ X}.

Here, we use �(⋅) to denote the Möbius function on Fq[t], and throughout, whenever we
apply the decoration † to a summation or product, we implicitly assume that the latter is
restricted to monic polynomials.
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Lemma 3.2. Suppose that X and Y are positive numbers with Y < X. Then E(X,Y )≪
X/ log(2Y ).

Proof. Write L(W ) = [logqW ] for W = X,Y . Then an upper bound for E(X,Y ) is
provided by sieving out the zero congruence class modulo $, for each irreducible $ with
ord $ ≤ min{L(Y ), 1

2L(X)}, from the polynomials d with ord d ≤ L(X). A modicum of
computation leads from Theorem 3.2 of Hsu [12] to the upper bound

E(X,Y )≪ qL(X)

min{L(Y ), 1
2L(X)}

≪ X

log(2Y )
,

and this completes the proof of the lemma.

Lemma 3.3. Let X and Y be positive numbers with 1 ≤ Y < X. Then

Ã�(X,Y ) = �q(X,Y )X +O(X/ log(2Y )).

Proof. If n is an element of Ã�(X,Y ), then ⟨n⟩� ≤ X. The monic divisors of n are
polynomials of degree at most ord n, whence of size at most ⟨n⟩� ≤ X. By the inclusion-
exclusion principle, therefore, one has∑

n∈Ã�(X,Y )

1 =
∑†

d∣Πq(X,Y )

⟨d⟩�≤X

�(d)
∑

⟨m⟩�≤X
d∣m

1.

An application of Lemma 3.1 consequently reveals that

Ã�(X,Y ) =
∑†

d∣Πq(X,Y )

⟨d⟩�≤X

�(d)(X/⟨d⟩+O(1)) = �q(X,Y )X +O(E(X,Y )),

and so the proof of the lemma follows by making use of Lemma 3.2.

It is convenient for future reference to record an estimate for the relative density
�q(X,Y ) in terms of the familiar Dickman function �(u). We recall at this point that
�(u) is defined for real numbers u to be the unique continuous solution of the differential-
difference equation u�′(u) = −�(u − 1) (u > 1) satisfying the initial conditions �(u) = 0
for u ≤ 0, and �(u) = 1 for 0 < u ≤ 1.

Lemma 3.4. When R and P are positive numbers with P ≥ 1 and 2P/ log(2P ) < R < P ,
one has

�q(qP̂ − 1, 2R̂− 1) = �(P/R) +O(P−1/2).

Proof. Estimates for the number of smooth polynomials available in the literature (see
Proposition II.4 of [3], or alternatively [18] or [20]) provide the formula

card(A(P,R)) = �(P/R)qP̂ +O(2P/RP̂ /R).
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On the other hand, it follows from Lemma 3.3 that

Ã�(qP̂ − 1, 2R̂− 1) = �q(qP̂ − 1, 2R̂− 1)qP̂ +O(P̂ /R).

When 2P/ log(2P ) < R < P , therefore, we may conclude from (3.3) that

�q(qP̂ − 1, 2R̂− 1)− �(P/R)≪ 2P/RR−1 ≪ P−1/2,

and thus the proof of the lemma is complete.

4. Major arc approximations for exponential sums. In order to obtain the asymp-
totic formula for the major arc contribution given by (2.9), one must establish control of
the generating functions F (�) and f(�) for � ∈ N. Our goal in this section is to obtain as-
ymptotic formulae for these exponential sums and certain associated generating functions
of use on the set of major arcs. When � is close to a rational point a/g of small height,
it transpires that F (�) is easily approximated in terms of the local generating function
S(g, a), defined for a, g ∈ Fq[t] by

(4.1) S(g, a) =
∑
⟨r⟩<⟨g⟩

e(ark/g).

Lemma 4.1. (i) Suppose that � ∈ T, and that � = a/g + � with a, g ∈ Fq[t], 0 ≤ ⟨a⟩ <
⟨g⟩ ≤ P̂ and ⟨�⟩ < ⟨g⟩−1P̂ 1−k. Then F (�;P ) = ⟨g⟩−1S(g, a)F (�;P ).

(ii) When ⟨�⟩ < P̂ 1−k, one has F (�;P )≪ P̂ (1 + P̂ k⟨�⟩)−1/k.
(iii) When (g, a) = 1, one has S(g, a)≪ ⟨g⟩1−1/k.

Proof. The conclusion of part (i) of the lemma is [14, Proposition 4], and that of part (iii)

is estimate (a) of [14, Lemma 22]. It remains to establish part (ii). When ⟨�⟩ ≤ P̂−k

the desired bound is immediate from the trivial estimate F (�;P )≪ P̂ . We may suppose

henceforth, therefore, that P̂−k < ⟨�⟩ < P̂ 1−k. Put L = −ord �, so that L = kP − N
for some integer N with 1 ≤ N ≤ P − 1. We may write � in the form � =

∑
i≤−L bit

i,

with bi ∈ Fq (i ≤ −L) and b−L ∕= 0. Next let r be a non-negative parameter with r ≤ P ,
and consider the contribution within the exponential sum F (�;P ) defined by (2.3) arising
from those terms x with ord x = P − r. We write x = c0 + c1t + ⋅ ⋅ ⋅ + cP−rt

P−r, with
ci ∈ Fq (0 ≤ i ≤ P − r) and cP−r ∕= 0.

Suppose temporarily that N > rk − 1, and write M = P + r(k − 1) − N − 1, so that
0 ≤ M < P − r and r < P/k. Let Ξ(c) denote the coefficient of tL−1 in the expansion of
xk. The monomials occurring in Ξ(c) take the shape c�0

0 c�1
1 . . . c

�P−r
P−r , where the exponents

�i (0 ≤ i ≤ P − r) are non-negative integers with

(4.2) �0 + �1 + ⋅ ⋅ ⋅+ �P−r = k and �1 + 2�2 + ⋅ ⋅ ⋅+ (P − r)�P−r = L− 1.

It follows from (4.2) that

�1 + ⋅ ⋅ ⋅+ �M−1 + �M+1 + ⋅ ⋅ ⋅+ �P−r ≤ k − �M ,
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and hence that

(k − �M )(P − r) ≥ L− 1− �MM = kP −N − 1− �M (P + r(k − 1)−N − 1)

= (k − �M )(P − r) + (�M − 1)(N + 1− rk).

Our hypothesis that N > rk − 1 consequently ensures that �M ≤ 1. On making use also
of (4.2), we deduce in addition that when �M = 1, one necessarily has �P−r = k − 1 and
�i = 0 (0 ≤ i < P − r, i ∕= M). It follows that for a suitable polynomial Υ(c) in the

variables ci (0 ≤ i ≤ P − r, i ∕= M), one may write Ξ(c) = kcMc
k−1
P−r + Υ(c). Plainly,

moreover, the coefficients of the terms tj in the expansion of xk with degree j ≥ L cannot
involve any positive power of cM . We therefore deduce that the contribution of these terms
x within the sum defining F (�;P ) in (2.3) is bounded above by

(4.3)

∣∣∣∣∣ ∑
ord x=P−r

e(�xk)

∣∣∣∣∣ ≤ ∑
ci∈Fq

(0≤i<P−r, i ∕=M)

∑
cP−r∈F×q

∣∣∣∣∣ ∑
cM∈Fq

eq(kb−LcMc
k−1
P−r)

∣∣∣∣∣.
Since the coefficient kb−Lc

k−1
P−r of cM in the innermost sum on the right hand side of

(4.3) is non-zero, this sum is necessarily zero, and hence the left hand side of (4.3) is zero
whenever 0 ≤ r < (N+1)/k. On noting that P−(N+1)/k = −(ord �+1)/k, we therefore
deduce from (2.3) that

∣F (�;P )∣ =

∣∣∣∣∣ ∑
ord x≤−(ord �+1)/k

e(�xk)

∣∣∣∣∣ ≤ ∑
⟨x⟩≤⟨�⟩−1/k

1.

In this way we conclude that in the circumstances at hand, one has ∣F (�;P )∣ ≪ ⟨�⟩−1/k,
and this suffices to complete the proof of the lemma.

Before discussing the asymptotic behaviour of the smooth Weyl sum f(�;P,R) for
� ∈ N, we require a technical lemma. It is useful in this context to write m+ for the
successor of the polynomial m ∈ Fq[t] when viewed according to the quasi-ordering on
Fq[t], so that m+ = T�(⟨m⟩� + 1) and ⟨m+⟩� = ⟨m⟩� + 1.

Lemma 4.2. Suppose that P and X are natural numbers with 1 ≤ X ≤ qP̂ − 1. Then

whenever � ∈ T satisfies ⟨�⟩ < P̂ 1−k, one has

(4.4) card{m ∈ Fq[t] : ⟨m⟩� ≤ X and e(�mk) ∕= e(�mk
+)} ≪ 1 + P̂ k⟨�⟩.

Proof. There is at most one polynomial m counted on the left hand side of (4.4) for which

ord m+ > P , namely that with ⟨m⟩� = qP̂−1, and its contribution is plainly accomodated
by the right hand side of (4.4). Consider then a polynomial m counted on the left hand side

of (4.4), and suppose that ⟨m⟩� < qP̂ − 1. The situations in which ord � < −kP − 1 may
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be disposed of at once. For whenever ⟨m⟩� ≤ X, one has ord(�mk) ≤ kP + ord � < −1.
In view of our earlier assumption, a similar argument yields the bound ord(�mk

+) < −1,

and thus we see that in the situation at hand one has e(�mk) = 1 = e(�mk
+). The bound

(4.4) is therefore trivial for ord � < −kP − 1.

We are left to consider the situations in which ⟨�⟩ < P̂ 1−k and yet ord � ≥ −kP − 1.
In such circumstances, one has ord � = L, with L = N − kP − 1 for some natural number
N satisfying 0 ≤ N ≤ P . We may write � =

∑
i≤L bit

i, where bi ∈ Fq (i ≤ L) and
bL ∕= 0. Let r be a non-negative integer with r ≤ P , and consider the contribution on the
left hand side of (4.4) arising from those terms m with ord m = P − r. If r > N/k + 1,
then an argument paralleling that of the first paragraph establishes that ord(�mk) < −1
and ord(�mk

+) < −1, so that e(�mk) = 1 = e(�mk
+). Such terms do not contribute to

the left hand side of (4.4), so we suppose instead that r ≤ N/k + 1. We may write m =
c0+c1t+⋅ ⋅ ⋅+cP−rtP−r, where ci ∈ Fq (0 ≤ i ≤ P−r) and cP−r ∕= 0. If ord(m+) > ord(m),
then necessarily ci = �q−2 (0 ≤ i ≤ P − r), so that m is uniquely determined. Otherwise,
in view of our earlier observations, we may write m+ = c+0 + c+1 t+ ⋅ ⋅ ⋅+ c+P−rt

P−r, where

c+i ∈ Fq (0 ≤ i ≤ P − r) and c+P−r ∕= 0. It then follows that mk and mk
+ may be written

in the form

(4.5) mk =

k(P−r)∑
j=0

ajt
j and mk

+ =

k(P−r)∑
j=0

a+
j t
j ,

where aj , a
+
j ∈ Fq (0 ≤ j ≤ k(P − r)). Put M = P + r(k − 1). Then a consideration of

the multinomial expansion of mk reveals that for kr < u ≤ N , one has

(4.6) akP−u = kcM−uc
k−1
P−r + Ωu(c),

for some Ωu(c) ∈ Fq[cM−u+1, . . . , cP−r]. One also has akP−kr = ckP−r and akP−u = 0 for
u < kr. Similar relations hold for coefficients decorated with a superscript +.

It is apparent from (4.5) that

res(�mk)− res(�mk
+) =

N∑
i=kr

(akP−i − a+
kP−i)bi−kP−1.

Thus we see that when e(�mk) ∕= e(�mk
+), the relation akP−i = a+

kP−i cannot hold for
every index i with kr ≤ i ≤ N . But it is a consequence of (4.6) that when kr < w ≤ N
and cM−v = c+M−v for kr ≤ v < w, and in addition akP−w = a+

kP−w, then in fact

cM−w = c+M−w. When e(�mk) ∕= e(�mk
+) and ord(m+) = ord(m), therefore, one has

cM−v ∕= c+M−v for some index v with kr ≤ v ≤ N . In view of the definition of M , we thus

conclude that cv ∕= c+v for some index v with P + r(k − 1)−N ≤ v ≤ P − r.
Now suppose that e(�mk) ∕= e(�mk

+), and let v denote the largest index with P −N ≤
v ≤ P for which cv ∕= c+v . The polynomials m and m+ take the forms

m = cP t
P + ⋅ ⋅ ⋅+ cv+1t

v+1 + �stv + �q−2tv−1 + �q−2tv−2 + ⋅ ⋅ ⋅+ �q−2
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and
m+ = cP t

P + ⋅ ⋅ ⋅+ cv+1t
v+1 + �s+1tv,

where s ∈ {−∞, 0, 1, . . . , q − 3} and ci ∈ Fq (v + 1 ≤ i ≤ P ). Here, if v = P , then we
understand the last condition to be moot, and when s = −∞, we interpret s + 1 to be
0. In these circumstances, the number of available choices for s and c is (q − 1)qP−v.
Summing over the available choices of v with P − N ≤ v ≤ P , we deduce that the total
number of possible choices for m with ⟨m⟩� ≤ X and e(�mk) ∕= e(�mk

+) is at most

1 + qN+1 = 1 + qkP+2+ord � , and the conclusion of the lemma follows at once.

We are now equipped to establish a major arc approximation to f(�;P,R).

Lemma 4.3. Let P and R be positive numbers with P ≥ 1 and 2P/ log(2P ) < R <
P − logP . Suppose that � ∈ T, that a and g are elements of Fq[t] with g monic and

(a, g) = 1, and write � = �− a/g. Then whenever ⟨g⟩ ≤ R̂ and ⟨�⟩ < P̂ 1−k, one has

f(�;P,R)− ⟨g⟩−1S(g, a)�(P/R)F (�;P )≪ ⟨g⟩P̂ (log P̂ )−1/2(1 + P̂ k⟨�⟩).

Proof. Rather than tackling f(�;P,R) directly, we initially consider the sum

f̃�(�;X,Y ) =
∑

x∈Ã�(X,Y )
⟨x⟩�>Y

e(�xk).

Recall (3.4) and suppose that X and Y are positive numbers with 1 ≤ Y < X. Then by
the inclusion-exclusion principle, one has∑

x∈Ã�(X,Y )
x≡r (mod g)

1 =
∑†

d∣Πq(X,Y )

⟨d⟩�≤X

�(d)
∑

⟨m⟩�≤X
m≡r (mod g)

d∣m

1.

If d∣Πq(X,Y ) and both d and g are monic, it follows that when ⟨g⟩� ≤ Y one has (g, d) = 1.
Recalling (3.5) and applying the Chinese Remainder Theorem in combination with Lemma
3.1, therefore, we deduce that∑

x∈Ã�(X,Y )
x≡r (mod g)

1 =
∑†

d∣Πq(X,Y )

⟨d⟩�≤X

�(d)(X/⟨gd⟩+O(1))

= ⟨g⟩−1X
∑†

d∣Πq(X,Y )

⟨d⟩�≤X

�(d)⟨d⟩−1 + E(X,Y ).

Applying Lemma 3.2 to both the latter formula and the case g = 1 of the same relation,
we find that ∑

x∈Ã�(X,Y )
x≡r (mod g)

1 = ⟨g⟩−1
∑

x∈Ã�(X,Y )

1 +O(X/ log(2Y )),



WARING’S PROBLEM IN FUNCTION FIELDS 17

whence

(4.7)
∑

x∈Ã�(X,Y )

e(axk/g)− ⟨g⟩−1S(g, a)
∑

x∈Ã�(X,Y )

1≪ ⟨g⟩X/ log(2Y ).

When W is a positive number with Y < W ≤ X, write

S(W ) =
∑

x∈Ã�(W,Y )

(e(axk/g)− ⟨g⟩−1S(g, a)).

In these circumstances (4.7) yields the estimate S(W ) = O(⟨g⟩X/ log(2Y )), and so it
follows by partial summation that∑

x∈Ã�(X,Y )
⟨x⟩�>Y

(e(�xk)− ⟨g⟩−1S(g, a)e(�xk)) =
∑

Y <W≤X
W=⟨x⟩�

S(W )(e(�xk)− e(�xk+))

+O(⟨g⟩X/ log(2Y )).

In view of the conclusion of Lemma 4.2, therefore, when 1 ≤ X ≤ qP̂ − 1 and ⟨�⟩ < P̂ 1−k,
we have

(4.8) f̃�(�;X,Y )− ⟨g⟩−1S(g, a)f̃�(�;X,Y )≪ ⟨g⟩X(log(2Y ))−1(1 + P̂ k⟨�⟩).

On applying partial summation we obtain

f̃�(�;X,Y ) =
∑

Y <W≤X
W=⟨x⟩�

Ã�(W,Y )(e(�xk)− e(�xk+))

+ Ã�(X,Y )e(�T�([X] + 1)k)− Ã�(Y, Y )e(�T�([Y + 1])k).

Thus, on writing

Υ�(�;X,Y ) =
∑

Y <W≤X
W=⟨x⟩�

W (e(�xk)− e(�xk+))

+Xe(�T�([X] + 1)k)− Y e(�T�([Y ] + 1)k),

it follows from Lemmata 3.3 and 4.2 that when 1 ≤ X ≤ qP̂ − 1, one has

(4.9) f̃�(�;X,Y )− �q(X,Y )Υ�(�;X,Y )≪ X(log(2Y ))−1(1 + P̂ k⟨�⟩).

We now put X = qP̂ − 1 and Y = 2R̂ − 1. The hypotheses of the statement of the

lemma then permit us to assume that Y ≪ P̂ (log P̂ )−1/2 and log Y ≫ (log P̂ )1/2. But on
recalling (2.3), a modicum of computation reveals that

Υ�(�;X,Y ) =
∑

Y <W≤X
W=⟨x⟩�

e(�xk) = F (�;P ) +O(P̂ (log P̂ )−1/2)
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and
f(�;P,R) =

∑
x∈Ã�(X,Y )

e(�xk) = f̃�(�;X,Y ) +O(P̂ (log P̂ )−1/2).

Hence, by substituting (4.9) into (4.8), we deduce that

f(�;P,R)− ⟨g⟩−1S(g, a)�q(qP̂ − 1,2R̂− 1)F (�;P )

≪ ⟨g⟩P̂ (log P̂ )−1/2(1 + P̂ k⟨�⟩),

and the conclusion of the lemma is now confirmed by recalling Lemma 3.4.

5. A lower bound for the major arc contribution. The sets N(g, a;V ) comprising
N are sufficiently sparse and narrow that the derivation of the asymptotic relation (2.9)
is now essentially routine. In preparation for our proof of this formula, we introduce the
singular integral

(5.1) Js,k(m) =

∫
⟨�⟩<(qP̂ )1−k

F (�)se(−�m) d�,

and the singular series

(5.2) Ss,k(m) =
∑†

g∈Fq [t]

As(g;m),

in which we have written

(5.3) As(g;m) = ⟨g⟩−s
∑
⟨a⟩<⟨g⟩
(a,g)=1

S(g, a)se(−ma/g).

Lemma 5.1. Suppose that � and R are positive numbers with � < 1 and �P < R ≤
P − logP . Then whenever s ≥ 2k + 1, one has Ss,k(m) ≪ 1 and Js,k(m) ≪ P̂ s−k, and
furthermore

ℛs(m;N)− �(P/R)s−2Ss,k(m)Js,k(m)≪ P̂ s−kV̂ −1/k.

Proof. Define F ∗(�) for � ∈ N by taking F ∗(�) = ⟨g⟩−1S(g, a)F (�) when � = � + a/g
lies in N(g, a;V ) ⊆ N. Then for � ∈ N, it follows from (2.8) and Lemma 4.1(i) that

F (�) = F ∗(�), and from Lemma 4.3 that f(�) = �(P/R)F ∗(�) +O(P̂ V̂ −4). The bound

F (�)2f(�)s−2 − �(P/R)s−2F ∗(�)s ≪ P̂ sV̂ −4

therefore holds uniformly for � ∈ N. But the measure of N is O(V̂ 3P̂−k), and so

(5.4)

∫
N

(F (�)2f(�)s−2 − �(P/R)s−2F ∗(�)s)e(−m�) d�≪ P̂ s−kV̂ −1.
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Furthermore, from the definition of N, we have

(5.5)

∫
N

F ∗(�)se(−m�) d� = S(m;V )J(m;V − kP ),

where

(5.6) J(m;W ) =

∫
⟨�⟩<Ŵ

F (�)se(−�m) d� and S(m;W ) =
∑†

⟨g⟩≤Ŵ

As(g;m).

When Ŵ < (qP̂ )1−k, it follows on combining (5.1) and (5.6), and then applying Lemma
4.1(ii), that one has the estimate

Js,k(m)− J(m;W )≪ P̂ s
∫
⟨�⟩≥Ŵ

(1 + P̂ k⟨�⟩)−s/k d�.

But equation (3) of [14] shows that when l ∈ ℤ, the measure of the set of points � in T
with ⟨�⟩ < ql is at most ql. When s ≥ k + 1, one therefore finds that

(5.7) J(m;V − kP )− Js,k(m)≪ P̂ s
∞∑

l=V−kP

ql+1(1 + ql+kP )−s/k ≪ P̂ s−kV̂ −1/k,

and with the same condition on s, a similar argument yields

(5.8) Js,k(m)≪ P̂ s
∫
⟨�⟩<(qP̂ )1−k

(1 + P̂ k⟨�⟩)−s/k d� ≪ P̂ s−k.

Employing the conclusion of Lemma 4.1(iii) within (5.3), we next find that As(g;m)≪
⟨g⟩1−s/k. Then for s ≥ 2k + 1, it follows from (5.2) and (5.6) that

(5.9) S(m;V )−Ss,k(m)≪
∑†

⟨g⟩>V̂

⟨g⟩1−s/k ≪
∞∑

ℎ=V+1

(qℎ)2−s/k ≪ V̂ −1/k,

and with the same condition on s, a parallel argument leads to the estimate

(5.10) Ss,k(m)≪
∑†

g∈Fq [t]

⟨g⟩1−s/k ≪
∞∑
ℎ=0

(qℎ)2−s/k ≪ 1.

Finally, on substituting (5.7) and (5.9) into (5.5), and then employing the estimates
(5.8) and (5.10), we conclude that∫

N

F ∗(�)se(−m�)d�−Ss,k(m)Js,k(m)≪ P̂ s−kV̂ −1/k.

The proof of the lemma is completed by reference to (5.4).

We show next that under mild hypotheses, the singular series is well-behaved.
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Lemma 5.2. Suppose that m ∈ Jkq [t] and s ≥ 2k + 1. Then 1≪ Ss,k(m)≪ 1.

Proof. We suppose that s ≥ 2k+ 1 throughout the proof of this lemma2. Define the local
density Ω$,s(m) associated with the completion Fq(t)$ of Fq(t) by

Ω$,s(m) = 1 +
∞∑
ℎ=1

As($
ℎ;m).

Then the argument of the proof of [14, Lemma 23] shows that the infinite product∏
$ Ω$,s(m) converges absolutely to Ss,k(m). Next, let Ms(g;m) denote the number

of solutions of the congruence xk1 + ⋅ ⋅ ⋅ + xks ≡ m (mod g), with ⟨xi⟩ < ⟨g⟩ (1 ≤ i ≤ s).
Then the argument of the proof of [14, Theorem 29] establishes that

Ω$,s(m) = lim
ℎ→∞

⟨$⟩ℎ(1−s)Ms($
ℎ;m),

that

∣Ω$,s(m)− 1∣ ≪
∞∑
ℎ=1

⟨$ℎ⟩−1−1/k ≪ ⟨$⟩−1−1/k,

and also that whenever m ∈ Jkq [t], then Ω$,s(m) ≥ ⟨$⟩1−s. Under the latter hypothesis,
therefore, we deduce that there is a large positive number A = A(q, s, k) for which

(5.11) Ss,k(m)≫
∏
⟨$⟩>A

(1− ⟨$⟩−1−1/(2k))−1.

But the number of monic irreducible polynomials of degree ℎ is at most qℎ/ℎ (see [19,
page 13]), whence ∑

$

⟨$⟩−1−1/(2k) ≤
∑
ℎ

(ℎqℎ/(2k))−1 ≪ 1.

Consequently, on extracting logarithms, one finds that the infinite product (5.11) con-
verges, and that Ss,k(m) ≫ 1. The proof of the lemma is completed on recalling the
estimate Ss,k(m)≪ 1 provided by Lemma 5.1.

We remark that with additional effort, the condition s ≥ 2k+ 1 could be relaxed to the
less severe constraint s ≥ k+ 1. Furthermore, as is implicit in Theorem 29 of [14], one has
Jkq [t] = Fq[t] when ch(Fq) > k. It is also a consequence of the work presented here together
with the conclusion of Theorem 29 of [14] that whenever m is congruent to a sum of kth
powers modulo $ for all irreducible polynomials $ satisfying ⟨$⟩ ≤ (k− 1)2, then in fact
m ∈ Jkq [t].

Next we turn our attention to the singular integral Js,k(m), the analysis of which is in
many ways simpler than in the analogous situation for ℤ.

2In [14], Lemma 23, the condition s ≥ 3k+ 1 is imposed instead, apparently as a result of an oversight.
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Lemma 5.3. Suppose that s ≥ k + 1. Then P̂ s−k ≪ Js,k(m)≪ P̂ s−k.

Proof. Suppose that the leading coefficient of the polynomial m is c(m). We define b =
b(m) to be c(m) when k divides ord m and m is not exceptional, and otherwise we set
b(m) to be 0. In addition, we write J∞(m) = J∞(m; q) for the number of solutions of the
equation xk1 + ⋅ ⋅ ⋅+ xks = b with x ∈ Fsq ∖ {0}. Then it follows from Lemma 17 of [14] that
whenever s ≥ k + 1, one has

(5.12) Js,k(m) = J∞(m)P̂ s−k +O(P̂ s−k−1/k),

and moreover that 1 ≤ J∞(m)≪ 1. In order to confirm this assertion, one observes that
the integration in (5.1) is over � ∈ T with ord � < −(k − 1)(P + 1), and further that
(k − 1)(P + 1) ≤ ord m, except possibly when P ≤ 2k − 1. One may therefore apply
Lemma 17 of [14] with m = P +1 and m′ = (k−1)(P +1), and when P is large enough in
terms of k it is only the cases (a) and (b) of this lemma that are relevant3. We note that
when b(m) ∕= 0, the lower bound J∞(m) ≥ 1 may be confirmed by following the argument
of the proof of Lemma 27 of [14]. We remark that the same conclusion as above is implicit
in Proposition 9 of Car [2], and also that the conclusion of Theorem 18 of [14] differs from
what would be anticipated based on (5.12), owing to some oversights in the argument of
[14].

On observing that when � > 0 and R > �P , one has �(P/R) ≫ 1, we may combine
Lemmata 5.1, 5.2 and 5.3 to obtain the following conclusion.

Lemma 5.4. Suppose that � and R are positive numbers with � < 1 and �P < R ≤
P − logP . Then whenever m ∈ Jkq [t] and s ≥ 2k + 1, one has ℛs(m;N)≫ P̂ s−k.

6. Pruning technology. The minor arc estimates that we obtain in §13 are insufficient
to bound directly the quantity ℛs(m; n) defined in (2.5), and thus we are forced to employ
pruning techniques to bridge the gap. In this context, we write P for M(P ) and p for
m(P ), and we say that a positive number u > 2k − 2 is accessible to the exponent k when
there exists a positive number � for which

(6.1)

∫
p

∣F (�)2f(�)u∣ d�≪ P̂u+2−k−�.

Our goal in this section is to show that whenever u is accessible to the exponent k, and s
is an even integer with s− 2 ≥ u, then

(6.2)

∫
n

∣F (�)2f(�)s−2∣d� = o(P̂ s−k).

This estimate plainly implies that ℛs(m; n) = o(P̂ s−k), a bound required in the discussion
concluding §2, and thus the focus of later sections is the pursuit of bounds of the shape
(6.1).

We begin by analysing mean values of classical Weyl sums.

3We emphasise that m and m′ are integers in this context.
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Lemma 6.1. Whenever u ≥ 2k + 1, one has∫
P

∣F (�)∣u d�≪ P̂u−k.

Proof. Suppose that � ∈ P, so that for some a, g ∈ Fq[t] with g monic, 0 ≤ ⟨a⟩ < ⟨g⟩ ≤ P̂
and (a, g) = 1, one has � ∈M(g, a;P ). Making use of the definition of M(g, a;P ) together
with Lemma 4.1, we find that

(6.3) F (�)≪ P̂ ⟨g⟩−1/k(1 + P̂ k⟨�− a/g⟩)−1/k.

Consequently, one has

(6.4)

∫
P

∣F (�)∣ud�≪ P̂uT1T2,

where

T1 =
∑†

g∈Fq [t]

∑
⟨a⟩<⟨g⟩
(a,g)=1

⟨g⟩−u/k and T2 =

∫
⟨�⟩<P̂ 1−k

(1 + P̂ k⟨�⟩)−u/k d�.

Since the number of monic polynomials g ∈ Fq[t] with ⟨g⟩ = ql is equal to ql, we see
that whenever u ≥ 2k + 1, one has

(6.5) T1 ≤
∑†

g∈Fq [t]

⟨g⟩1−u/k ≤
∞∑
ℎ=0

(qℎ)2−u/k ≪ 1.

Meanwhile, observing next that the measure of the set of points � in T with ⟨�⟩ = ql is
at most ql+1, we deduce that

T2 ≤
∫
⟨�⟩<P̂−k

d� +

∫
⟨�⟩≥P̂−k

(1 + P̂ k⟨�⟩)−u/k d�

≤ P̂−k +
∞∑

l=−kP

ql+1(1 + ql+kP )−u/k

≪ P̂−k + P̂−k
∞∑
ℎ=0

qℎ(1−u/k).

When u ≥ k + 1, it therefore follows that T2 = O(P̂−k). The conclusion of the lemma
follows on substituting this estimate together with (6.5) into (6.4).

Next we leverage control on the major arcs of mean values involving F (�) into control
of mixed mean values involving also f(�).
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Lemma 6.2. Suppose that u > 2k − 2 is accessible to the exponent k, and that v is an
integer with 2v ≥ u. Then we have

(6.6)

∫
T
∣F (�)2f(�)2v∣ d�≪ P̂ 2v+2−k.

Proof. When ℬ is a measurable subset of T, write

I(ℬ) =

∫
ℬ
∣F (�)2f(�)2v∣ d�.

Then by applying Hölder’s inequality, we obtain

(6.7) I(T) = I(p) + I(P)≪ I(p) + I
1/(v+1)
1 I

v/(v+1)
2 ,

where we write

I1 =

∫
P

∣F (�)∣2v+2 d� and I2 =

∫
T
∣f(�)∣2v+2 d�.

Since 2v + 2 is even, the integral I2 counts the number of solutions of the equation

v+1∑
i=1

(xki − yki ) = 0,

with xi, yi ∈ A(P,R) (1 ≤ i ≤ v + 1). An upper bound for I2 is therefore provided by

permitting x1 and y1 to be any elements of Fq[t] with ⟨x1⟩ ≤ P̂ and ⟨y1⟩ ≤ P̂ , whence

I2 ≤
∫
T
∣F (�)2f(�)2v∣ d� = I(T).

It therefore follows from (6.7) that

(6.8) I(T)≪ I(p) + I1.

But by hypothesis u is accessible to the exponent k, and 2v ≥ u. Hence, on employing

the trivial estimate ∣F (�)∣ = O(P̂ ), we find that there is a positive number � for which

I(p) = O(P̂ 2v+2−k−�). From Lemma 6.1, moreover, we have I1 = O(P̂ 2v+2−k). We

therefore deduce from (6.8) that I(T) = O(P̂ 2v+2−k). This confirms (6.6), and so the
proof of the lemma is complete.

We next show that in the mean value crucial to our application, the contribution of the
arcs P ∖N is of smaller order than the expected main term.
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Lemma 6.3. Suppose that u > 2k − 2 is accessible to the exponent k, and that s is an
even integer with s ≥ u+ 2. Then we have∫

P∖N
∣F (�)2f(�)s−2∣ d�≪ P̂ s−kV̂ −2/(ks).

Proof. An application of Hölder’s inequality reveals that

(6.9)

∫
P∖N
∣F (�)2f(�)s−2∣ d� ≤ J1−2/s

1 J
2/s
2 ,

where

(6.10) J1 =

∫
T
∣f(�)∣s d� and J2 =

∫
P∖N
∣F (�)∣s d�.

But s is even, so that on considering the underlying equation we find that

J1 ≤
∫
T
∣F (�)2f(�)s−2∣ d�.

Since s − 2 ≥ u and u is accessible to the exponent k, the upper bound J1 = O(P̂ s−k)
therefore follows from Lemma 6.2.

In order to tackle J2 we observe first that when � ∈ M(g, a;P ) ⊆ P, it follows as in
(6.3) that

F (�)≪ P̂ (⟨g⟩+ P̂ k⟨g�− a⟩)−1/k.

But if � ∈ P ∖ N, one necessarily has either ⟨g⟩ > V̂ or ⟨g� − a⟩ > V̂ P̂−k, whence

F (�) ≪ P̂ V̂ −1/k. Note that the hypotheses of the lemma ensure that s ≥ 2k + 2. Then
on substituting our estimate for F (�) into (6.10), we deduce from Lemma 6.1 that

J2 ≪ P̂ V̂ −1/k

∫
P

∣F (�)∣s−1 d�≪ P̂ s−kV̂ −1/k.

The conclusion of the lemma follows on substituting the latter bound together with our
earlier bound for J1 into (6.9).

Since n = p∪ (P∖N), the estimate (6.2) follows on combining the conclusion of Lemma
6.3 with (6.1). We finish this section by collecting together the conclusions of Lemmata
5.4 and 6.3 to obtain the following lemma.

Lemma 6.4. Suppose that � and R are positive numbers with � < 1 and �P < R ≤
P − logP . Suppose also that u > 2k − 2 is accessible to the exponent k, and that s is an

even integer with s ≥ u+ 2. Then whenever m ∈ Jkq [t], one has ℛs(m;P)≫ P̂ s−k.
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7. The fundamental lemma for smooth Weyl sums. The goal of the next three
sections is to derive, for natural numbers s, upper bounds for the mean values

(7.1) Ss(P,R) =

∫
T
∣f(�;P,R)∣2s d�.

By orthogonality, the mean value Ss(P,R) counts the number of solutions of the equation

(7.2) xk1 + ⋅ ⋅ ⋅+ xks = yk1 + ⋅ ⋅ ⋅+ yks ,

with xi, yi ∈ A(P,R) (1 ≤ i ≤ s). We estimate Ss(P,R) via the iterative method intro-
duced by Vaughan [22], in the variant permitting repeated efficient differencing established
by the second author [27]. As in [22] and [27], our first step is a fundamental (auxiliary)
lemma, and here we model our approach on that of [27]. Aside from leading to consider-
ably sharper estimates, the latter also permits one to replace two smooth Weyl sums in
(7.1) by corresponding classical Weyl sums, hence simplifying considerably the major arc
analysis discussed above.

Before proceeding further, it is convenient to have available two technical lemmata that
provide basic estimates of use in our subsequent deliberations. When g ∈ Fq[t], we denote
by s0(g) the squarefree kernel of g, which is to say s0(g) =

∏
$∣g$. In addition, when L

is a positive number, we define the set Cg(L) by

Cg(L) = {y ∈ Fq[t] : y is monic, ⟨y⟩ ≤ L̂ and s0(y)∣s0(g)}.

Lemma 7.1. Let " and A be fixed positive numbers. Then whenever g ∈ Fq[t], and L is

a positive number for which ⟨g⟩ ≤ L̂A, one has card(Cg(L))≪ L̂".

Proof. Observe first that there is no loss of generality in supposing that ord g ≥ 5, for
otherwise we may replace g by g5 without adversely affecting the desired conclusions.
Next, from the definition of Cg(L), one has

(7.3) card(Cg(L)) ≤
∑

s0(y)∣s0(g)

(L̂/⟨y⟩)" ≤ L̂"
∏
$∣g

(1− ⟨$⟩−")−1.

Write  (g) for 21/" log⟨g⟩/ log log⟨g⟩. We divide the product on the right hand side of
(7.3) according to the size of ⟨$⟩. On the one hand,∏

$∣g
⟨$⟩≤ (g)

(1− ⟨$⟩−")−1 ≤
∏

⟨$⟩≤ (g)

(1− q−")−1 ≤ exp(−q log(1− q−") (g)).

On the other hand, since the number of monic irreducible divisors of g having degree
exceeding logq  (g) cannot exceed (ord g)/(logq  (g)), one has∏

$∣g
⟨$⟩> (g)

(1− ⟨$⟩−")−1 ≤
∏
$∣g

⟨$⟩> (g)

2 ≤ exp(logq⟨g⟩/ logq  (g)).
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On substituting the latter estimates into (7.3), we find that there is a positive number
B = B(q, ") for which

card(Cg(L)) ≤ L̂" exp(B log⟨g⟩/ log log⟨g⟩)≪ L̂2",

thereby confirming the conclusion of the lemma.

Write !(g) for the number of distinct monic irreducible polynomials dividing g, and
write dk(g) for the number of ways of writing g in the form g = cg1 . . . gk, with c ∈ Fq,
and with gi ∈ Fq[t] (1 ≤ i ≤ k) monic.

Corollary 7.2. For each k ∈ ℕ, one has dk(g)≪ ⟨g⟩" and k!(g) ≪ ⟨g⟩".

Proof. The desired estimates follow at once from Lemma 7.1 on noting that, from the
definition of Cg(L), one has k!(g) ≤ dk(g)≪ (Cg(ord g))k−1.

It is convenient also to have available a crude lower bound for card(A(P,R)).

Lemma 7.3. Suppose that R and P are positive numbers with P ≥ 1 and R > P/ log(2P ).

Then card(A(P,R))≫ P̂ 1−".

Proof. Since for a fixed value of P , the cardinality of A(P,R) is an increasing function of R,
there is no loss of generality in supposing that R = P/ log(2P ). By suitably adjusting the
implicit constant in the lower bound supplied by the conclusion of the lemma, moreover,
we may also suppose that P and R each exceed 6. Observe next that the cardinality of
A(P,R) is equal to q − 1 times the number of non-negative integral solutions z of the
inequality ∑

ord $≤R

z$ord $ ≤ P.

From page 13 of [19], the number of monic irreducible polynomials of degree [R] is at least
(qR−1−2qR/2)/R ≥ qR−2/R. Thus we find that card(A(P,R)) ≥ Z(N,U), where Z(N,U)
denotes the number of non-negative integral solutions u of the inequality u1+⋅ ⋅ ⋅+uN ≤ U ,
with N = [qR−2/R] and U = [P/R]. But then Z(N,U) is equal to the number of non-
negative integral solutions u of the equation u0 + u1 + ⋅ ⋅ ⋅ + uN = U , and by Exercise 1
of [23, §1.5], we therefore have Z(N,U) = (N + U)!/(N !U !). In view of our assumption
that R = P/ log(2P ), an application of Stirling’s formula reveals that

logZ(N,U) ≥ N log(1 + U/N) + U log(1 +N/U) +O(log(2U))

= P log q − (log(2P ))2 +O(log(2P )),

whence for large values of P one obtains

card(A(P,R)) ≥ P̂ exp(−2(log log P̂ )2)≫ P̂ 1−".

This completes the proof of the lemma.
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We now advance to describe the fundamental lemma that underlies our efficient differ-
encing method. This entails the introduction of some notation. Let P , Q, R be positive
numbers with 1 ≤ R ≤ Q ≤ P . Also, let r be a non-negative integer, and let Ci, C

′
i be

real numbers with 0 ≤ C ′i ≤ Ci ≤ P (1 ≤ i ≤ r). We consider a subset C of polynomials
c whose degrees lie in the box [C ′1, C1]× ⋅ ⋅ ⋅ × [C ′r, Cr]. For the sake of concision we write

C̃j for the product Ĉ1Ĉ2 . . . Ĉj , we write C̃ ′j for Ĉ ′1Ĉ
′
2 . . . Ĉ

′
j , and we do likewise, in the

obvious fashion, for other sets of parameters. We interpret an empty product of the latter
type to be unity. Consider next a polynomial Ψ(z; c) in the variables z, c1, . . . , cr of degree
at least one in terms of z, having coefficients in Fq[t], and write Ψ′(z; c) for (∂Ψ/∂z)(z; c).
We suppose throughout that s is a non-negative integer.

We denote by Ss(P,Q,R) = Ss(P,Q,R; Ψ; C) the number of solutions of the equation

(7.4) Ψ(z; b)−Ψ(w; c) =

s∑
j=1

(xkj − ykj ),

with

(7.5) xj , yj ∈ A(Q,R) (1 ≤ j ≤ s),

(7.6) ⟨z⟩, ⟨w⟩ ≤ P̂ and b, c ∈ C.

Here we adopt the convention that if s = 0, then the right hand side of (7.4) is re-

placed by 0. Next, given a real number � with 1 ≤ P̂ � < Q, we define Ts(P,Q,R; �) =
Ts(P,Q,R; �; Ψ; C) to be the number of solutions of the equation

(7.7) Ψ(z; c)−Ψ(w; c) = mk
s∑
j=1

(ukj − vkj ),

with z, w, c as in (7.6), and with

(7.8) m monic and P̂ � < ⟨m⟩ ≤ min{Q̂, P̂ �R̂},

(7.9) uj , vj ∈ A(Q− �P,R) (1 ≤ j ≤ s),

(7.10) z ≡ w (mod mk).

Finally, we write Ns(P,Q,R) = Ns(P,Q,R; Ψ; C) for the number of solutions of the equa-
tion (7.4) subject to (7.5) and (7.6) for which Ψ′(z; b) = Ψ′(w; c) = 0.
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Lemma 7.4. Suppose that � = �(s, k; Ψ) satisfies the constraint 0 < �P < Q. Then
whenever s is a natural number, one has

Ss(P,Q,R)≪Ss(P, �P,R) +Ns(P,Q,R) + Q̂P̂ �+"Ss−1(P,Q,R)

+ P̂ "C̃r(P̂
�R̂)2s−1Ts(P,Q,R; �).(7.11)

Proof. We divide the solutions of (7.4) counted by Ss(P,Q,R) into four classes, and seek
to establish that the contribution from each class is majorised by one of the terms on the
right hand side of (7.11). In order to describe our classification of these solutions, it is
useful to introduce a notion modifying that of a divisor in a special way. When L is a

positive number, we write xD(L)y when there is a divisor w of x with ⟨w⟩ ≤ L̂ such that
x/w is monic and has all of its irreducible factors amongst those of y.

Let S1 denote the number of solutions of (7.4) satisfying (7.5) and (7.6) such that

(7.12) min{⟨xj⟩, ⟨yj⟩} ≤ P̂ �

for some j with 1 ≤ j ≤ s; let S2 denote the number for which

(7.13) Ψ′(z; b) = 0 or Ψ′(w; c) = 0;

let S3 denote the number for which min{⟨xj⟩, ⟨yj⟩} > P̂ � for 1 ≤ j ≤ s, the condition
(7.13) does not hold, and such that for some j with 1 ≤ j ≤ s one has

(7.14) xjD(�P )Ψ′(z; b) or yjD(�P )Ψ′(w; c);

and let S4 denote the number for which min{⟨xj⟩, ⟨yj⟩} > P̂ � for 1 ≤ j ≤ s, the condition
(7.13) does not hold, and such that (7.14) holds for no j with 1 ≤ j ≤ s. Then

(7.15) Ss(P,Q,R) ≤ 4 max{S1, S2, S3, S4}.

We divide into cases.
(i) Suppose that S1 ≥ max{S2, S3, S4}, so that from (7.15) one has Ss(P,Q,R) ≤ 4S1.

Define G(�;P ) = G(�;P ; C) by

G(�;P ) =
∑
z,b

e(�Ψ(z; b)),

where the summation is over z and b satisfying (7.6). Then on recalling (2.3), it is apparent
from (7.12) that

S1 ≪
∫
T
∣G(�;P )2f(�; �P,R)f(�;Q,R)2s−1∣ d�.
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By Hölder’s inequality, one therefore has

Ss(P,Q,R)≪ (Ss(P, �P,R))1/(2s)(Ss(P,Q,R))1−1/(2s),

and so the upper bound (7.11) holds in the first case.
(ii) Suppose that S2 ≥ max{S1, S3, S4}, so that from (7.15) one has Ss(P,Q,R) ≤ 4S2.

Now define G̃(�;P ) = G̃(�;P ; C) by

G̃(�;P ) =
∑
z,b

e(�Ψ(z; b)),

where the summation is over z and b satisfying (7.6) and the first condition of (7.13).
Then we see that

S2 ≪
∫
T
∣G̃(�;P )G(�;P )f(�;Q,R)2s∣ d�.

By Schwarz’s inequality, therefore, we have

Ss(P,Q,R)≪ (Ns(P,Q,R))1/2(Ss(P,Q,R))1/2,

and so (7.11) holds also in the second case.
(iii) Suppose that S3 ≥ max{S1, S2, S4}, so that from (7.15) one has Ss(P,Q,R) ≤ 4S3.

Given z and b satisfying (7.6) with Ψ′(z; b) ∕= 0, denote by ℒ(z; b) the set of polynomials

x for which ⟨x⟩ ≤ Q̂, and such that x has a divisor � with ⟨�⟩ ≤ P̂ � with the property
that x/� is monic and has all of its irreducible factors amongst those of Ψ′(z; b). Define
the exponential sum H(�;P,Q) = H(�;P,Q; C) by

H(�;P,Q) =
∑
z,b

∑
x∈ℒ(z;b)

e(�(xk + Ψ(z; b))),

where the first summation is over z and b satisfying (7.6) subject to the condition that
Ψ′(z; b) ∕= 0. Then

S3 ≪
∫
T
∣H(�;P,Q)G(�;P )f(�;Q,R)2s−1∣ d�,

so that by Schwarz’s inequality,

S3 ≪ (Ss(P,Q,R))1/2
(∫

T
∣H(�;P,Q)2f(�;Q,R)2s−2∣ d�

)1/2

.

It therefore follows from orthogonality that

(7.16) Ss(P,Q,R)≪
∑
g,g′

V (g, g′),
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where we write V (g, g′) for the number of solutions of the equation

Ψ(z; b) +mkxk + xk1 + ⋅ ⋅ ⋅+ xks−1 = Ψ(w; c) + nkyk + yk1 + ⋅ ⋅ ⋅+ yks−1,

with z, w, b, c satisfying (7.6), with xj and yj satisfying (7.5) for 1 ≤ j ≤ s− 1, and with

Ψ′(z; b) ∕= 0, Ψ′(w; c) ∕= 0, g∣Ψ′(z; b), g′∣Ψ′(w; c), ⟨m⟩ ≤ P̂ �, ⟨n⟩ ≤ P̂ �,

x, y monic, ⟨x⟩ ≤ Q̂⟨m⟩−1, ⟨y⟩ ≤ Q̂⟨n⟩−1, s0(x) = g, s0(y) = g′.

Now define Gg(�;P ) = Gg(�;P ; C) by putting

Gg(�;P ) =
∑
z,b

e(�Ψ(z; b)),

where the summation is over z and b satisfying (7.6), and subject to the conditions

Ψ′(z; b) ∕= 0 and g∣Ψ′(z; b). Let � be the total degree of Ψ. Then since ⟨z⟩ ≤ P̂ and

Ĉi ≤ P̂ (1 ≤ i ≤ r), we have ⟨Ψ′(z; b)⟩ ≤ P̂ �. It therefore follows from (7.16) that

(7.17) Ss(P,Q,R)≪
∫
T
∣G(�)2f(�;Q,R)2s−2∣ d�,

where we write

(7.18) G(�) =
∑
⟨g⟩≤P̂ �

Gg(�;P )
∑
⟨m⟩≤P̂ �

∑†

⟨x⟩≤Q̂⟨m⟩−1

s0(x)=g

e(�mkxk).

Here, if g is not squarefree, we understand the third summation of (7.18) to be empty.
We now apply Cauchy’s inequality to (7.18), obtaining the upper bound

(7.19) ∣G(�)∣2 ≤ℳ
∑
⟨g⟩≤P̂ �

∣Gg(�;P )∣2,

where

ℳ =
∑
⟨g⟩≤P̂ �

∣∣∣ ∑
⟨m⟩≤P̂ �

∑†

⟨x⟩≤Q̂⟨m⟩−1

s0(x)=g

e(�mkxk)
∣∣∣2.

Interchanging the order of summation in the last expression, and then applying Cauchy’s
inequality in combination with Lemma 7.1, we deduce that

ℳ =
∑
⟨g⟩≤P̂ �

∣∣∣ ∑†

⟨x⟩≤Q̂
s0(x)=g

∑
⟨m⟩≤P̂ �

⟨m⟩≤Q̂⟨x⟩−1

e(�mkxk)
∣∣∣2

≪ P̂ "
∑
⟨g⟩≤P̂ �

∑†

⟨x⟩≤Q̂
s0(x)=g

∣∣∣ ∑
⟨m⟩≤P̂ �

⟨m⟩≤Q̂⟨x⟩−1

e(�mkxk)
∣∣∣2.
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Consequently, on making a trivial estimate for the innermost sum in two different ways,
we find that

ℳ≪ P̂ "
∑†

⟨x⟩≤Q̂

P̂ �Q̂⟨x⟩−1 ≪ P̂ �+"Q̂ log Q̂.

We now substitute the last estimate into (7.19), and from there into (7.17), obtaining
the upper bound

(7.20) Ss(P,Q,R)≪ P̂ �+"Q̂
∑
⟨g⟩≤P̂ �

J (g),

where we have written

J (g) =

∫
T
∣Gg(�;P )2f(�;Q,R)2s−2∣ d�.

By orthogonality, the integral J (g) counts the number of solutions of an equation of the
shape (7.4), subject to (7.5) and (7.6), save with s−1 in place of s, and with Ψ′(z; b) ∕= 0,
Ψ′(w; c) ∕= 0, g∣Ψ′(z; b) and g∣Ψ′(w; c). Note that for each fixed choice of z and b, it
follows from Corollary 7.2 that the number of possible divisors g of Ψ′(z; b) is at most

O(⟨Ψ′(z; b)⟩") = O(P̂ �"), and likewise for Ψ′(w; c). We therefore deduce that∑
⟨g⟩≤P̂ �

J (g)≪ P̂ "Ss−1(P,Q,R),

and from here, the relation (7.20) leads to the upper bound

Ss(P,Q,R)≪ P̂ �+"Q̂Ss−1(P,Q,R).

This confirms (7.11) in the third case.
(iv) Suppose that S4 ≥ max{S1, S2, S3}, so that from (7.15) one has Ss(P,Q,R) ≤ 4S4.

Then for a given solution of (7.4) satisfying (7.5) and (7.6) counted by S4, we have

⟨xj⟩ > P̂ �, ⟨yj⟩ > P̂ � (1 ≤ j ≤ s) and Ψ′(z; b) ∕= 0, Ψ′(w; c) ∕= 0,

and neither

(7.21) xjD(�P )Ψ′(z; b) nor yjD(�P )Ψ′(w; c) (1 ≤ j ≤ s).

When 1 ≤ j ≤ s, let m̃j denote the product of all the monic irreducible factors of xj
that are coprime to Ψ′(z; b). If one were to have ⟨m̃j⟩ ≤ P̂ �, then xjD(�P )Ψ′(z; b),

contradicting (7.21). Then we are forced to conclude that ⟨m̃j⟩ > P̂ �. Let mj be a monic

divisor of m̃j of smallest degree satisfying the property that ⟨mj⟩ > P̂ �. Since the degree
of each irreducible factor of xj is at most R, we may infer that

P̂ � < ⟨mj⟩ ≤ min{Q̂, P̂ �R̂} and (mj ,Ψ
′(z; b)) = 1.
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Plainly, we may proceed in a similar manner with yj for 1 ≤ j ≤ s.
With the discussion of the previous paragraph in mind, we see that S4 ≤ V1, where V1

denotes the number of solutions of the equation

Ψ(z; b) +
s∑
j=1

(mjuj)
k = Ψ(w; c) +

s∑
j=1

(njvj)
k,

with z, w, b, c satisfying (7.6), and subject to the condition that for 1 ≤ j ≤ s one has

(7.22) mj , nj monic, P̂ � < ⟨mj⟩, ⟨nj⟩ ≤ min{Q̂, P̂ �R̂},

(mj ,Ψ
′(z; b)) = (nj ,Ψ

′(w; c)) = 1,

uj ∈ A(Q− ord mj , R), vj ∈ A(Q− ord nj , R).

Now define Fm(�;P ) = Fm(�;P ; C) by putting

Fm(�;P ) =
∑
z,b

e(�Ψ(z; b)),

where the summation is over z and b satisfying (7.6) subject to the condition that
(m,Ψ′(z; b)) = 1. Also, write

Fj(�) = f(mk
j�;Q− ord mj , R)f(−nkj�;Q− ord nj , R) (1 ≤ j ≤ s).

Then it follows from orthogonality that

(7.23) V1 ≤
∑
m,n

∫
T
FM (�;P )FN (−�;P )

s∏
j=1

Fj(�) d�,

where here, and in what follows, the summation over m and n is subject to (7.22), and
we have written M = m1 . . .ms and N = n1 . . . ns.

We next write
Xj(�) = ∣FM (�;P )2f(mk

j�;Q− ord mj , R)2s∣

and
Yj(�) = ∣FN (�;P )2f(nkj�;Q− ord nj , R)2s∣.

Then it is apparent from (7.23) that

S4 ≪
∑
m,n

∫
T

s∏
j=1

(Xj(�)Yj(�))1/(2s) d�,

so that by Hölder’s inequality,

(7.24) S4 ≪
∑
m,n

s∏
j=1

(∫
T
Xj(�) d�

)1/(2s)(∫
T
Yj(�) d�

)1/(2s)

.
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Now observe that∫
T
Xj(�) d� ≤W (P,Q,R;mj) and

∫
T
Yj(�) d� ≤W (P,Q,R;nj),

where we write W (P,Q,R;m) for the number of solutions of the equation

(7.25) Ψ(z; b) +mk(uk1 + ⋅ ⋅ ⋅+ uks) = Ψ(w; c) +mk(vk1 + ⋅ ⋅ ⋅+ vks ),

with z, w, b, c subject to (7.6), and with uj , vj ∈ A(Q − �P,R) (1 ≤ j ≤ s) and
(Ψ′(z; b),m) = (Ψ′(w; c),m) = 1. Then, on applying Hölder’s inequality on the right
hand side of (7.24), we obtain the estimate

S4 ≪
(∑
m,n

1
)1−1/(2s)

(∑
m,n

s∏
j=1

(W (P,Q,R;mj)W (P,Q,R;nj))

)1/(2s)

≪ (P̂ �R̂)2s−1V (P,Q,R; �),(7.26)

where V (P,Q,R; �) denotes the number of solutions of the equation (7.25) subject to (7.6),
(7.8), (7.9) and the conditions (Ψ′(z; b),m) = (Ψ′(w; c),m) = 1. We now seek to establish
that

(7.27) V (P,Q,R; �)≪ P̂ "C̃rTs(P,Q,R; �),

for on substituting this bound into (7.26), we obtain

Ss(P,Q,R)≪ P̂ "C̃r(P̂
�R̂)2s−1Ts(P,Q,R; �),

and this confirms (7.11) in the fourth and final case.
For a given polynomial m satisfying (7.8), let ℰ(m;u; b) denote the set of solutions z of

the congruence Ψ(z; b) ≡ u (mod mk), with ⟨z⟩ < ⟨mk⟩ and (Ψ′(z; b),m) = 1. Consider
an irreducible factor $ of m, and suppose that $ℎ∥mk. An application of Hensel’s Lemma
(see, for example, Lemma 5.21 of [10]), shows that card(ℰ($ℎ;u; b)) ≤ �, where � is
the degree of Ψ. Applying the Chinese Remainder Theorem and recalling Corollary 7.2,
therefore, we deduce that

(7.28) card(ℰ(m;u; b)) ≤ �!(m) ≪ ⟨m⟩".

Consider a solution of (7.25) counted by W (P,Q,R;m). Motivated by the observation
that Ψ(z; b) ≡ Ψ(w; c) (mod mk), we classify the set of solutions according to the residue
class modulo mk of Ψ(z; b). Let

gm(�; �; b) =
∑
⟨z⟩≤P̂

z≡� (mod mk)

e(�Ψ(z; b))
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and

Gm(�) =
∑

⟨u⟩<⟨m⟩k

∣∣∣∑
b

∑
�∈ℰ(m;u;b)

gm(�; �; b)
∣∣∣2,

in which here, and in what follows, the summation over b is subject to (7.6). Then on
reviewing the definition of V (P,Q,R; �), we find that

(7.29) V (P,Q,R; �) ≤
∑†

P̂ �<⟨m⟩≤min{Q̂,P̂ �R̂}

Vm,

where

(7.30) Vm =

∫
T
Gm(�)∣f(mk�;Q− �P,R)∣2s d�.

We now apply Cauchy’s inequality in combination with (7.28), thereby obtaining the
estimate

Gm(�)≪ ⟨m⟩"C̃r
∑

⟨u⟩<⟨m⟩k

∑
b

∑
�∈ℰ(m;u;b)

∣gm(�; �; b)∣2

≤ ⟨m⟩"C̃r
∑
b

∑
⟨�⟩<⟨m⟩k

∣gm(�; �; b)∣2.

On substituting this bound into (7.29) and (7.30), we consequently deduce that

V (P,Q,R; �)≪ P̂ "C̃rΥ,

where

Υ =
∑†

P̂ �<⟨m⟩≤min{Q̂,P̂ �R̂}

∑
b

∑
⟨�⟩<⟨m⟩k

∫
T
∣gm(�; �; b)2f(mk�;Q− �P,R)2s∣ d�.

A comparison of the equation underlying the right hand side of the last relation with
(7.7) reveals that Υ ≤ Ts(P,Q,R; �). The desired bound (7.27) follows at once, and as we
remarked earlier, the latter confirms (7.11) in the fourth case. This completes the proof
of the lemma.

8. The efficient differencing process. The rôle of the fundamental lemma (Lemma
7.4) is to relate the mean value Ss(P,Q,R) to the derived mean value Ts(P,Q,R; �), the
latter containing the relatively powerful congruence condition (7.10). We now exploit
this condition by engineering a differencing process more efficient than that available via
conventional Weyl differencing. In order to discuss this efficient differencing process, we
define the modified forward differencing operator Δ∗1 by

Δ∗1(f(z);ℎ;m) = m−k(f(z)− f(z − ℎmk)),
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and then define Δ∗j recursively by

Δ∗j+1(f(z);ℎ1, . . ., ℎj+1;m1, . . . ,mj+1)

= Δ∗1(Δ∗j (f(z);ℎ1, . . . , ℎj ;m1, . . . ,mj);ℎj+1;mj+1).

It is convenient also to adopt the convention that Δ0(f(z)) = f(z).
While in characteristic zero, the differencing process effectively decreases the degree of

the polynomial argument by precisely one, the situation in positive characteristic is more
subtle. It is therefore useful to define the q-difference degree of a polynomial f(z) with
coefficients in Fq[t] to be the largest natural number  for which Δ∗(f(z); h; m) is not
identically zero as a polynomial in z, h, m. We write (f(z); q) for the q-difference degree
of the polynomial f(z). In addition, when confusion is easily avoided, we write (k; q) for
(zk; q). The following lemma shows that (k; q) may be conveniently evaluated in terms
of the sum of digits function q(k) defined in the preamble to the statement of Theorem
1.1.

Lemma 8.1. When k is a natural number, one has (k; q) = q(k).

Proof. Let the characteristic of Fq be p, and write k in base p in the shape k = anp
n +

⋅ ⋅ ⋅ + a1p + a0, where 0 ≤ ai ≤ p − 1 (0 ≤ i ≤ n) and an ∕= 0. We seek to show that
(k; q) = a0 + a1 + ⋅ ⋅ ⋅ + an, and this we achieve by induction. Observe first that if
q(k) = 1, then k = pn for some non-negative integer n. In such circumstances one has

Δ∗1(zp
n

;ℎ;m) = m−k(zp
n

− (z − ℎmk)p
n

) = (−1)p+1ℎp
n

mk(pn−1),

which is not identically zero as a polynomial in z, h and m. Thus we see that (k; q) = 1
when q(k) = 1, and so the basis for our induction is established.

Suppose next that q(k) ≥ 2, and that (l; q) = q(l) for each natural number l with
l < k. By the binomial expansion, one has

Δ∗1(zk;ℎ;m) =
k−1∑
j=0

(−1)k−j+1fj(ℎ,m)zj ,

where we write fj(ℎ,m) =
(
k
j

)
ℎk−jmk(k−j−1). When 0 ≤ j < k, write � = �(k, j) for the

non-negative integer satisfying p�∥
(
k
j

)
. Then we have

� =
∞∑
ℎ=1

([
k

pℎ

]
−
[
j

pℎ

]
−
[
k − j
pℎ

])
=
∞∑
ℎ=1

({
j

pℎ

}
+

{
k − j
pℎ

}
−
{
k

pℎ

})
,

where, as usual, we write {�} for � − [�]. It follows that
(
k
j

)
is coprime to p if and only

if j has the shape j = bnp
n + ⋅ ⋅ ⋅ + b1p + b0, with 0 ≤ bi ≤ ai for 0 ≤ i ≤ n (this in fact
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follows from Lucas’ criterion). Writing N (k) for the set of integers j with 0 ≤ j ≤ k − 1
for which the latter condition is satisfied, we therefore deduce that

Δ∗1(zk;ℎ;m) =
∑

j∈N (k)

(−1)k−j+1fj(ℎ,m)zj .

Furthermore, each term in the latter sum is non-trivial as a polynomial in z, ℎ and m. In
view of our inductive hypothesis, therefore, one has

(k; q) = 1 + max
j∈N (k)

(j; q) = 1 + max
j∈N (k)

q(j).

Moreover, since q(k) ≥ 2, there is some element j of N (k) for which q(j) = q(k) − 1,
and so we conclude that (k; q) = 1 + (q(k)− 1) = q(k). This establishes the inductive
step, and so the proof of the lemma is complete.

Before discussing the efficient differencing process itself, we pause to summarise Lemma
7.4 in a form tailored for the task we have in mind. When j is a non-negative integer, we
define the polynomial Ψj(z; h; m) = Ψj,k(z;ℎ1, . . . , ℎj ;m1, . . . ,mj) by putting

Ψj(z; h; m) = Δ∗j (z
k; h; m).

For each integer j with 1 ≤ j ≤ q(k), one may write Ψ′j,k(z; h; m) in the form

(8.1) Ψ′j,k(z; h; m) = kℎ1 . . . ℎj

k−j−1∑
l=0

 l,j(h; m)zl,

where, for 0 ≤ l ≤ k − j − 1, the polynomials  l,j(h; m) =  
(k)
l,j (ℎ1, . . . , ℎj ;m1, . . . ,mj)

have coefficients in Fq[t], and are of degree k − j − 1 − l in h and m. We observe that
 l,j(h; m) may be written as a polynomial in ℎrm

k
r (1 ≤ r ≤ j), say  l,j(h; m) =

�l,j(ℎ1m
k
1 , . . . , ℎjm

k
j ). When 0 ≤ r ≤ j, let ℐ(r)

j,k denote the set of indices l for which

�l,j(�) does not depend explicitly on �r+1, . . . , �j . Here, we adopt the convention that

ℐ(j)
j,k = {0, 1, . . . , k − j − 1}. Thus, in particular, the indices l ∈ ℐ(0)

j,k make no contribution

on the right hand side of (8.1).
We now abbreviate q(k) simply to , and when 1 ≤ i ≤ , we take �i = �i(s, k) to be

a parameter chosen in due course, but satisfying 0 < �i ≤ 1/k. When 1 ≤ j ≤ , we then
put

(8.2) Φj = �1 + ⋅ ⋅ ⋅+ �j , Mj = �jP, Hj = P − kMj and Qj = (1− Φj)P.

The parameter intervals [C ′i, Ci] (1 ≤ i ≤ r) of §7 are now interpreted as (Mi,Mi +R] and
[0, Hi] (1 ≤ i ≤ j), with r = 2j. We write Xj for the set of 2j-tuples of polynomials (m,h)

with M̂i < ⟨mi⟩ ≤ M̂iR̂ and 1 ≤ ⟨ℎi⟩ ≤ Ĥi (1 ≤ i ≤ j). When 1 ≤ � ≤ � ≤ k, let Θ�,�
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denote the set of polynomials �l,�(�) with l ∈ ℐ(�)
�,k∖ℐ

(�−1)
�,k , and write Ξ� = Θ�,�∪⋅ ⋅ ⋅∪Θ�,k.

Next define D�,j to be the set of elements (m,h) ∈ Xj satisfying the condition that
�(ℎ1m

k
1 , . . . , ℎ�m

k
�) = 0 for some � ∈ Ξ�. We then put ℰj = D1,j ∪ D2,j ∪ ⋅ ⋅ ⋅ ∪ Dj,j ,

and define Cj = Xj ∖ ℰj . In this way, we ensure that when Ψ′j,k(z; h; m) is considered as

a polynomial in z, then whenever (m,h) lies in Cj , every coefficient of Ψ′j,k that could
conceivably be non-zero is indeed non-zero.

Next we define

Fj(�) =
∑
z,h,m

e(�Ψj,k(z; h; m)),

where the summation is over z, h, m with 1 ≤ ⟨z⟩ ≤ P̂ and (m,h) ∈ Cj . Finally, we
write Ss(P,Q,R; Ψj) for Ss(P,Q,R; Ψj,k; Cj), and do likewise with the counting functions
Ts and Ns.

Lemma 8.2. Let � be a positive number with � < 1, and suppose that R is a parameter
satisfying P/ log(2P ) < R ≤ �P . Then whenever s is a non-negative integer and 0 ≤ j <
, one has

(8.3) Ss(P,Qj , R; Ψj)≪ P̂ "R̂2s−1+jH̃jM̃jM̂
2s−1
j+1 Ts(P,Qj , R;�j+1; Ψj).

Proof. Our strategy is to establish by induction that for each natural number s the upper

bound (8.3) holds. For the sake of convenience, write � = �j+1, so that P̂ � = M̂j+1.
We begin by establishing a basis for the induction with the case s = 0. Observe that
S0(P,Qj , R; Ψj) counts the number of solutions of the equation

(8.4) Ψj(z; h; m) = Ψj(w; g; n),

with ⟨z⟩, ⟨w⟩ ≤ P̂ , (m,h) ∈ Cj and (n,g) ∈ Cj . By exchanging the order of differentiation
and differencing, one sees that Ψ′j,k(z; h; m) = kΨj,k−1(z; h; m), and so it follows from

the discussion in the preamble to this lemma that when (m,h) ∈ Cj , then Ψ′j,k(z; h; m) is

a non-trivial polynomial in z, though possibly constant (i.e. a non-vanishing polynomial
only in h and m). But the latter implies that Ψj,k(z; h; m) is also a non-trivial polynomial
in z, and of degree at least one. Fixing choices of (m,h) ∈ Cj and (n,g) ∈ Cj , therefore, we
find that for each fixed choice of w there are at most k− j possible choices for z satisfying
(8.4). We consequently find that

(8.5) S0(P,Qj , R; Ψj)≪ P̂ (H̃jM̃jR̂
j)2.

The quantity T0(P,Qj , R; �; Ψj), on the other hand, counts the number of solutions of
the equation

(8.6) Ψj(z; h; m) = Ψj(w; h; m),
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with ⟨z⟩, ⟨w⟩ ≤ P̂ , (m,h) ∈ Cj , M̂j+1 < ⟨m⟩ ≤ min{Q̂j , M̂j+1R̂} and z ≡ w (mod mk).
Counting only the diagonal solutions of (8.6) with z = w, we find that

(8.7) T0(P,Qj , R; �; Ψj)≫ P̂ M̂j+1H̃jM̃jR̂
j+1.

A comparison of (8.5) and (8.7) reveals that

S0(P,Qj , R; Ψj)≪ H̃jM̃jR̂
j−1M̂−1

j+1T0(P,Qj , R; �; Ψj),

and this confirms the estimate (8.3) in the case s = 0.
Next, we suppose that (8.3) has been established with s replaced by u, for each non-

negative integer u with u < s, and we consider the conclusion of Lemma 7.4 with � = �j+1.
First consider the term Ss(P, �P,R; Ψj). Note that since 0 < �i ≤ 1/k (1 ≤ i ≤ j + 1)
and j <  ≤ k, one has 1− (�1 + ⋅ ⋅ ⋅+ �j) ≥ 1− j/k ≥ �. It therefore follows from (8.2)

that �P ≤ Qj , that P̂ � ≤ Q̂j , and hence also that P̂ 2� ≤ Q̂jM̂j+1. Then on interpreting
the equation underlying Sv(P, �P,R; Ψj) (v = s − 1, s) in integral form, and applying a
trivial estimate for the generating function f(�; �P,R), we obtain the bound

Ss(P, �P,R; Ψj) =

∫
T
∣Fj(�)2f(�; �P,R)2s∣ d�

≪ Q̂jM̂j+1Ss−1(P, �P,R; Ψj).

But Ss−1(P, �P,R; Ψj) ≤ Ss−1(P,Qj , R; Ψj), and so it follows from our inductive hypoth-
esis that

(8.8) Ss(P, �P,R; Ψj)≪ P̂ "R̂2s−3+jH̃jM̃jM̂
2s−2
j+1 Q̂jTs−1(P,Qj , R; �; Ψj).

A consideration of the semi-diagonal solutions of (7.7) counted by Ts(P,Qj , R; �; Ψj), in
which us = vs, in combination with the conclusion of Lemma 7.3, consequently reveals
that

(8.9) Ts(P,Qj , R; �; Ψj)≫ Q̂1−"
j+1Ts−1(P,Qj , R; �; Ψj).

Now combining (8.8) and (8.9), and noting that Q̂j+1M̂j+1 = Q̂j , we arrive at the upper
bound

(8.10) Ss(P, �P,R; Ψj)≪ P̂ 2"R̂2s−3+jH̃jM̃jM̂
2s−1
j+1 Ts(P,Qj , R; �; Ψj).

Next we consider Ns(P,Qj , R; Ψj). If z, w, h, g, m, n, x, y is a solution of the equation

Ψj(z; h; m)−Ψj(w; g; n) =
s∑
i=1

(xki − yki )
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counted by Ns(P,Qj , R; Ψj), then one has Ψ′j(z; h; m) = Ψ′j(w; g; n) = 0, and (m,h) ∈ Cj
and (n,g) ∈ Cj . As in the discussion above concerning the equation (8.4), the polynomials
Ψ′j(z; h; m) and Ψ′j(w; g; n) are non-trivial in z and w respectively. In particular, if either
is a constant polynomial in terms of the respective variables z and w, then that constant
is non-zero. It follows that for fixed choices of (m,h) ∈ Cj and (n,g) ∈ Cj , there are at
most O(1) possible choices of z and w. On interpreting the number of solutions of the
underlying equation in integral form and applying the triangle inequality, we therefore
conclude that

(8.11) Ns(P,Qj , R; Ψj)≪ (H̃jM̃jR̂
j)2

∫
T
∣f(�;Qj , R)∣2s d�.

If x ∈ A(Qj , R), then either ⟨x⟩ < P̂ �, or else x has a divisor m with P̂ � < ⟨m⟩ ≤ P̂ �R̂.
On considering the associated equations, one therefore finds that

(8.12)

∫
T
∣f(�;Qj+1, R)∣2s d� ≤

∫
T
∣f(�)∣2s d�,

where we write

f(�) = f(�;Mj+1, R) +
∑

M̂j+1<⟨m⟩≤M̂j+1R̂

f(�mk;Qj+1, R).

On considering the underlying equation, a change of variable yields the estimate∑
M̂j+1<⟨m⟩≤M̂j+1R̂

∫
T
∣f(�mk;Qj+1, R)∣2s d�≪ M̂j+1R̂Ss(Qj+1, R),

and so a trivial estimate for ∣f(�;Mj+1, R)∣, in combination with an application of Hölder’s
inequality, leads from (8.12) to the bound∫

T
∣f(�;Qj , R)∣2s d�≪ M̂2s

j+1 + (M̂j+1R̂)2sSs(Qj+1, R).

On recalling (8.11), we therefore arrive at the relation

(8.13) Ns(P,Qj , R; Ψj)≪ (H̃jM̃jR̂
j)2(M̂j+1R̂)2sSs(Qj+1, R).

Next, on considering the semi-diagonal solutions counted by Ts(P,Qj , R; �; Ψj) in which
z = w, we obtain the lower bound

Ts(P,Qj , R; �; Ψj)≫ P̂ H̃jM̃j+1R̂
j+1Ss(Qj+1, R).

A comparison with (8.13) consequently leads to the upper bound

(8.14) Ns(P,Qj , R; Ψj)≪ P̂−1R̂2s−1+jH̃jM̃jM̂
2s−1
j+1 Ts(P,Qj , R; �; Ψj).
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We now come to the third term on the right hand side of (7.11). On recalling the

inductive hypothesis, it follows from (8.9) together with the relation Q̂j+1M̂j+1 = Q̂j that

(8.15) Q̂jP̂
�+"Ss−1(P,Qj , R; Ψj)≪ P̂ 3"R̂2s−3+jH̃jM̃jM̂

2s−1
j+1 Ts(P,Qj , R; �; Ψj).

We therefore conclude from Lemma 7.4 in combination with (8.10), (8.14) and (8.15) that

Ss(P,Qj , R; Ψj)≪ P̂ 3"R̂2s−1+jH̃jM̃jM̂
2s−1
j+1 Ts(P,Qj , R; �; Ψj),

and this suffices to establish the inductive step. The desired conclusion (8.3) now follows
for every non-negative integer s, and this completes the proof of the lemma.

The conclusion of Lemma 8.2 enables us to bound the mean value Ss(P,Qj , R; Ψj) in
terms of Ts(P,Qj , R;�j+1; Ψj). We now complete the efficient differencing step by relating
Ts(P,Qj , R;�j+1; Ψj) to Ss(P,Qj+1, R; Ψj+1).

Lemma 8.3. Let � be a positive number with � < 1, and suppose that R is a parameter
satisfying P/ log(2P ) < R ≤ �P . Then whenever s is a positive integer and 0 ≤ j < ,
one has

(8.16)
Ts(P,Qj , R;�j+1; Ψj)≪ P̂ 1+"R̂j+1H̃jM̃j+1Ss(Qj+1, R)

+ (Ss(Qj+1, R))1/2(Ss(P,Qj+1, R; Ψj+1))1/2.

Proof. We begin by noting that Ts(P,Qj , R;�j+1; Ψj) counts the number of solutions of
the equation

(8.17) Ψj(z; h; m)−Ψj(w; h; m) = mk
s∑
i=1

(uki − vki ),

with

(8.18) ⟨z⟩, ⟨w⟩ ≤ P̂ , (m,h) ∈ Cj ,

and with

(8.19) m monic, M̂j+1 < ⟨m⟩ ≤ min{Q̂j , M̂j+1R̂},

(8.20) ui, vi ∈ A(Qj+1, R) (1 ≤ i ≤ s) and z ≡ w (mod mk).

The last condition may be interpreted by writing w = z − ℎmk for some ℎ ∈ Fq[t] with

⟨ℎ⟩ ≤ max{⟨z⟩, ⟨w⟩}⟨m⟩−k ≤ Ĥj+1. Let U0 denote the number of solutions of (8.17)
with (8.18), (8.19) and (8.20), where in addition one has z = w, and let U1 denote the
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corresponding number of solutions for which w = z−ℎmk with (m,m; h, ℎ) ∈ ℰj+1. Also,
let U2 denote the number of solutions of the equation

(8.21) Ψj(z; h; m)−Ψj(z − ℎmk; h; m) = mk
s∑
i=1

(uki − vki ),

with z, h, m, m, u, v subject to (8.18), (8.19) and (8.20), and subject also to the condition
that (m,m; h, ℎ) ∈ Cj+1. Then it follows from the above discussion that one has the upper
bound

(8.22) Ts(P,Qj , R;�j+1; Ψj) ≤ U0 + U1 + U2.

In view of the definition of U0, the estimate

(8.23) U0 ≪ P̂ H̃jM̃j+1R̂
j+1Ss(Qj+1, R)

is immediate from (8.17)–(8.20). Next we consider U1. For a fixed choice of m and h
with (m,h) ∈ Cj , any polynomials m and ℎ with (m,m,h, ℎ) ∈ ℰj+1 necessarily satisfy
the condition that �(ℎ1m

k
1 , . . . , ℎjm

k
j , ℎm

k) = 0 for some � ∈ Ξj+1, and further that

�(ℎ1m
k
1 , . . . , ℎjm

k
j ) ∕= 0 whenever � ∈ Ξj . A consideration of the relative degrees of terms

involving m and h, and m and ℎ, reveals that whenever (m,m,h, ℎ) ∈ ℰj+1, then for each
fixed (m,h) ∈ Cj , the polynomial ℎmk must be a zero of some one of O(1) polynomials of
degree at most k. There are consequently at most O(1) possible such choices for ℎmk for
each fixed choice of (m,h) ∈ Cj . For each fixed choice of the non-zero polynomial ℎmk,
moreover, it follows from Corollary 7.2 that the number of available choices for ℎ and m

is O(P̂ "). Given a fixed choice of w, it is a consequence of the foregoing discussion that
there are at most O(1) choices for z with w = z − ℎmk counted by U1. Interpreting the
equation (8.17) in terms of an associated integral and applying the triangle inequality, we
thus conclude that

U1 ≪ P̂ 1+"H̃jM̃jR̂
j max
M̂j+1<⟨m⟩≤M̂j+1R̂

∫
T
∣f(�mk;Qj+1, R)∣2s d�

= P̂ 1+"H̃jM̃jR̂
jSs(Qj+1, R).(8.24)

Next we observe that

m−k(Ψj(z; h; m)−Ψj(z − ℎmk; h; m)) = Ψj+1(z; h, ℎ; m,m).

On interpreting the equation underlying (8.21) in integral form, we therefore deduce that

U2 ≪
∫
T
Fj+1(�)∣f(�;Qj+1, R)∣2s d�.

By Schwarz’s inequality, we thus arrive at the upper bound

U2 ≪
(∫

T
∣f(�;Qj+1, R)∣2s d�

)1/2(∫
T
∣Fj+1(�)2f(�;Qj+1, R)2s∣ d�

)1/2

= (Ss(Qj+1, R))1/2(Ss(P,Qj+1, R; Ψj+1))1/2.

(8.25)

The desired conclusion (8.16) follows on combining (8.22), (8.23), (8.24) and (8.25).
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9. Permissible exponents. The application of Lemmata 8.2 and 8.3 in sequence permits
us to estimate Ss(P,Qj , R; Ψj) in terms of Ss(P,Qj+1, R; Ψj+1), and thereby a kind of dif-
ferencing operation is executed inside the associated mean value. On recalling that Ψ0(z) =
zk, it is evident from a comparison of (7.2) and (7.4) that Ss+1(P,R) ≤ Ss(P, P,R; Ψ0),
and so we are able to apply the aforementioned differencing argument to obtain estimates
for Su(P,R) for successive values of u. The goal of this section is to obtain estimates of

the shape Ss(P,R) ≪ P̂�s+", valid for suitable exponents �s when R is suitably small.
In this context, and in what occurs henceforth, it is useful to introduce the following
convention concerning the numbers " and R. Whenever " or R appear in a statement,
either implicitly or explicitly, we assert that for each " > 0, there exists a positive number
�0(", s, k) such that the statement holds whenever R = �P , with 0 < � ≤ �0(", s, k). Note
that the “value” of ", and �0, may change from statement to statement, and hence also
the dependency of implicit constants on " and �. Notice that since our iterative methods
will involve only a finite number of statements (depending at most on k, s and "), there
is no danger of losing control of implicit constants through the successive changes implicit
in our arguments. Finally, we use the symbol ≈ to indicate that constants and powers of
R and P " are to be ignored.

We say that the exponent Δs = Δs,k(q) is permissible whenever, with the convention

described above, one has Ss(P,R)≪ P̂�s+", wherein we write �s = 2s− k+ Δs. We may
interpret what it means for the exponent Δs to be permissible as follows. Whenever " > 0
and �0 is a positive number sufficiently small in terms of ", then for all positive numbers
P sufficiently large in terms of q, ", �, s and k, one has∫

T
∣f(�;P,R)∣2s d�≪ P̂ 2s−k+Δs+".

Notice that by making use of a trivial estimate for f(�;P,R), it follows easily from the lat-
ter bound that permissible exponents Δs may always be assumed to satisfy the inequality
Δs ≤ k. In addition, the sequence of inequalities

P̂ 2s ≪
∑
⟨ℎ⟩≤P̂k

∫
T
∣f(�;P,R)∣2se(−�ℎ) d�≪ P̂ k

∫
T
∣f(�;P,R)∣2s d�

ensures that Δs is necessarily non-negative. The next lemma supplies permissible expo-
nents when s is 1 or 2.

Lemma 9.1. One has S1(P, P )≪ P̂ and S2(P, P )≪ P̂ 2+".

Proof. The first inequality claimed in the statement of the lemma is trivial from orthog-
onality. For the second, we observe that S2(P, P ) is bounded above by the number of
solutions of the equation

(9.1) (x1 − y1)(xk−1
1 + xk−2

1 y1 + ⋅ ⋅ ⋅+ yk−1
1 ) = xk2 − yk2 ,

with ⟨xi⟩, ⟨yi⟩ ≤ P̂ (i = 1, 2). For each fixed choice of x2 and y2 with xk2 ∕= yk2 , both

x1 − y1 and xk−1
1 + xk−2

1 y1 + ⋅ ⋅ ⋅+ yk−1
1 are divisors of the non-zero element of Fq[t] given
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by xk2 − yk2 . Fixing any one of the O(P̂ ") possible choices of these divisors, say d1 and d2

respectively, one finds that x1 = y1 + d1, whence

(y1 + d1)k−1 + (y1 + d1)k−2y1 + ⋅ ⋅ ⋅+ yk−1
1 = d2.

The latter polynomial equation contains the leading term kyk−1
1 , and since throughout we

assume that the characteristic of Fq does not divide k, we find that y1 is determined by
a non-trivial polynomial of degree k − 1. Consequently, there are at most k − 1 possible

choices for y1 and hence also for x1. There are therefore at most O(P̂ 2+") solutions of
(9.1) counted by S2(P, P ) in which xk2 ∕= yk2 .

When xk2 = yk2 , meanwhile, one has also xk1 = yk1 . In this situation, given a fixed
choice of y1 and y2, there are at most k choices each for x1 and x2. The number of

solutions of this type counted by S2(P, P ) is therefore at most O(P̂ 2). The upper bound

S2(P, P )≪ P̂ 2+" follows at once on combining this contribution with the one bounded in
the previous paragraph.

It follows from Lemma 9.1 that one may take Δ1 = k−1 and Δ2 = k−2 as permissible
exponents. We note that it is reasonable to conjecture that the exponent Δu = max{k −
u, 0} is permissible for each positive integer u. The next lemma delivers a bound for
permissible Δu obtained through our efficient differencing process.

Lemma 9.2. Write  = q(k), and let r be a fixed natural number. Define the real
numbers �s, Δs and �s inductively by defining �2 = 0, Δ2 = k − 2, �2 = 2, and when
s > 2 by taking

�s =
1

k + Δs−1
+

(
1

k
− 1

k + Δs−1

)(
k −Δs−1

2k

)−1

,

Δs = Δs−1(1− �s) + k�s − 1,

and
�s = 2s− k + Δs.

Then the exponent Δs is permissible for 2 ≤ s ≤ r. In particular, given " > 0, there is
a positive number �0 = �0(", r, k) with the property that whenever 0 < � < �0, one has

Ss(P, �P )≪ P̂�s+".

Proof. We establish the desired conclusion by induction on s. The conclusion of the
lemma for s = 2 follows at once from Lemma 9.1. Suppose then that the conclusion of
the lemma has been confirmed when 2 ≤ s ≤ u. We apply Lemmata 8.2 and 8.3 to bound
Su+1(P, �P ) by making use of the trivial upper bound Su+1(P, �P ) ≤ Su(P,Q0, R; Ψ0),
with R = �P , Q0 = P and Ψ0 = zk. With each application of Lemma 8.3, we make
a choice for the associated parameter �j+1 in such a manner that the two terms on the
right hand side are of similar order of magnitude, thereby optimising the ensuing upper
bound for Tu(P,Qj , R;�j+1; Ψj). In view of the inductive hypothesis and our conventions
concerning " and R, this choice for �j+1 supplies the bound

(9.2) Tu(P,Qj , R;�j+1; Ψj)≪ P̂ 1+"H̃jM̃j+1Q̂
�u
j+1.
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We begin this process with j =  − 1, and in this way successively define �j for j =
,  − 1, . . . , 1. At the final stage we are able to extract the desired upper bound for
Su(P,Q0, R; Ψ0).

We begin by considering the mean value associated with the equation (7.4), and observe
that by making a trivial estimate, one obtains

Su(P,Q , R; Ψ)≪ P̂ 2+"H̃2
M̃

2
Su(Q , R).

An application of Lemma 8.3 now reveals that

(9.3) Tu(P,Q−1, R;� ; Ψ−1)≪ T1 + T2,

where
T1 = P̂ 1+"H̃−1M̃Su(Q , R)

and

T2 = (Su(Q , R))1/2
(
P̂ 2+"H̃2

M̃
2
Su(Q , R)

)1/2

.

In order to minimise our estimate for Tu(P,Q−1, R;� ; Ψ−1), we make a choice for �
in such a way that T1 ≈ T2, that is

P̂ H̃−1M̃Su(Q , R) ≈ P̂ H̃M̃Su(Q , R).

We therefore choose � so that H = 1, which is to say � = 1/k. Applying the inductive
hypothesis for Su(Q , R), we deduce from (9.3) that

Tu(P,Q−1, R;� ; Ψ−1)≪ P̂ 1+"H̃−1M̃Q̂
�u
 ,

which confirms the estimate (9.2) in the case j =  − 1.
Suppose next that j ≥ 0, and that we have fixed choices for �i when  ≥ i ≥ j + 1,

and further that we have established the bound (9.2). The conclusion of the previous
paragraph establishes such when j =  − 1. On substituting (9.2) into the conclusion of
Lemma 8.2, we obtain the upper bound

Su(P,Qj , R; Ψj)≪ P̂ 1+"M̂2u
j+1H̃

2
j M̃

2
j Q̂

�u
j+1.

Substituting this bound into the conclusion of Lemma 8.3, and applying the inductive
hypothesis for Su(Qj , R), we deduce that

(9.4) Tu(P,Qj−1, R;�j ; Ψj−1)≪ P̂ "(T3 + T4),

where
T3 = P̂ H̃j−1M̃jQ̂

�u
j ,
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and

T4 =
(
P̂ M̂2u

j+1H̃
2
j M̃

2
j Q̂

�u
j+1

)1/2 (
Q̂�uj

)1/2

.

We minimise our estimate for Tu(P,Qj−1, R;�j ; Ψj−1) by choosing �j in such a manner
that T3 ≈ T4, that is (

P̂ H̃j−1M̃jQ̂
�u
j

)2

≈ P̂ M̂2u
j+1H̃

2
j M̃

2
j Q̂

�u
j+1Q̂

�u
j .

We choose �j so that

1 + �u(1− Φj) = 2− 2k�j + 2u�j+1 + �u(1− Φj − �j+1),

or equivalently,

�j =
1 + (k −Δu)�j+1

2k
.

With this choice of �j , it follows from (9.4) that the estimate (9.2) holds with j − 1 in
place of j, and this completes the inductive step.

Thus far we have fixed choices for �j ( ≥ j ≥ 1) via the relations

� = 1/k and �j =
1 + (k −Δu)�j+1

2k
(1 ≤ j ≤  − 1).

It follows that for j = 1, 2, . . . , , one has

�j =
1

k + Δu
+

(
1

k
− 1

k + Δu

)(
k −Δu

2k

)−j
.

In particular, we have

�1 =
1

k + Δu
+

(
1

k
− 1

k + Δu

)(
k −Δu

2k

)−1

.

With this choice of �j (1 ≤ j ≤ ), it follows from (9.2) that

Tu(P,Q0, R;�1; Ψ0)≪ P̂ 1+"M̂1Q̂
�u
1 .

We therefore deduce from Lemma 8.2 that

(9.5) Su(P,Q0, R; Ψ0)≪ P̂ 1+"M̂2u
1 Q̂�u1 ,

and it follows that

(9.6) Su+1(P,R)≪ P̂�u+1+",

with �u+1 = �u(1−�1) + 1 + 2u�1. Thus, if we write �u+1 in place of �1, we find that the
exponent Δu+1 is permissible, where Δu+1 = Δu(1 − �u+1) + k�u+1 − 1. The conclusion
of the lemma now follows in all details.

We record a further consequence of the argument employed in the proof of Lemma 9.2
as an associated lemma.
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Lemma 9.3. Define the exponents �s (2 ≤ s ≤ r) as in the statement of Lemma 9.2.
Then one has ∫

T
∣F (�;P )2f(�;P,R)2s∣ d�≪ P̂�s+1+" (1 ≤ s < r).

Proof. We have only to observe that the upper bound (9.6) is extracted from (9.5), so that

in fact one has Ss(P,Q0, R; Ψ0)≪ P̂�s+1+". But the latter supplies the conclusion of the
present lemma.

The bound supplied by Lemma 9.3 has value in that two classical Weyl sums are present
in the mean value, yet the estimate available for this mean value is not diminished in
quality. Since classical Weyl sums are a valuable resource in analysing the major arc
contribution, this simple observation has considerable utility. By modifying the argument
of the proof of [28, Theorem 2.1], we are able to convert the conclusion of Lemma 9.2 into
a convenient form of essentially the same strength.

Theorem 9.4. Write  = q(k), and let r be a fixed natural number. For each s ∈ ℕ
with 2 ≤ s ≤ r, define the positive number �s,k by means of the equation

(9.7) �s,k + log �s,k =

{
1− 2s/k, when k ≤ 2−2,

1− (2− 21−)s/k, when k > 2−2.

Then the exponent Δs,k = k�s,k is permissible for 2 ≤ s ≤ r. In particular, if we define

�s =

{
2s− k + ke1−2s/k, when k ≤ 2−2,

2s− k + ke1−(2−21−)s/k, when k > 2−2,

then one has Ss(P,R)≪ P̂�s+" (2 ≤ s ≤ r).

Proof. We prove the theorem by induction. We begin by noting that for each natural
number s, the exponent �s,k satisfies the inequality 0 < �s,k < 1. In addition, it is
apparent that �+ log � is an increasing function of � when � > 0. In order to establish the
conclusion of the theorem, therefore, it suffices to prove for each fixed s that

(9.8) Ss(P,R)≪ P̂ 2s−k+k�∗+",

with �∗ a positive number satisfying the condition �∗ + log �∗ ≤ �s,k + log �s,k.

Consider first the case in which s = 2. Lemma 9.1 supplies the bound S2(P,R)≪ P̂ 2+",
so that Δ2,k = k − 2 is a permissible exponent. Moreover, one has

1− 2/k + log(1− 2/k) < 1− 4/k ≤ �2,k + log �2,k,

and so when s = 2 the upper bound (9.8) holds with �∗ ≤ �2,k. This confirms the desired
conclusion when s = 2.
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Suppose next that the first conclusion of the theorem holds for the index s, and write
� = �s,k. In addition, write � = 2s+ 2− k + Δ with

(9.9) Δ = k�(1− �1) + k�1 − 1,

and

(9.10) k�1 =
1

1 + �
+

(
1− 1

1 + �

)(
1− �

2

)−1

.

Then it follows from Lemma 9.2 that Δs+1,k = Δ is a permissible exponent and that

Ss+1(P,R)≪ P̂�+". We therefore seek to prove that

(9.11) Δ/k + log(Δ/k) ≤ �s+1,k + log �s+1,k,

and from here the bound (9.8) follows with s replaced by s + 1, and with �∗ = �s+1,k.
In view of our opening remarks, the first conclusion of the theorem will then follow by
induction.

On substituting (9.10) into (9.9), we deduce that

Δ = k� + k�1(1− �)− 1 = k� +
1− �
1 + �

+
�(1− �)

1 + �

(
1− �

2

)−1

− 1.

On writing w = (1− �)21− , we therefore see that

Δ/k + log(Δ/k) = �

(
1− 2− w

k(1 + �)

)
+ log � + log

(
1− 2− w

k(1 + �)

)
≤ � + log � − (2− w)�

k(1 + �)
− 2− w
k(1 + �)

− (2− w)2

2k2(1 + �)2

≤ � + log � − 2− w
k
− (2− w)2

2k2(1 + �)2
.

We now recall that 0 < � < 1, whence w < 21− . Also, since  ≥ 2, one has

2− w = 2− (1− �)21− ≥ 2− (1− �)2/2 = 1
2 (1 + �)(3− �).

Thus we deduce that

Δ/k + log(Δ/k) ≤ � + log � − 2− w
k
− (3− �)2

8k2
.

It follows that for all values of , one has

(9.12) Δ/k + log(Δ/k) ≤ � + log � − (2− 21−)/k,
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and that whenever  satisfies the condition 2−2 ≥ k, then

(9.13) Δ/k + log(Δ/k) ≤ � + log � − 2/k.

We now recall that � = �s,k, so that from (9.7) and (9.13), one obtains

Δ/k + log(Δ/k) ≤ 1− (2s+ 2)/k = �s+1,k + log �s+1,k,

when k ≤ 2−2, whilst for k > 2−2, it follows from (9.7) and (9.12) that

Δ/k + log(Δ/k) ≤ 1− (2− 21−)(s+ 1)/k = �s+1,k + log �s+1,k.

We have therefore confirmed the bound (9.11), whence the exponent Δs+1,k = k�s+1,k

is permissible whenever Δs,k = k�s,k is permissible. This establishes the inductive step,
and so the first conclusion of the theorem follows by induction. In order to complete the
proof of the theorem, we have merely to note that from the first part, the exponent Δs,k

is permissible whenever Δs,k is a positive number satisfying

(9.14) Δs,ke
Δs,k/k =

{
ke1−2s/k, when k ≤ 2−2 ,

ke1−(2−21−)s/k, when k > 2−2.

But then 0 ≤ Δs,k ≤ k, and so the right hand side of (9.14) provides an upper bound for
Δs,k.

10. Estimates for smooth Weyl sums: preliminaries. The goal of this and the
following three sections is to convert our newly obtained mean value estimates for smooth
Weyl sums into estimates for individual smooth Weyl sums on the set of minor arcs p.
In order to derive such estimates we adapt the argument of [29], involving the use of the
large sieve inequality, to the setting of Fq[t]. Before advancing in the next section to the
pursuit of useable estimates, we begin in this section with some preliminary manoeuvres.

Lemma 10.1. When � ∈ K∞ and m is a non-negative integer, one has

∑
⟨x⟩<m̂

e(�x) =

{
m̂, when ord ∥�∥ < −m,
0, when ord ∥�∥ ≥ −m.

Proof. This is Lemma 7 of [14].

When Q is a natural number, and � ∈ Fq[t] is irreducible, define

A∗(Q, �) = {x ∈ Fq[t] : ⟨x⟩ ≤ Q̂, $∣x⇒ $ ≼ �},

in which the relation ≼ is that defined in the preamble to Lemma 3.1. Notice that
A∗(Q, �) ⊆ A(Q, ord �). The next lemma is an analogue of [22, Lemma 10.1].
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Lemma 10.2. Suppose that R, M and Q are positive numbers, that y ∈ A(Q,R), and
in addition 1 ≤ R ≤ M < ord y ≤ Q. Then there is a unique triple (�, u, v), with �
irreducible and v monic, satisfying the following conditions:

(i) y = uv,
(ii) u ∈ A∗(Q− ord v, �),
(iii) M < ord v ≤M + ord �,
(iv) �∣v,
(v) whenever $ is a monic irreducible polynomial with $∣v, one has � ≼ $ and ord $ ≤

R.

Proof. Consider natural numbers R, M , Q and an element y ∈ A(Q,R) satisfying the
hypotheses of the statement of the lemma. We begin by establishing the existence of
a triple (�, u, v) with � irreducible and v monic, and satisfying the conditions (i)-(v).
Observe first that when y ∈ A(Q,R), then in view of (2.2) we may write y = c$1$2 . . . $�

with c ∈ F×q , and with $i (1 ≤ i ≤ �) monic irreducible polynomials satisfying $1 ≽ $2 ≽
⋅ ⋅ ⋅ ≽ $� and ord $1 ≤ R. Let

d0 = 1 and dj =
∏

1≤i≤j

$i (1 ≤ j ≤ �).

Then
0 = ord d0 < ord d1 < ⋅ ⋅ ⋅ < ord d� = ord y.

Since ord y > R and y ∈ A(Q,R), one necessarily has � ≥ 2. But 0 < M < ord y,
and so there exists a natural number � with ord d� ≤ M < ord d�+1. Moreover, since
R ≤M < ord y, it is apparent that 1 ≤ � < �. Consequently,

M < ord d�+1 = ord(d�$�+1) ≤M + ord $�+1.

We now take � = $�+1, v = d�+1 and u = y/v, and observe that (�, u, v) satisfies all of
the conditions imposed on the triple in the statement of the lemma.

Next we establish the uniqueness of the triple (�, u, v). Suppose that the triples
(�i, ui, vi) (i = 1, 2) both satisfy the conditions imposed on (�, u, v) in the statement
of the lemma, save that subscripts are applied to the variables in the obvious manner. If
the two triples are distinct, there is plainly no loss of generality in supposing that either
�1 ≺ �2, or else that �1 = �2 and v1 ≻ v2. For i = 1, 2, let wi denote the product of all
the monic irreducible factors $ of y with $ ≻ �i. Then for i = 1, 2, it is apparent that
vi = �ℎii wi for some exponent ℎi with ℎi ≥ 1. If �1 ≺ �2, then v2∣w1, and so it follows
from the condition (iii) that

(10.1) ord v1 ≥ ord �1 + ord v2 > ord �1 +M.

But, also in view of the condition (iii), one has ord v1 ≤M + ord �1. We therefore arrive
at a contradiction, and so we are forced instead to assume that �1 = �2 and v1 ≻ v2. The
first of the latter two conditions implies that w1 = w2, whence the second leads us to the
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condition ℎ1 > ℎ2. But then we once again obtain the inequality (10.1), contradicting
condition (iii) as before. We therefore conclude that the triples (�i, ui, vi) (i = 1, 2) are
identical, and so the triple (�, u, v), whose existence is asserted in the statement of the
lemma, is in fact unique. This completes the proof of the lemma.

We next employ this combinatorial decomposition of the set A(Q,R) so as to rewrite
smooth Weyl sums in a potentially bilinear form. In order to assist in this endeavour, when
M and R are positive numbers with 1 ≤ R ≤M , and � is a monic irreducible polynomial
with ord � ≤ R, we define ℬ(M,�,R) to be the set of monic polynomials v ∈ Fq[t] for
which M < ord v ≤ M + ord �, �∣v, and such that whenever $ is a monic irreducible
polynomial dividing v, then $ ≽ � and ord $ ≤ R.

Lemma 10.3. Let � ∈ K∞. Then whenever R, M and Q are positive numbers with
1 ≤ R ≤M < Q and r ∈ Fq[t] ∖ {0}, one has∑

x∈A(Q,R)
(x,r)=1

e(�xk)≪ R̂ max
� irreducible

ord �≤R

sup
�∈T

Vr(�;Q,M,R;�; �) + M̂,

where

Vr(�;Q,M,R;�; �) =
∑

v∈ℬ(M,�,R)
(v,r)=1

∣∣∣∣ ∑
u∈A∗(Q−M,�)

(u,r)=1

e(�(uv)k + �u)

∣∣∣∣.
Proof. We make use of Lemma 10.2 to decompose the smooth Weyl sum in question in
the form ∑

x∈A(Q,R)
(x,r)=1

e(�xk) =
∑

x∈A(Q,R)
ord x≤M
(x,r)=1

e(�xk) +
∑

x∈A(Q,R)
ord x>M
(x,r)=1

e(�xk)

≪ M̂ +
∑†

ord �≤R
(�,r)=1

∣Wr,�(�;Q,R)∣,(10.2)

where we have written

Wr,�(�;Q,R) =
∑

v∈ℬ(M,�,R)
(v,r)=1

∑
u∈A∗(Q−ord v,�)

(u,r)=1

e(�(uv)k).

But if we write

W+
r,�(�, �;Q,M,R) =

∑
v∈ℬ(M,�,R)

(v,r)=1

∑
u∈A∗(Q−M,�)

(u,r)=1

e(�(uv)k + �u),
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then it follows that

Wr,�(�;Q,R) =

∫
T
W+
r,�(�, �;Q,M,R)

∑
⟨x⟩≤Q̂⟨v⟩−1

e(−�x) d�.

We next observe that by Lemma 10.1, provided that ⟨v⟩ ≤ Q̂, one has∫
T

∣∣∣ ∑
⟨x⟩≤Q̂⟨v⟩−1

e(�x)
∣∣∣ d� =

∫
⟨�⟩<q−1Q̂−1⟨v⟩

qQ̂⟨v⟩−1 d� = 1.

Thus we conclude that

(10.3) Wr,�(�;Q,R) ≤ sup
�∈T
∣W+

r,�(�, �;Q,M,R)∣.

On substituting (10.3) into (10.2), the conclusion of the lemma now follows on summing
trivially over � and applying the triangle inequality.

11. Estimates for smooth Weyl sums: large moduli. The argument that we apply
to estimate the smooth Weyl sum f(�;P,R) proceeds in two phases. In one stage we apply
the large sieve inequality to estimate f(�;P,R). This treatment provides a satisfactory
bound whenever � is well approximated by a ratio a/g of polynomials with ⟨g⟩ small.
In the second stage one applies a treatment employing bilinear sums that yields viable
estimates in the complementary situation in which � is well-approximated only by ratios
a/g in which ⟨g⟩ is necessarily large. In this section we tackle the latter situation, beginning
with an auxiliary lemma on bilinear sums.

Lemma 11.1. Suppose that � ∈ K∞, and that a and g are elements of Fq[t] with g monic,
(a, g) = 1 and ⟨g�− a⟩ < ⟨g⟩−1. Then whenever C,D ∈ ℕ, one has

(11.1)
∑
⟨c⟩<Ĉ

∣∣∣∣∣∣
∑
⟨d⟩<D̂

e(�cd)

∣∣∣∣∣∣≪ ĈD̂(⟨g⟩−1 + Ĉ−1 + D̂−1 + ⟨g⟩(ĈD̂)−1).

Proof. We begin by observing that, in view of the conclusion of Lemma 10.1, the inner

sum on the left hand side of (11.1) is either D̂ or 0, depending on whether ord ∥�c∥ < −D
or ord ∥�c∥ ≥ −D. Suppose that �, a and g satisfy the hypotheses of the statement of
the lemma. Then by dividing the range of summation for c into arithmetic progressions
modulo g, we deduce that

(11.2)
∑
⟨c⟩<Ĉ

∣∣∣∣∣∣
∑
⟨d⟩<D̂

e(�cd)

∣∣∣∣∣∣ ≤ D̂
∑

⟨w⟩<Ĉ⟨g⟩−1

∑
⟨r⟩<⟨g⟩

ord ∥�(r+gw)∥<−D

1.
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Consider a fixed choice of w ∈ Fq[t], and, if one exists, a fixed choice of r satisfying
the conditions imposed by the inner summation on the right hand side of (11.2). If r′

is any other polynomial with ⟨r′⟩ < ⟨g⟩ that also satisfies ord ∥�(r′ + gw)∥ < −D, then
necessarily ord ∥�(r − r′)∥ < −D. Write � = a/g + �, and observe that

ord ∥�(r − r′)∥ ≤ ord ∥a(r − r′)/g∥+ ord ∥�(r − r′)∥.

Since by hypothesis, one has ⟨�⟩ < ⟨g⟩−2, we see that

ord ∥�(r − r′)∥ = ord � + ord(r − r′) < −2(ord g) + ord g = −ord g.

Meanwhile, when r ∕= r′, we have a(r − r′) ∕≡ 0 (mod g), whence ord ∥a(r − r′)/g∥ ≥
−ord g. We therefore deduce that, whether or not r ∕= r′, one has ord ∥�(r − r′)∥ =
ord ∥a(r − r′)/g∥, and that whenever r and r′ both occur in the inner summation on the
right hand side of (11.2), then necessarily ord ∥a(r − r′)/g∥ < −D. By rearranging the
latter summation, we therefore conclude that

(11.3)
∑
⟨c⟩<Ĉ

∣∣∣∣∣∣
∑
⟨d⟩<D̂

e(�cd)

∣∣∣∣∣∣ ≤ D̂
∑

⟨w⟩<Ĉ⟨g⟩−1

∑
⟨ℎ⟩<⟨g⟩

ord ∥aℎ/g∥<−D

1.

Since (a, g) = 1, it follows that as ℎ runs over a complete residue system modulo g, then
so does aℎ. Suppose now that y ∈ Fq[t] satisfies ⟨y⟩ < ⟨g⟩, and consider what it means

for ord ∥y/g∥ < −D. When ⟨g⟩ ≤ D̂, one has ord ∥y/g∥ < −D if and only if g∣y. When

⟨g⟩ > D̂, meanwhile, one has ord ∥y/g∥ < −D if and only if ⟨y⟩ < ⟨g⟩D̂−1. It follows that

there are precisely max {1, ⟨g⟩D̂−1} residue classes y modulo g for which ord ∥y/g∥ < −D,
whence from (11.3),

∑
⟨c⟩<Ĉ

∣∣∣∣∣∣
∑
⟨d⟩<D̂

e(�cd)

∣∣∣∣∣∣ ≤ D̂(1 + Ĉ⟨g⟩−1)(1 + ⟨g⟩D̂−1)

= ĈD̂(⟨g⟩−1 + Ĉ−1 + D̂−1 + ⟨g⟩(ĈD̂)−1).

This completes the proof of the lemma.

The next lemma, which provides upper bounds for f(�;P,R) of use when � is not well-
approximated by ratios a/g with ⟨g⟩ small, is established via an analogue of the argument
used to prove [29, Lemma 3.1].

Lemma 11.2. Suppose that � is a real number with 1
2 < � < 1, and write M = �P . Let

� ∈ K∞, and suppose that a and g are elements of Fq[t] with g monic, (a, g) = 1 and
⟨g�− a⟩ < ⟨g⟩−1. Then whenever l, w ∈ ℕ, and Δl and Δw are permissible, one has

f(�;P,R)≪ P̂ 1+"
(
M̂Δw(P̂ /M̂)ΔlΞk(g;P,M)

)1/(2lw)

+ M̂,
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where
Ξk(g;P,M) = ⟨g⟩−1 + M̂−k + (P̂ /M̂)−k + ⟨g⟩P̂−k.

Proof. An application of Lemma 10.3 with r = 1 shows that there exists an irreducible
polynomial � with ord � ≤ R, and an element � ∈ T, for which

(11.4) f(�;P,R)≪ R̂ℋ(�) + M̂,

where we have written
ℋ(�) =

∑
v∈A(M+R,R)

∣ℎ(�; v, �)∣,

with
ℎ(�; v, �) =

∑
u∈A∗(P−M,�)

e(�(uv)k + �u).

Define the complex numbers of unit modulus "(v, �) by means of the relation

∣ℎ(�; v, �)∣l = "(v, �)ℎ(�; v, �)l.

Here we adopt the convention that when ℎ(�; v, �) = 0, then we take "(v, �) = 1. Next,
when d ∈ Fq[t], we take rd to be the number of solutions of the equation uk1 + ⋅ ⋅ ⋅+ukl = d,
with ui ∈ A∗(P −M,�) (1 ≤ i ≤ l), in which each solution u is counted with weight
e(�(u1 + ⋅ ⋅ ⋅+ ul)). Thus we find that

ℎ(�; v, �)l =
∑

⟨d⟩≤(P̂ /M̂)k

rde(�dv
k).

A swift application of Hölder’s inequality consequently leads from here to the estimate

ℋ(�)l ≪ (M̂R̂)l−1
∑

v∈A(M+R,R)

∣ℎ(�; v, �)∣l

= (M̂R̂)l−1
∑

⟨d⟩≤(P̂ /M̂)k

rdh(�; d, �),(11.5)

where we have written

h(�; d, �) =
∑

v∈A(M+R,R)

"(v, �)e(�dvk).

Now let nd denote the number of solutions of the equation uk1 + ⋅ ⋅ ⋅ + ukl = d, with
ui ∈ A(P −M, ord �), counted without weights. Thus, in particular, for each polynomial
d one has ∣rd∣ ≤ nd. A further application of Hölder’s inequality leads from (11.5) to the
bound

ℋ(�)2lw ≤ (M̂R̂)2w(l−1)

(∑
d

nd

)2w−2(∑
d

n2
d

)
Jw(�),
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in which the summations on the right hand side are over all polynomials d ∈ Fq[t], and
where we have written

(11.6) Jw(�) =
∑

⟨d⟩≤(P̂ /M̂)k

∣h(�; d, �)∣2w.

But by considering the underlying equations, it is apparent that∑
d

nd ≤ (qP̂ /M̂)l and
∑
d

n2
d ≤ Sl(P −M,R),

and hence

(11.7) ℋ(�)2lw ≪ (P̂ R̂)2lw(P̂ /M̂)−2l(M̂R̂)−2wSl(P −M,R)Jw(�).

Next we write

ñc =

∫
T
∣h(�; d, �)∣2we(−�cd) d�.

Then it follows from orthogonality that ñc is equal to the number of solutions of the
equation

w∑
i=1

(vki − vkw+i) = c,

with vi ∈ A(M +R,R) (1 ≤ i ≤ 2w), wherein each solution v is counted with weight

w∏
i=1

"(vi, �)"(vw+i, �).

Since ∣"(v, �)∣ = 1 for each v, an application of the triangle inequality, combined with a
consideration of the underlying equation, leads to the upper bound

ñc ≤ ñ0 ≤ Sw(M +R,R).

Thus it follows from (11.6) that

(11.8) Jw(�) =
∑

⟨d⟩≤(P̂ /M̂)k

∑
⟨c⟩≤(M̂R̂)k

ñce(�cd)≪ Sw(M +R,R)ℛ(�),

where

ℛ(�) =
∑

⟨c⟩≤(M̂R̂)k

∣∣∣ ∑
⟨d⟩≤(P̂ /M̂)k

e(�cd)
∣∣∣.

Applying Lemma 11.1 with C = k(M + R) + 1 and D = k(P −M) + 1, we obtain the
estimate

(11.9) ℛ(�)≪ (P̂ R̂)k(⟨g⟩−1 + (M̂R̂)−k + (P̂ /M̂)−k + ⟨g⟩(P̂ R̂)−k).
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On collecting together the upper bounds (11.7), (11.8) and (11.9), and noting that Δl

and Δw are permissible exponents, we arrive at the upper bound

ℋ(�)≪ P̂ R̂
(

(P̂ /M̂)−k+Δl(M̂R̂)−k+Δwℛ(�)
)1/(2lw)

≪ P̂ 1+"
(

(P̂ /M̂)ΔlM̂ΔwΞk(g;P,M)
)1/(2lw)

.

The conclusion of the lemma now follows on substituting this bound into (11.4).

12. Estimates for smooth Weyl sums: small moduli. We now examine the smooth
Weyl sum f(�;P,R) when � is well-approximated by a ratio a/g in which ⟨g⟩ is relatively
small. Here we apply a variant of Vinogradov’s method modelled on the argument of
[29, Lemma 4.1]. We recall and emphasise at this point that we assume throughout that
ch(Fq) ∤ k.

Lemma 12.1. Suppose that � is a real number with 1
2 < � < 1, and write M = �P . Let

� ∈ K∞, and suppose that a and g are elements of Fq[t] with g monic, (a, g) = 1 and

⟨g� − a⟩ < (M̂R̂)−k, ⟨g⟩ ≤ (M̂R̂)k, and either ⟨g� − a⟩ ≥ M̂P̂−k or ⟨g⟩ > M̂R̂. Then
whenever s is a natural number satisfying 2s ≥ k + 1 and Δs is permissible, one has

f(�;P,R)≪ P̂ "M̂ + P̂ 1+"
(
M̂−1(P̂ /M̂)Δs(1 + ⟨g⟩(P̂ /M̂)−k)

)1/(2s)

.

Proof. The bilinear decomposition that enables us to apply the large sieve in this instance
is a little more delicate than that applied in the proof of Lemma 11.2. We begin by
recalling the definition of the set Cg(L) from the preamble to Lemma 7.1. Suppose that
�, a and g satisfy the hypotheses of the statement of the lemma. We observe that each
element y in A(P,R) may be written uniquely in the form y = xd, with d ∈ Cg(P ) and
x ∈ A(P − ord d,R) satisfying (x, g) = 1. The smooth Weyl sum f(�;P,R) defined in
(2.3) may therefore be rewritten in the shape

f(�;P,R) =
∑

d∈Cg(P )∩A(P,R)

∑
x∈A(P−ord d,R)

(x,g)=1

e(�(xd)k).

An application of Lemma 7.1 now reveals that

f(�;P,R)≪
∑

d∈Cg(P−M)

∣∣∣ ∑
x∈A(P−ord d,R)

(x,g)=1

e(�(xd)k)
∣∣∣+

∑
d∈Cg(P )

ord d>P−M

P̂ /⟨d⟩

≪ P̂ " max
d∈Cg(P−M)

∣∣∣ ∑
x∈A(P−ord d,R)

(x,g)=1

e(�(xd)k)
∣∣∣+ P̂ "M̂.
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When d ∈ Cg(P −M), one has M − ord d ≥M − (P −M) = (2�− 1)P > 0. It therefore
follows from Lemma 10.3 that there exists a polynomial d ∈ Cg(P −M), an irreducible
polynomial � with ord � ≤ R, and an element � ∈ T, such that

(12.1) f(�;P,R)≪ P̂ "M̂ + P̂ "R̂g(�; d, �, �),

where

(12.2) g(�; d, �, �) =
∑

v∈ℬ(M−ord d,�,R)
(v,g)=1

∣∣∣ ∑
u∈A∗(P−M,�)

(u,g)=1

e(�(uvd)k + �u)
∣∣∣.

Let J(g, d, ℎ) denote the number of solutions of the congruence (xd)k ≡ ℎ (mod g) with
⟨x⟩ < ⟨g⟩ and (x, g) = 1. When (ℎ, g) ∤ dk, one plainly has J(g, d, ℎ) = 0. Suppose then
that (ℎ, g)∣dk, and write ℎ′ = ℎ/(ℎ, g) and g′ = g/(ℎ, g). Then J(g, d, ℎ) is equal to ⟨(ℎ, g)⟩
multiplied by the number of solutions of the congruence

(12.3) xkdk/(ℎ, g) ≡ ℎ′ (mod g′),

with ⟨x⟩ < ⟨g′⟩. Since (ℎ′, g′) = 1, the number of solutions of this congruence is at most
O(⟨g′⟩"). In order to verify this assertion, observe first that for each irreducible divisor $
of g′, the number of solutions of the congruence xkdk/(ℎ, g) ≡ ℎ′ (mod $) is at most k.
Moreover, since any solution x of (12.3) necessarily satisfies (x, g′) = 1, and ch(Fq) ∤ k, it
follows from Hensel’s Lemma that each solution of the latter congruence lifts uniquely to a
corresponding solution x modulo $l, for each natural number l. The Chinese Remainder
Theorem consequently ensures that the number of solutions of (12.3) with ⟨x⟩ < ⟨g′⟩ is

at most k!(g′), and so the desired conclusion follows from Corollary 7.2. In this way, we
deduce that

(12.4) J(g, d, ℎ)≪ ⟨g⟩"⟨(ℎ, g)⟩ ≪ ⟨g⟩"⟨d⟩k.

Let V denote the set of monic polynomials v with M̂/⟨d⟩ < ⟨v⟩ ≤ M̂R̂/⟨d⟩ and (v, g) =
1. Then in view of the estimate (12.4), there exists a natural number L, satisfying L ≪
⟨g⟩"⟨d⟩k, with the following property. The set V can be divided into L classes V1, . . . ,VL
such that, for any two distinct elements v1, v2 in a given set Vj , we have (v1d)k ≡ (v2d)k

(mod g) if and only if v1 ≡ v2 (mod g). Let by denote the number of solutions of the
equation uk1 + ⋅ ⋅ ⋅+ uks = y with ui ∈ A∗(P −M,�) and (ui, g) = 1 (1 ≤ i ≤ s), in which
each solution u is counted with weight e(�(u1 + ⋅ ⋅ ⋅+us)). Then an application of Hölder’s
inequality to (12.2) yields the estimate

g(�; d, �, �)2s ≪ P̂ "⟨d⟩k(M̂R̂/⟨d⟩)2s−1 max
1≤j≤L

∑
v∈Vj

∣∣∣ ∑
⟨y⟩≤(P̂ /M̂)k

bye(�(vd)ky)
∣∣∣2.



WARING’S PROBLEM IN FUNCTION FIELDS 57

The hypotheses of the statement of the lemma permit us to assume that 2s − 1 ≥ k. It
therefore follows that there is an integer j, with 1 ≤ j ≤ L, for which

(12.5) g(�; d, �, �)2s ≪ P̂ "(M̂R̂)2s−1
∑
v∈Vj

∣∣∣∣∣∣
∑

⟨y⟩≤(P̂ /M̂)k

bye(�(vd)ky)

∣∣∣∣∣∣
2

.

In preparation for the application of the large sieve inequality, we next consider the
spacing of the elements �(vd)k in T for distinct elements v of Vj . Suppose that v1, v2 ∈ Vj
satisfy v1 ∕≡ v2 (mod g). Then in view of our construction of the set Vj , one necessarily
has (v1d)k ∕≡ (v2d)k (mod g), and hence our hypothesis that (a, g) = 1 ensures that

ord ∥a((v1d)k − (v2d)k)/g∥ ≥ −ord g.

Moreover, if we write � = � − a/g, then we may suppose that ⟨g�⟩ < (M̂R̂)−k. Since
d ∈ Cg(P −M) and v ∈ ℬ(M − ord d, �,R), one obtains

ord ∥�((v1d)k − (v2d)k)∥ < (−k(M +R)− ord g) + k(M +R)

≤ ord ∥a((v1d)k − (v2d)k)/g∥.

We therefore deduce that

ord ∥(� + a/g)((v1d)k − (v2d)k)∥ = ord ∥a((v1d)k − (v2d)k)/g∥,

whence

(12.6) ord ∥�((v1d)k − (v2d)k)∥ ≥ −ord g.

We now divide into cases, according to the size of ⟨g⟩. Suppose first that ⟨g⟩ > M̂R̂/⟨d⟩.
Since for v ∈ ℬ(M − ord d, �,R), one has ⟨v⟩ ≤ M̂R̂/⟨d⟩, it follows that in this case the
elements of Vj are necessarily distinct modulo g. It therefore follows from (12.6) that the
points �(vd)k are spaced at least ⟨g⟩−1 apart in T.

Suppose next that ⟨g⟩ ≤ M̂R̂/⟨d⟩. In this case we plainly have ⟨g⟩ ≤ M̂R̂, and so the

hypotheses of the lemma permit us to suppose that ⟨g� − a⟩ ≥ M̂P̂−k. On one hand,
if v1, v2 ∈ Vj satisfy the condition v1 ∕≡ v2 (mod g), then it follows from (12.6) that the
points �(v1d)k and �(v2d)k are spaced at least ⟨g⟩−1 apart in T. If v1 ≡ v2 (mod g) on

the other hand, then on recalling that ⟨g�− a⟩ < (M̂R̂)−k, we find that

(12.7)
ord ∥�((v1d)k − (v2d)k)∥ = ord ∥(�− a/g)dk(vk1 − vk2 )∥

≥M − kP − ord g + ord(dk(vk1 − vk2 )).

In order to obtain a lower bound for the final term appearing on the right hand side of
(12.7), we begin by noting that

(12.8) ord(dk(vk1 − vk2 )) ≥ ord(v1 − v2) + ord(dk−1(vk−1
1 + vk−2

1 v2 + ⋅ ⋅ ⋅+ vk−1
2 )).
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If v1 ∕= v2 and v1 ≡ v2 (mod g), we have

(12.9) ord(v1 − v2) ≥ ord g.

Further, if ord v1 = ord v2, then since the elements of Vj are monic, each term vk−1−l
1 vl2

has the same degree and leading coefficient 1. Consequently, as an element of Fq[t], the

expression vk−1
1 + vk−2

1 v2 + ⋅ ⋅ ⋅+ vk−1
2 has degree (k − 1)ord v1 with leading coefficient k

(which is, of course, not divisible by ch(Fq)). Whether or not ord v1 = ord v2, therefore,
we find that when v1, v2 ∈ Vj , one has

ord(dk−1(vk−1
1 + vk−2

1 v2 + ⋅ ⋅ ⋅+ vk−1
2 )) = max{ord (v1d)k−1, ord (v2d)k−1}

> (k − 1)M.(12.10)

On substituting (12.9) and (12.10) into (12.8), we see that

ord(dk(vk1 − vk2 )) ≥ (k − 1)M + ord g,

whence by (12.7) we have

ord ∥�((v1d)k − (v2d)k)∥ ≥ −k(P −M).

In this case, therefore, the points �(v1d)k and �(v2d)k are spaced at least (P̂ /M̂)−k apart
in T.

The previous discussion shows that for v ∈ Vj , the points �(vd)k are spaced at least

min{⟨g⟩−1, (P̂ /M̂)−k} apart in T. We now apply the large sieve inequality for function
fields, as given by Theorem 2.4 of Hsu [12], to deduce that

(12.11)
∑
v∈Vj

∣∣∣∣∣∣
∑

⟨y⟩≤(P̂ /M̂)k

bye(�(vd)ky)

∣∣∣∣∣∣
2

≪ (⟨g⟩+ (P̂ /M̂)k)
∑

⟨y⟩≤(P̂ /M̂)k

∣by∣2.

But on considering the underlying equation, and recalling that Δs is a permissible expo-
nent, one has ∑

⟨y⟩≤(P̂ /M̂)k

∣by∣2 ≤ Ss(P −M,R)≪ (P̂ /M̂)2s−k+Δs+".

On substituting the latter estimate into (12.11), and thence into (12.5) and (12.1), we
deduce that

f(�;P,R)≪ P̂ "M̂ + (P̂ R̂)1+"
(

(P̂ /M̂)ΔsM̂−1(1 + ⟨g⟩(P̂ /M̂)−k)
)1/(2s)

.

The conclusion of the lemma is now immediate on recalling our conventions concerning "
and R.
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13. Estimates for smooth Weyl sums: a uniform bound. The principal conclusions
of the previous two sections can be combined to provide an estimate for smooth Weyl sums
of use no matter what range the modulus g may lie in. In this section we derive such a
bound, and also optimise parameters so as to obtain conclusions asymptotically as strong
as are attainable via our methods.

Theorem 13.1. Suppose that � is a real number with 1
2 < � < 1. Let � ∈ K∞, and

suppose that whenever a and g are elements of Fq[t] with g monic, (a, g) = 1 and ⟨g�−a⟩ ≤
P̂�−k, then one has ⟨g⟩ > P̂�R̂. Then provided that l, s, w ∈ ℕ satisfy 2s ≥ k+ 1, and Δl,
Δs, Δw are permissible exponents, one has

f(�;P,R)≪ P̂ "(P̂� + P̂ 1−� + P̂ 1−�),

where

� =
k(1− �)− �Δw − (1− �)Δl

2lw
and � =

�− (1− �)Δs

2s
.

Proof. For the sake of concision, let us write M = �P . By the function field analogue
of Dirichlet’s theorem on diophantine approximation (see [14, Lemma 3]), given � ∈ T,

there exist polynomials a and g in Fq[t] with g monic, (a, g) = 1, ⟨g⟩ ≤ (M̂R̂)k and

⟨g�− a⟩ < (M̂R̂)−k. For the latter pair of polynomials, we have, in particular, the upper
bound ⟨g� − a⟩ < ⟨g⟩−1. Consequently, we may apply Lemma 11.2 to deduce that when

⟨g⟩ > (P̂ /M̂)k, one has

f(�;P,R)≪ P̂ 1+"(P̂�Δw+(1−�)Δl(P̂−k(1−�) + P̂−k�))1/(2lw) + P̂�

≪ P̂ "(P̂� + P̂ 1−�).(13.1)

Suppose, on the other hand, that ⟨g⟩ ≤ (P̂ /M̂)k. If ⟨g�−a⟩ ≥ M̂P̂−k, then the hypotheses

of the statement of Lemma 12.1 are satisfied. If ⟨g� − a⟩ < M̂P̂−k, meanwhile, the

hypotheses of the present lemma ensure that ⟨g⟩ > M̂R̂, and so the hypotheses of the
statement of Lemma 12.1 are again satisfied. We therefore conclude from Lemma 12.1

that when ⟨g⟩ ≤ (P̂ /M̂)k, then one has

f(�;P,R)≪ P̂ "(P̂� + P̂ (P̂−�+(1−�)Δs)1/(2s))

≪ P̂ "(P̂� + P̂ 1−�).(13.2)

The proof of the lemma follows on combining (13.1) and (13.2).

As is more or less apparent from the conclusion of Theorem 13.1, the optimal choice
of � is that satisfying the condition � = �. A modest calculation therefore leads to the
following corollary.
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Corollary 13.2. Suppose that l, s, w ∈ ℕ satisfy 2s ≥ k+ 1, and Δl, Δs, Δw are permis-
sible exponents. Define � and � by means of the relations

� =
k −Δl −ΔsΔw

2(s(k + Δw −Δl) + lw(1 + Δs))

and

� =
s(k −Δl) + lwΔs

s(k + Δw −Δl) + lw(1 + Δs)
.

Suppose in addition that 1
2 < � < 1− �. Then one has

sup
�∈m(�P )

∣f(�;P,R)∣ ≤ sup
�∈m(P )

∣f(�;P,R)∣ ≪ P̂ 1−�+".

Proof. The desired conclusion follows directly from Theorem 13.1 provided that one is able
to show that whenever � lies in m(P ), then � satisfies the hypotheses of the statement
of Theorem 13.1. Consider then a point � in m(P ). Suppose that a and g are elements

of Fq[t] with g monic, (a, g) = 1 and ⟨g� − a⟩ ≤ P̂�−k. If one were to have ⟨g⟩ ≤ P̂ ,
then necessarily � ∈ M(P ), contradicting our earlier assumption that � ∈ m(P ). We

are therefore forced to conclude that ⟨g⟩ > P̂ > P̂�. Consequently, whenever � lies in
m(P ), then � satisfies the hypotheses of the statement of Theorem 13.1. The proof of the
corollary is completed on verifying that with the choice of � made in the statement, one
has � = � = � in the conclusion of Lemma 13.1.

On making use of Theorem 9.4 to supply permissible exponents within this corollary,
we obtain a conclusion simple enough to use directly in subsequent applications.

Corollary 13.3. Suppose that k and q are natural numbers with ch(Fq) ∤ k. Define
 = q(k) as in the preamble to the statement of Theorem 1.1, and in addition define
B = Bq(k) by putting

Bq(k) =

{
1, when k ≤ 2−2,

(1− 2−)−1, when k > 2−2.

Then there is a positive absolute constant C4 with the property that, with the exponent
�(k) defined by means of the relation

�(k)−1 = Bk(Log k +BLog Log k + C4

√
Log Log k),

there exists a positive number � satisfying � < 1/2 for which

sup
�∈m((1−�)P )

∣f(�;P,R)∣ ≤ sup
�∈m(P )

∣f(�;P,R)∣ ≪ P̂ 1−�(k)+".
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Proof. We begin by considering the situation in which k is large. Put

(13.3) s = ⌈ 1
2Bk(log k + log log log k + 1)⌉,

(13.4) w = ⌈ 1
2Bk(log log k + 1)⌉, and l = ⌈Bk/

√
log log k⌉.

Then from Theorem 9.4, we find that the exponents Δ∗s and Δ∗w are permissible, where

Δ∗s = ke1−2s/(Bk) ≤ 1/ log log k and Δ∗w = ke1−2w/(Bk) ≤ k/ log k.

We also see from Theorem 9.4 that the exponent Δ∗l is permissible, where Δ∗l satisfies the
equation

(Δ∗l /k) + log(Δ∗l /k) = 1− 2l/(Bk).

But � + log � is an increasing function of �, and so it follows that

Δ∗l /k < 1− l/(Bk) + l2/(B2k2).

We therefore deduce that the exponents

(13.5) Δs = 1/ log log k, Δw = k/ log k and Δl = k − l/B + l2/(B2k)

are permissible.
We next recall the conclusion of Corollary 13.2. Define the exponents �(k) and �(k) by

(13.6) �(k) = 1− sΔw + lw

s(k + Δw −Δl) + lw(1 + Δs)

and

(13.7) �(k)−1 = 2s+
2(sΔw + lw)(1 + Δs)

k −Δl −ΔsΔw
.

Then whenever 1
2 < �(k) < 1−�(k), and in addition � satisfies the hypotheses of Theorem

13.1, one has f(�;P,R)≪ P̂ 1−�(k)+". But for sufficiently large values of k, it follows from
(13.3), (13.4) and (13.5) that the permissible exponents in the previous paragraph yield
the formulae

(13.8) 2(sΔw + lw) = Blk log log k(1 +O(1/
√

log log k)),

(13.9) k −Δl −ΔsΔw =
l

B
(1 +O(1/

√
log log k))
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and

(13.10) s(k −Δl) + lw(1 + Δs) + sΔw =
sl

B
(1 +O(1/

√
log log k)).

On substituting (13.8) and (13.9) together with (13.3) and (13.5) into (13.7), we find that
the exponent �(k) satisfies the upper bound

�(k)−1 ≤ Bk log k +B2k log log k(1 +O(1/
√

log log k)).

Thus, when k is sufficiently large, there is a positive absolute constant C4 for which

(13.11) �(k)−1 ≤ Bk(log k +B log log k + C4

√
log log k).

Likewise, now making use also of (13.10), we deduce from (13.6) that

1− �(k) = B
log log k

log k
(1 +O(1/

√
log log k)).

When k is sufficiently large, therefore, it follows from (13.11) that 1
2 < �(k) < 1 − �(k).

We may thus conclude that whenever k is sufficiently large, one has

(13.12) sup
�∈m(�P )

∣f(�;P,R)∣ ≤ sup
�∈m(P )

∣f(�;P,R)∣ ≪ P̂ 1−�(k)+",

where �(k) satisfies the upper bound (13.11).
The argument up to this point is applicable for sufficiently large values of k, say for

k > k0. We now seek to establish an estimate of the shape

(13.13) sup
�∈m(P )

∣f(�;P,R)∣ ≪ P̂ 1−�,

for some positive number �, for each exponent k with k ≤ k0. By suitably increasing the
size of the absolute constant C4 in (13.11), it follows from (13.12) that the estimate (13.13)
holds for all exponents k, and thus the conclusion of the corollary follows at once.

For simplicity, we now take D to be a sufficiently large, though fixed, positive number,
and we set

s = ⌈9BDk log k + 1⌉, w = ⌈BDk log k + 1⌉ and l = 2.

It follows from Theorem 9.4 that the exponents Δ∗s and Δ∗w are permissible, where

Δ∗s = ke1−2s/(Bk) ≤ k−17D and Δ∗w = ke1−2w/(Bk) ≤ k−D.
Thus, on recalling the conclusion of Lemma 9.1, we find that the exponents Δs = k−17D,
Δw = k−D and Δl = k − 2 are permissible. On substituting these exponents into (13.6)
and (13.7), and noting that D has been chosen sufficiently large, we obtain

0 < 1− �(k) ≤ 2BDk log k + 5

20BDk log k
<

1

9

and

(13.14) �(k)−1 ≤ 2s+ lw + 1 < 21BDk log k.

On noting that the exponent �(k) satisfies the condition 1
2 < �(k) < 1 − �(k), we may

apply Corollary 13.2 to establish that (13.12) holds in the present situation, though now
with the upper bound (13.14) in place of (13.11). This conclusion confirms the desired
estimate (13.13), and the conclusion of the corollary now follows.
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14. An upper bound for Gq(k): the proof of Theorem 1.1. The conclusions of §13
enable us to establish minor arc estimates of the shape (6.1), and from there we are able
to bound Gq(k) by means of Lemma 6.4.

Lemma 14.1. Let �(k) and �(k) be defined as in the statement of Corollary 13.2, and
suppose that 1

2 < �(k) < 1−�(k). Suppose also that v is a natural number with v ≥ k− 1,
and that Δv+1 is a permissible exponent. Then whenever u is a natural number with
u > 2v + Δv+1/�(k), there exists a positive number � for which∫

p

∣F (�)2f(�)u∣ d�≪ P̂u+2−k−�.

Proof. We begin by recalling that p = m(P ), so that the hypotheses of the lemma lead
from Corollary 13.2 to the upper bound

(14.1) sup
�∈p
∣f(�;P,R)∣ ≪ P̂ 1−�(k)+".

Let w = [Δv+1/�(k)] + 1. Then on combining (14.1) with the conclusion of Lemma 9.3,
we deduce that∫

p

∣F (�)2f(�)2v+w∣ d� ≤
(

sup
�∈p
∣f(�)∣

)w ∫
T
∣F (�)2f(�)2v∣ d�

≪ (P̂ 1−�(k)+")wP̂ 2v+2−k+Δv+1+".

Since w�(k) > Δv+1, it follows that there is a positive number � for which∫
p

∣F (�)2f(�)2v+w∣ d�≪ P̂ 2v+w+2−k−�.

The conclusion of the lemma now follows by making use of the trivial estimate ∣f(�)∣ ≪ P̂ .

Observe that Lemma 14.1 establishes that whenever u > 2v+Δv+1/�(k), and u > 2k−2,
then u is accessible to the exponent k. It therefore follows from Lemma 6.4 that when s

is an even integer with s ≥ u+ 2, and m ∈ Jkq [t], then ℛs(m;P)≫ P̂ s−k. But under the
same hypotheses, one finds from (6.1) that there is a positive number � with the property
that ∫

p

F (�)2f(�)s−2e(−�m) d�≪ P̂ s−u−2

∫
p

∣F (�)2f(�)u∣ d�≪ P̂ s−k−�.

Consequently,

ℛs(m;T) = ℛs(m;P) +ℛs(m; p)≫ P̂ s−k +O(P̂ s−k−�)≫ P̂ s−k.

We summarise this conclusion in the form of a theorem.
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Theorem 14.2. Let �(k) and �(k) be defined as in the statement of Corollary 13.2,
and suppose that 1

2 < �(k) < 1 − �(k). Suppose also that v is a natural number with
v ≥ k − 1 and that Δv+1 is a permissible exponent. Then whenever s is an even integer
with s > 2v + 2 + Δv+1/�(k), and m ∈ Jkq [t], one has R(m) ≫ ⟨m⟩s/k−1. In particular,
when Δv (v ≥ k − 1) are permissible exponents, one has Gq(k) ≤ Gq(k), where we write

Gq(k) = min
v≥k−1

(2v + 4 + 2 [Δv+1/(2�(k))]) .

Corollary 14.3. There is an absolute constant C5 with the property that

Gq(k) ≤ Bk
(

Log k + Log Log k + 2 +B
Log Log k

Log k
+ C5

√
Log Log k

Log k

)
.

Proof. We apply the conclusions of Corollary 13.3 and Theorems 9.4 and 14.2 to deduce
that

(14.2) Gq(k) ≤ min
v≥k−1

(
2v + 4 + 2

[
1
2Bk

2e1−(2v+2)/(Bk)ℒ(k)Log k
])
,

where we write

ℒ(k) = 1 +B
Log Log k

Log k
+ C4

√
Log Log k

Log k
,

and with C4 chosen to be a suitably large positive absolute constant. On taking

v =
⌈

1
2Bk(Log k + Log Log k + 1 +BLog Log k/Log k)

⌉
,

we find that

ke1−(2v+2)/(Bk) ≤ 1

Log k
exp(−BLog Log k/Log k)

=
1

Log k

(
1−BLog Log k

Log k
+O

(
(Log Log k)2

(Log k)2

))
.

The upper bound for Gq(k) provided by (14.2) therefore becomes

Gq(k) ≤Bk(Log k + Log Log k + 1 +BLog Log k/Log k)

+Bk(1 +O(
√

Log Log k/Log k)).

The conclusion of the corollary follows on taking C5 to be a sufficiently large positive
absolute constant.

On comparing the definition of Bq(k) with that of Aq(k) given in (1.2), we see that
when k ≥ 4, one has Bq(k) = Aq(k) for k > 2−2, and Bq(k) ≤ Aq(k) for k ≤ 2−2. The
first conclusion of Theorem 1.1 consequently follows at once from that of Corollary 14.3.
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When p = ch(Fq) divides k, on the other hand, the relation Gq(k) = Gq(k/ch(Fq)) follows
on noting that every sum of kth powers in Fq[t] belongs to Fq[tp], and that when m ∈ Jkq [t],
the representation problem (1.1) may therefore be reduced to the simpler one

m1 = x
k/p
1 + x

k/p
2 + ⋅ ⋅ ⋅+ xk/ps ,

where m1(tp) = m(t). This completes our proof of Theorem 1.1.
We finish this section by remarking that it should be possible to adapt the methods of

[24] and [25] to the function field setting, at least when ch(Fq) > k. With sufficient effort,
therefore, it should be feasible to establish under the latter condition that Gq(5) ≤ 17,
Gq(6) ≤ 24, Gq(7) ≤ 33, Gq(8) ≤ 42, and so on.

15. An upper bound for G+
q (k): the proof of Theorem 1.2. A modification of the

classical argument familiar from ℤ yields a straightforward proof of the upper bound for
G+
q (k) recorded in Theorem 1.2. We therefore economise on details.

Lemma 15.1. Suppose that k and q are natural numbers with ch(Fq) ∤ k. Let �(k) and
�(k) be defined as in the statement of Corollary 13.2, and suppose that 1

2 < �(k) < 1−�(k).
Suppose also that v is a natural number with v ≥ k − 1, and that Δv+1 is a permissible
exponent. Then one has G+

q (k) ≤ G+
q (k), where we write

G+
q (k) = max{2k + 1, v + 3 + [Δv+1/(2�(k))]}.

Proof. Let M be a large natural number, and suppose that v is a natural number satisfying
the hypotheses of the lemma. We put s = G+

q (k), and let Z∗(M) = Z∗s,k(M) denote the

set of non-exceptional polynomials m in Jkq [t], with ord m = M , that fail to admit a
strict representation as a sum of s kth powers. The set of exceptional polynomials may
be handled in like manner with trivial modifications to the argument, so we suppress
additional discussion of this set. Next, defining P = ⌈M/k⌉ as in the preamble to the
statement of Theorem 1.1, we define Z(M) = Zs,k(M) to be the set of non-exceptional
polynomials m in Jkq [t], with ord m = M , for which the equation (2.4) fails to possess

a solution with ⟨xi⟩ ≤ P̂ (i = 1, 2) and yj ∈ A(P,R) (1 ≤ j ≤ s − 2). For the sake
of concision, we write Z∗(M) = card(Z∗(M)) and Z(M) = card(Z(M)). Note that
Z∗(M) ≤ Z(M), and hence, in order to establish the conclusion of the lemma it suffices

to show that Z(M) = o(M̂) as M →∞.
Next we define the exponential sum

K(�) =
∑

m∈Z(M)

e(−m�).

Then as a consequence of Lemma 5.4, one has∫
N

F (�)2f(�)s−2K(�) d� =
∑

m∈Z(M)

ℛs(m;N)≫ Z(M)P̂ s−k.
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But if m ∈ Z(M), then ℛs(m;T) = 0, whence∫
N

F (�)2f(�)s−2e(−m�) d�+

∫
n

F (�)2f(�)s−2e(−m�) d� = 0.

Thus we see that∣∣∣∣∫
n

F (�)2f(�)s−2K(�) d�

∣∣∣∣ =

∫
N

F (�)2f(�)s−2K(�) d�≫ Z(M)P̂ s−k.

An application of Schwarz’s inequality now yields

(15.1) Z(M)P̂ s−k ≪
(∫

T
∣K(�)∣2 d�

)1/2(∫
n

∣F (�)4f(�)2s−4∣ d�
)1/2

.

In order to estimate the second integral on the right hand side of (15.1), we begin by
noting that Lemma 14.1 implies that whenever

(15.2) 2s− 4 > 2v + Δv+1/�(k),

then there is a positive number � for which

(15.3)

∫
p

∣F (�)2f(�)2s−4∣ d�≪ P̂ 2s−2−k−�.

Under the same conditions, we therefore find that 2s− 4 is accessible to the exponent k,
whence Lemma 6.3 yields

(15.4)

∫
P∖N
∣F (�)2f(�)2s−4∣ d�≪ P̂ 2s−2−kV̂ −1/(ks).

Since n = p ∪ (P ∖N), the trivial estimate F (�)≪ P̂ leads from (15.3) and (15.4) to the
upper bound∫

n

∣F (�)4f(�)2s−4∣ d�≪ P̂ 2

∫
n

∣F (�)2f(�)2s−4∣ d�≪ P̂ 2s−kV̂ −1/(ks).

Finally, by orthogonality, the first integral on the right hand side of (15.1) is equal to
Z(M). We therefore conclude from (15.1) that

Z(M)P̂ s−k ≪ Z(M)1/2(P̂ 2s−kV̂ −1/(ks))1/2,

whence
Z(M)≪ P̂ kV̂ −1/(ks) ≪ M̂(log M̂)−1/(12ks).
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We have shown in this way that Z(M) = o(M̂) as M → ∞, and from this, in view of
our earlier comments concerning exceptional polynomials, it follows that G+

q (k) ≤ s. The
proof of the lemma is completed by reference to (15.2).

We note that one variable may be saved in the argument above with only modest
additional effort. In our discussion we made use of two variables not restricted to be smooth
in (2.4), where only one is required in our minor arc treatment. This expedience allowed
us easy reference to Lemmata 5.4 and 6.3. However, by a straightforward modification of
the arguments of §§5 and 6, the two classical Weyl sums may be replaced by one classical
Weyl sum together with a smooth Weyl sum, and thereby a variable is saved.

A comparison of Lemma 15.1 with the conclusion of Theorem 14.2 reveals that the upper
bounds G+

q (k) and Gq(k) established by these lemmata for G+
q (k) and Gq(k), respectively,

are essentially related by the equation G+
q (k) = 1

2Gq(k) + 1. The argument of the proof

of Corollary 14.3 therefore yields the following upper bound for G+
q (k).

Corollary 15.2. There is an absolute constant C6 with the property that

G+
q (k) ≤ 1

2Bk

(
Log k + Log Log k + 2 +B

Log Log k

Log k
+ C6

√
Log Log k

Log k

)
.

In view of the discussion completing §14, the conclusion of Theorem 1.2 now follows at
once without additional complications.

16. The solubility of diagonal equations: the proof of Theorem 1.3. The ap-
plication of the Hardy-Littlewood method to equations of the shape (1.4) over Fq[t] is
essentially routine, and so we confine ourselves to an abbreviated discussion of the proof
of Theorem 1.3. We consider an equation of the shape (1.4) satisfying the hypotheses of
the statement of Theorem 1.3. Let P be a natural number sufficiently large in terms of
s, k, q and a. We seek to establish a lower bound for the number Ns(P ; a) of solutions

x ∈ Fq[t]s with ⟨xi⟩ ≤ P̂ (1 ≤ i ≤ s) by means of the Hardy-Littlewood method. Recalling
the notation introduced in (2.3), we now define Fi = Fi(�;P ) and fi = fi(�;P,R) by

Fi(�;P ) = F (ai�;P ) and fi(�;P,R) = f(ai�;P,R).

Then it follows from (2.1) that a lower bound for Ns(P ; a) is provided by the quantity
N∗s (P,R; a), defined by

(16.1) N∗s (P,R; a) =

∫
T
F1F2f3 . . . fs d�.

Next define �(k) as in the statement of Corollary 13.3, and let � be the associated
positive number satisfying � < 1

2 . Suppose that c ∈ Fq[t], and that P is sufficiently
large in terms of ord c. Then it is a straightforward exercise to verify that whenever
c� ∈ M((1 − �)P ), then � ∈ M((1 − �)P + ord c) ⊆ M(P ). Consequently, whenever
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� ∈ m(P ), then c� ∈ m((1− �)P ). We therefore deduce that when P is sufficiently large
in terms of the degrees of the coefficients a1, . . . , as, then

sup
�∈p
∣fi(�)∣ = sup

�∈m(P )

∣f(ai�;P,R)∣ ≤ sup
�∈m((1−�)P )

∣f(�;P,R)∣ ≪ P̂ 1−�(k)+".

A modification of the argument of the proof of Lemma 14.1 now shows that whenever v is
a natural number with v ≥ k − 1, and Δv+1 is a permissible exponent, and provided that
u is a natural number with u > 2v + Δv+1/�(k), then there is a positive number � with
the property that

(16.2)

∫
p

∣Fi(�)2fj(�)u∣ d�≪ P̂u+2−k−� (1 ≤ i, j ≤ s).

In order to justify this assertion, one must note in particular that the efficient differencing
arguments underlying §§7, 8 and 9 may be modified so as to incorporate non-zero coeffi-
cients in the underlying variables. Thus, when b and c are fixed non-zero polynomials, one
finds that whenever Δs+1 is a permissible exponent, then∫

T
∣F (b�;P )2f(c�;P,R)2s∣ d�≪ P̂�s+1+",

where �s+1 = 2s+ 2− k + Δs+1.
Next, by a straightforward modification of the argument of the proof of Lemma 6.3, we

deduce from (16.2) that when Δu (u = 1, 2, . . . ) are permissible exponents, and

(16.3) s ≥ min
v≥k−1

{2v + 4 + 2[Δv+1/(2�(k))]},

then ∫
P∖N
∣Fi(�)2fj(�)s−2∣ d�≪ P̂ s−kV̂ −2/(ks) (1 ≤ i, j ≤ s).

On recalling that n = p ∪ (P ∖ N), therefore, an application of Hölder’s inequality in
combination with (16.2) and the last estimate reveals that

(16.4)

∫
n

∣F1F2f3 . . . fs∣ d�≪ P̂ s−kV̂ −2/(ks).

Turning next to the analysis of the major arcs N, we may follow the arguments under-
lying the discussion of §5. Thus we find that

(16.5)

∫
N

F1F2f3 . . . fs d�− �(P/R)s−2Ss,kJs,k ≪ P̂ s−kV̂ −1/k,

where

(16.6) Js,k =

∫
⟨�⟩<(qP̂ )1−k

F (a1�;P ) . . . F (as�;P ) d�,
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and

Ss,k =
∑†

g∈Fq [t]

As(g),

with
As(g) = ⟨g⟩−s

∑
⟨b⟩<⟨g⟩
(b,g)=1

S(g, a1b) . . . S(g, asb).

Here, the exponential sums S(g, aib) are defined via (4.1) for 1 ≤ i ≤ s.
Defining next

Ω$,s = 1 +
∞∑
ℎ=1

As($
ℎ),

an argument paralleling that of the proof of Lemma 5.2 shows that
∏
$ Ω$,s converges

absolutely to Ss,k. In addition, if we write Ms(g) for the number of solutions of the
congruence a1x

k
1 + ⋅ ⋅ ⋅+ asx

k
s ≡ 0 (mod g), with ⟨xi⟩ < ⟨g⟩ (1 ≤ i ≤ s), then

Ω$,s = lim
ℎ→∞

⟨$⟩ℎ(1−s)Ms($
ℎ),

and
∣Ω$,s − 1∣ ≪ ⟨$⟩−1−1/k.

But by the hypotheses of Theorem 1.3, the equation (1.4) possesses a non-trivial solution
x = a in K$. Since ch(Fq) ∤ k, therefore, we may apply Hensel’s Lemma to show that

Ms($
ℎ) ≫ ⟨$⟩ℎ(s−1), whence Ω$,s > 0 for each irreducible polynomial $. We thus

conclude that for some positive number A = A(q, s, k; a), one has

Ss,k ≫
∏
$

(1 +A⟨$⟩−1−1/k)−1 ≫ 1.

Moreover, by an argument paralleling that employed in the proof of Lemma 5.1, one has
Ss,k ≪ 1. Consequently, the hypotheses of Theorem 1.3 ensure that

(16.7) 1≪ Ss,k ≪ 1.

It remains only to estimate the singular integral Js,k. Here we observe that the argument
of the proof of Lemma 15 of [14] leads from (16.6) to the relation

(16.8) Js,k = (qP̂ )1−kℳs,k(P ; a),

where ℳs,k(P ; a) denotes the number of solutions of the inequality

⟨a1x
k
1 + ⋅ ⋅ ⋅+ asx

k
s⟩ < (qP̂ )k−1,
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with ⟨xi⟩ ≤ P̂ (1 ≤ i ≤ s). The existence of a solution x ∈ Ks∞ of the equation (1.4)
ensures thatℳs,k(P ; a) ≥ 1 when P is sufficiently large. A variant of the argument of the

proof of [14, Lemma 16] therefore shows that ℳs,k(P ; a) ≫ P̂ s−k(qP̂ )k−1, and thus we

deduce from (16.8) that Js,k ≫ P̂ s−k. The argument of the proof of Lemma 5.1 leading to

(5.8), moreover, establishes that Js,k ≪ P̂ s−k. The hypotheses of Theorem 1.3 therefore
guarantee that

(16.9) P̂ s−k ≪ Js,k ≪ P̂ s−k.

On substituting (16.7) and (16.9) into (16.5), we are able to conclude that, under the
hypotheses of the statement of Theorem 1.3, one has∫

N

F1F2f3 . . . fs d�≫ P̂ s−k.

In view of (16.1) and (16.4), therefore, provided that the lower bound (16.3) is satisfied,
we arrive at the lower bound

N∗s (P,R; a) =

∫
N

F1F2f3 . . . fs d�+

∫
n

F1F2f3 . . . fs d�

≫ P̂ s−k +O(P̂ s−kV̂ −2/(ks)).

The conclusion of Theorem 1.3 now follows on verifying that the argument of the proof of
Corollary 14.3 leads from (16.3) to the upper bound

min
v≥k−1

{2v + 4 + 2[Δv+1/(2�(k))]} ≤ Ĝq(k) + C7k
√

Log Log k/Log k,

for a suitable positive absolute constant C7. This completes our discussion of the proof of
Theorem 1.3.
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3. M. Car, Théorèmes de densité dans Fq [X], Acta Arith. 48 (1987), 145–165.

4. M. Car, Waring’s problem in function fields, Proc. London Math. Soc. (3) 68 (1994), 1–30.
5. M. Car and J. Cherly, Sommes de cubes dans l’anneau F2ℎ [X], Acta Arith. 65 (1993), 227–241.

6. M. Car and L. Gallardo, Sums of cubes of polynomials, Acta Arith. 112 (2004), 41–50.

7. J. Cherly, Sommes d’exponentielles cubiques dans l’anneau des polynômes en une variable sur le corps
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